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LINEAR DIFFERENTIAL EQUATIONS WITH

COEFFICIENTS IN FOCK TYPE SPACE

XIANG DONG YANG & JIN TU

Abstract. In this paper we deal with complex differential equa-
tions of the form

f
(k) + ak−1(z)f (k−1) + · · · + a1(z)f

′

+ a0(z)f = 0

with the coefficients in Fock type space. The relation between the
solutions and coefficients in Fock type space is obtained.

1. Introduction

Motivated by the work in [6], [7] and [8], we will study complex
differential equations of the form

f (k) + ak−1(z)f (k−1) + · · · + a1(z)f
′
+ a0(z)f = 0(1)

where the coefficients are entire functions.
In [8], equations of the form (1) with coefficients in weighted

Bergman or Hardy spaces are studied. The direct problem is proved,
that is, if the coefficients aj(z), j = 0, ..., k − 1 of (1) belong to the
weighted Bergman space, then all solutions are of finite order of growth
and belong to weighted Bergman space. The inverse problem is also
investigated, that is, if all solutions are of finite order of growth, then
the coefficient is proved to belong to weighted Bergman space.

The Bargmann-Fock space (see [1], [2]) is the Hilbert space of
entire functions equipped with the inner product

< f, g >=
1

π

∫

C

f(z)g(z)e−z·zdxdy ,

normed by ‖f‖ =
√

< f, f >. This space has been studied by many au-
thors and it is rooted from mathematical problems of relativistic physics
(see [12]) or from quantum optics (see [10]). In physics the Bargmann-
Fock space contains the canonical coherent states, so it is the main tool
for studying the bosonic coherent state theory of radiation field (see
[11]). The Bargmann-Fock space has also been proved invaluable in the
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theory of the wavelets. In fact, the Bargmann transform is a unitary
map from L2(R) onto the Bargmann-Fock space which transforms the
family of evaluation functionals at a point into canonical coherent states
which are nothing but the Gabor wavelets.

The Fock-type space Fα (see [3]) is the Hilbert space of entire
functions equipped with the inner product

< f, g >α=

∫

C

f(z)g(z)e−α(|z|)dxdy ,

normed by ‖f‖α =
√

< f, f >α, where α(r) is a nonnegative and non-
decreasing function of r. It’s obvious that |z|2 is such a function. Thus
the Fock-type space Fα is a generalization of the Bargmann-Fock space.

In this paper, we will consider the growth relation between the
coefficients and the solutions of (1). We are particularly interested in
the Fock-type spaces Fα and Feα case:

(i)Find the conditions imposed on the coefficients aj(z), j =
0, ..., k−1 of (1) which make all of the solutions belong to the Fock-type
space Feα .

(ii)Suppose that all solutions of (1) belong to the Fock-type space
Feα , find out whether all of the coefficients aj(z), j = 0, ..., k − 1 belong
to the Fock-type space Fα.
Hereafter, problems (i) and (ii) will be referred to as the direct problem
and the inverse problem, respectively.

Throughout this paper, A will denote positive constants, it may
be different at each occurrence.

2. direct problem

In this section, sufficient conditions for all of the solutions of (1)
belong to Feα will be obtained. We need the following result on growth
estimate for solutions of (1) in [6].

Lemma 2.1. Let f be a solution of (1) in the disk {z ∈ C : |z| < r},
where 0 < r ≤ ∞, let nc ∈ {1, ..., k} be the number of nonzero coefficients
aj(z), j = 0, ..., k − 1, and let θ ∈ [0, 2π). If zθ = r0e

iθ ∈ {z ∈ C :
|z| < r} is such that aj(zθ) 6= 0 for some j = 0, ..., k − 1, then for all
r0 < r1 < r,

|f(r1e
iθ)| ≤ A exp

{

nc

∫ r1

r0

max
j=0,...,k−1

|aj(te
iθ)|1/(k−j)dt

}

where A is some positive constant depends on the values of the deriva-
tives of f and the values of aj(zθ) at zθ.

The main result of this section is as follows.
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Theorem 2.1. Suppose that α(r) is a nonnegative and nondecreasing
function of r satisfying

lim inf
r→∞

α(r)

log r
> 1,(2)

furthermore, suppose that aj(z) ∈ Fα, j = 0, 1, ..., k−1, then all solutions
of (1) belong to Feα.

Proof. Since aj(z) ∈ Fα for j = 0, 1, ..., k − 1, we have
∫

C

|aj(z)|2e−α(|z|)dxdy = 2π

∫ ∞

0
|aj (z )|2e−α(r)rdr < ∞.

Thus

lim
r→∞

|aj(z)|2e−α(r)r = 0,

which yields

|aj(z)|2 ≤ A
eα(r)

r

for sufficiently large |z| = r > 0, or

|aj(z)| ≤ A
eα(r)/2

√
r

, r > r0.(3)

If f(z) is a solution of (1), from Lemma 2.1, we have

|f(reiθ)| ≤ A exp
{

nc

∫ r

r0

max
j=0,...,k−1

|aj(te
iθ)|1/(k−j)dt

}

where A is some positive constant depends on the values of the deriva-
tives of f and the values of aj(zθ) at zθ and nc is defined in Lemma 2.1,
combination with (3) yields

|f(reiθ)| ≤ exp

{

A

∫ r

r0

eα(t)/2

√
t

dt

}

≤A exp
{

Ar1/2eα(r)/2
}

.

By (2), we have

α(r) > (1 + ε) log r

for any 1
2 > ε > 0, then

2Ar1/2eα(r)/2 − eα(r) < eα(r)/2(2Ar1/2 − r1+ε).

Thus

‖f‖2
eα =

∫

C

|f(z)|2e−eα(|z|)
dxdy

≤A

∫ ∞

r0

exp
{

2Ar1/2eα(r)/2 − eα(r)
}

rdr < ∞,
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proving that all of solutions of (1) belong to Feα .
�

Remark 2.1. Although we are unable to show the sharpness of the con-
stant 1 in (4), we remark it is necessary. Actually, if (4) does not hold,
we may suppose

lim sup
r→∞

α(r)

log r
< 1.

Taking α(r) ∼ log rη0 where 0 < η0 < 1
2 , for example, here the symbol ∼

denotes that α(r) and log rη0 have the same growth as r tends to infinity,
then

2Ar1/2eα(r)/2 − eα(r) = eα(r)/2(2Ar1/2 − eα(r)/2) ∼ r
η0+1

2 ,

and
∫ ∞

r0

exp
{

2Ar1/2eα(r)/2 − eα(r)
}

rdr = ∞.

By the proof of Theorem 2.1, we know that f /∈ Feα holds in this case.

3. inverse problem

To study the inverse problem, we need some background knowl-
edge and some lemmas.

We present the following elementary result on inequality in [4]
for later use.

Lemma 3.1. Let ak ≥ 0 for k = 1, ..., n. Then

(

n
∑

k=1

ak

)p ≤ np−1
(

n
∑

k=1

ap
k

)

for 1 ≤ p < ∞.

We also need the growth estimates of meromorphic functions in
[5].

Lemma 3.2. Let f(z) be a transcendental meromorphic function, fur-
thermore, let β > 1 be a positive constant. Then there exist a set
E ⊂ [0, 2π) that has linear measure zero, a constant A > 0 that de-
pends only on β, and a constant r0 = r0(θ) > 1 such that

∣

∣

∣

∣

f (m)(reiθ)

f(reiθ)

∣

∣

∣

∣

≤ A

[

T (βr, f)
logβ r

r
log T (βr, f)

]m

, m ∈ N,

where r > r0 and θ ∈ [0, 2π) \ E .
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Recall that the order reduction procedure is as follows(see [8]):
if {f1, ..., fk} is a solution base of (1) in |z| < r, then the first order
reduction of (1) results in

ν
(k−1)
1 + a1,k−2(z)ν

(k−2)
1 + · · · + a1,0(z)ν1 = 0,(4)

where

a1,j(z) = aj+1(z) +

k−j−1
∑

m=1

(

j + 1 + m

m

)

aj+1+m(z)
f

(m)
1 (z)

f1(z)
(5)

for j = 0, ..., k − 2 and the meromorphic functions

ν1,j(z) =
d

dz

(fj+1(z)

f1(z)

)

(6)

for j = 0, ..., k − 1 are linearly independent solutions of (5) in |z| < r.
We have the following relations between the solutions and its

reductions.

Lemma 3.3. Suppose α(r) is a nonnegative and nondecreasing contin-
uous function of r satisfying

∫ ∞

r0

e(τ0α(β0r)−α(βr))rdr < ∞,(7)

for r > r0, where τ0, β0 and β are some positive constants satisfying
τ0 > 4k, β0 > 1, and β > β0. Let {f1, ..., fk} be a solution base of of
equation (1). If fj ∈ Feα(r) , j = 1, 2, ..., then for any nonnegative integer
m ≤ 2 and l = 1, 2, ..., k,

∫

C

∣

∣

∣

∣

f
(l)
j (z)

fj(z)

∣

∣

∣

∣

2m

e−α(β|z|)dxdy < ∞,(8)

∫

C

∣

∣

∣

∣

v
(l)
1,j(z)

v1,j(z)

∣

∣

∣

∣

2m

e−α(β|z|)dxdy < ∞,(9)

and
∫

C

∣

∣

∣

∣

v
(l)
k,j(z)

vk,j(z)

∣

∣

∣

∣

2m

e−α(β|z|)dxdy < ∞.(10)

Proof. Since fj(z) ∈ Feα for j = 1, ..., k, we have
∫

C

|fj(z)|2e−eα(|z|)
dxdy = 2π

∫ ∞

0
|fj (z )|2e−eα(r)

rdr < ∞.

Thus

lim
r→∞

|fj(z)|2e−eα(r)
r = 0,
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which yields

|fj(z)|2 ≤ A
eeα(r)

r

for sufficiently large |z| = r > 0, or

log M(r, fj) ≤
1 + o(1)

2
eα(r).

Thus,

(T (β0r, fj))
m ≤ Aemα(β0r)(11)

for any nonnegative integer m ≤ 2 and β0 > 1. By Lemma 3.2, for given
positive constant β0 > 1, there exist some set E ⊂ [0, 2π) of measure
zero and some constant r1 = supθ0∈[0,2π)\E r0(θ0) > 0 such that

∣

∣

∣

∣

f
(m)
j (z)

fj(z)

∣

∣

∣

∣

≤ A|T (β0r, fj)
logβ r

r
log T (β0r, fj)|m(12)

for arg z ∈ {θ0 : θ0 ∈ [0, 2π) \ E} and |z| ≥ r1. Combine (7) with (11)
and (12), we have

∫

C

∣

∣

∣

∣

f
(l)
j (z)

fj(z)

∣

∣

∣

∣

2m

e−α(β|z|)dxdy ≤ A

∫

C

e(τ0α(β0r)−α(βr))rdr < ∞,

for any nonnegative integer m ≤ 2, β > β0 and l = 1, 2, ..., k, which is
(8). The same reasoning yields (9) and (10).

We also need the following result on reduction.

Lemma 3.4. Suppose α(r) is a nonnegative and nondecreasing con-
tinuous function of r satisfying (7) for some τ0 > 4k and β > β0 > 1
furthermore, assume that for any nonnegative integer m ≤ 2 and β > β0

∫

C

|a1,j(z)|2me−α(β|z|)dxdy < ∞,(13)

where a1,j(z) is defined in (5), then
∫

C

|aj(z)|2me−α(β|z|)dxdy < ∞,(14)

where aj(z)( j = 0, ..., k − 1) are coefficients of (1).

Proof. Note that ak(z) ≡ 1, for j = 1, 2, ..., k

a1,k−2(z) = ak−1(z) + k
f

′

1(z)

f1(z)
.(15)

Let f1(z) denote any transcendental entire solution of (1). For any
nonnegative integer m ≤ 2, by Lemma 3.2, there exist some set E ⊂
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[0, 2π) of measure zero and some constant r1 = supθ0∈[0,2π)\E r0(θ0) > 0
such that

∣

∣

∣

∣

f
(m)
1 (z)

f1(z)

∣

∣

∣

∣

≤ A|T (β0r, f1)
logβ r

r
log T (β0r, f1)|m(16)

for arg z ∈ {θ0 : θ0 ∈ [0, 2π) \ E} and |z| ≥ r1, β0 > 1. Combination of
(15) and (16) yields

∣

∣ak−1(z)
∣

∣ ≤ |a1,k−2(z)| + |T (β0r, f1)
logβ r

r
log T (β0r, f1)|m(17)

for |z| ≥ r1, arg z = θ ∈ [0, 2π) \ E.
From the proof of Lemma 3.3, we know that for f1 ∈ Feα ,

(T (β0r, fj))
m ≤ Aemα(β0r).(18)

Square both sides, multiply both sides of (17) by e−α(β|z|), then integrate
over the annulus, combine with Lemma 3.1, (18) and the fact (7), we
have

∫

C

|ak−1(z)|2me−α(β|z|)dxdy

=

∫ 2π

0
dθ

∫ ∞

0
|ak−1(re

iθ)|2me−α(βr)rdr

≤
∫ 2π

0
dθ

∫ r0

0
|ak−1(re

iθ)|2me−α(βr)rdr

+A

∫ 2π

0
dθ

∫ ∞

r0

|a1,k−2(re
iθ)|2me−α(βr)rdr

+A

∫ ∞

r0

|T (β0r, f1)
logβ r

r
log T (β0r, f1)|2me−α(βr)rdr

≤ A

∫ ∞

r0

|a1,k−2(re
iθ)|2me−α(βr)dx

+A

∫ ∞

r0

e(τ0α(β0r)−α(βr))rdr

< ∞,

where A is some positive constant .
Suppose that the assertion is proved for j = k − 1, ..., k − l, l ∈

{1, ..., k − 2}. From

a1,k−(l+1)(z) = ak−(l+2)(z) +

l+1
∑

m=1

(

k − l − 1 + m

m

)

ak−(l+1)+m(z)
f

(m)
1 (z)

f1(z)
,
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we have

|ak−(l+1)(z)| ≤ |a1,k−(l+2)(z)| + A

∣

∣

∣

∣

f
(l+1)
1 (z)

f1(z)

∣

∣

∣

∣

+A

l
∑

m=1

|ak−(l+1)+m(z)|
∣

∣

∣

∣

f
(m)
1 (z)

f1(z)

∣

∣

∣

∣

.

Thus, by Lemma 3.1, there exists a positive constant A such that

|ak−(l+1)(z)|2 ≤A(|a1,k−(l+2)(z)|2 +

∣

∣

∣

∣

f
(l+1)
1 (z)

f1(z)

∣

∣

∣

∣

2

+

l
∑

m=1

(
∣

∣

∣

∣

ak−(l+1)+m(z)
f

(m)
1 (z)

f1(z)

∣

∣

∣

∣

2)

.

Multiply both sides of (17) by e−α(β|z|), the Cauchy-Schwartz inequality
yields,

∫

C

|ak−(l+1)(z)|2me−α(β|z|)dxdy

≤ A

(
∫

C

|a1,k−(l+2)(z)|2e−α(β|z|)dxdy +

∫

C

∣

∣

∣

∣

f
(l+1 )
1 (z )

f1 (z )

∣

∣

∣

∣

2

e−α(β|z |)dxdy

+

l
∑

m=1

(
∫

C

∣

∣ak−(l+1)+m(z)
∣

∣

2
e−α(β|z|)dxdy

)1/2

×
(

∫

C

∣

∣

∣

∣

f
(m)
1 (z)

f1(z)

∣

∣

∣

∣

4

e−α(β|z|)dxdy

)1/2)

.

Thus, by (7), (16) and (18), we know that (14) holds for j=1, ..., k.
For a0(z), from

a0(z) = −f
(k)
1

f1
− ak−1

f
(k−1)
1

f1
− ... − a1

f
′

1

f1
,

the conclusion follows from Lemma 3.3.
�

Our result on the inverse problem is as follows.

Theorem 3.1. Suppose that α(r) is a nonnegative and nondecreasing
continuous function of r satisfying (7) for some τ0 > 4k and β > β0 > 1.
Let aj(z)(j = 0, ..., k − 1) denote the coefficients of (1). If all of the
solutions of (1) belong to Feα(r), then for any nonnegative integer m ≤ 2
and β > β0 > 1, (aj(z))m(j = 0, ..., k − 1) belong to Fα(βr).

Proof. When k = 1, the equation (1) has the following form

f
′
+ a0(z)f = 0.
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Let f be a nontrivial entire function solution of (1). By (8) in Lemma
3.3, it is obvious that for any nonnegative integer m ≤ 2k and β > 1,
(a0(z))m ∈ Fα(βr).

Suppose that k ≥ 2. After k− 1 order reduction steps, we obtain
the differential equation

ν
′

k−1 + ak−1,0(z)νk−1 = 0.

Thus

ak−1,0 = −
ν

′

k−1(z)

νk−1(z)
,

where νk−1(z) is the meromorphic function defined in (6). Combine (9)
in Lemma 3.3 with Lemma 3.4, we conclude ak−1(z) ∈ Fα(βr), proving
Theorem 3.1

�
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