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Abstract. We shall consider weak solutions of boundary value problems for elliptic
functional differential equations of the form

−
n

∑
j=1

Dj[aj(x, u, Du; u)] + a0(x, u, Du; u) = F, x ∈ Ω

with homogeneous boundary conditions, where Ω ⊂ Rn is a bounded domain and ; u
denotes nonlocal dependence on u (e.g. integral operators applied to u).

By using the theory of pseudomonotone operators, one can prove existence of solu-
tions.

However, in certain particular cases it is possible to find theorems on the number
of solutions. These statements are based on arguments for fixed points of certain real
functions and operators, respectively.

Keywords: elliptic functional equations, multiple solutions.

2010 Mathematics Subject Classification: 35R10, 35R09.

1 Introduction

It is well known that mathematical models of several applications are functional differential
equations of one variable (e.g. delay equations). In the monograph by Jianhong Wu [7] semi-
linear evolutionary partial functional differential equations and applications are considered,
where the book is based on the theory of semigroups and generators. In the monograph by
A. L. Skubachevskii [6] linear elliptic functional differential equations (equations with non-
local terms and nonlocal boundary conditions) and applications are considered. A nonlocal
boundary value problem, arising in plasma theory, was considered by A. V. Bitsadze and
A. A. Samarskii in [1].
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It turned out that the theory of pseudomonotone operators is useful to study nonlinear
(quasilinear) partial functional differential equations (both stationary and evolutionary equa-
tions) and to prove existence of weak solutions (see [2, 4, 5]).

In the present work we shall consider weak solutions of the following elliptic functional
differential equations:

−
n

∑
j=1

Dj[aj(x, u, Du; u)] + a0(x, u, Du; u) = F(x), x ∈ Ω (1.1)

(for simplicity) with homogeneous Dirichlet or Neumann boundary condition where Ω ⊂ Rn

is a bounded domain and ; u denotes nonlocal dependence on u.
By using the theory of pseudomonotone operators one can prove existence theorems on

weak solutions. In this paper we shall investigate the number of solutions in certain particular
cases and prove existence of multiple solutions, based on fixed points of certain functions and
operators, respectively.

2 Number of solutions of equations with real valued functionals of
solutions

Denote by Ω ⊂ Rn a bounded domain with sufficiently smooth boundary, 1 < p < ∞,
W1,p(Ω) the Sobolev space with the norm

‖u‖ =
[∫

Ω

(
n

∑
j=1
|Dju|p + |u|p

)
dx

]1/p

.

Further, let V ⊂ W1,p(Ω) be a closed linear subspace of W1,p(Ω), V? the dual space of V, the
duality between V? and V will be denoted by 〈·, ·〉.

Weak solutions of (1.1) are defined as functions u ∈ V satisfying∫
Ω

[
n

∑
j=1

aj(x, u, Du; u)Djv + a0(x, u, Du; u)v

]
dx = 〈F, v〉 for all v ∈ V

where aj : Ω×Rn+1 ×V → R (j = 0, 1, ..., n) are given functions. In the case of homogeneous
Dirichlet boundary condition, V = W1,p

0 (Ω) (the closure of C1
0(Ω) in W1,p(Ω)) and in the case

of Neumann boundary condition V = W1,p(Ω).
By using the theory of monotone type operators one can formulate assumptions on aj

which imply existence of weak solutions (see [2,4, 5]). Now we shall consider particular cases
when one can prove existence of multiple solutions and statements on the number of solutions.

Assume that functions aj have the form

aj(x, η, ζ; u) = ãj(x, η, ζ, M(u)), j = 0, 1, . . . , n

where M : V → R is a bounded, continuous (possibly nonlinear) operator and

ãj : Ω×Rn+1 ×R→ R

satisfy the Carathéodory conditions. (I.e. they are measurable in x and continuous in the other
variables.) For arbitrary λ ∈ R define operator Aλ : V → V? by

〈Aλ(u), v〉 =
∫

Ω

[
n

∑
j=1

ãj(x, u, Du, λ)Djv + ã0(x, u, Du, λ)v

]
dx.
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Theorem 2.1. Assume that for every λ ∈ R there exists a unique solution uλ ∈ V of

Aλ(uλ) = F (F ∈ V?). (2.1)

Define the function g : R→ R by g(λ) = M(uλ). Then a function u ∈ V is a solution of

∫
Ω

[
n

∑
j=1

ãj(x, u, Du, M(u))Djv + ã0(x, u, Du, M(u))v

]
dx = 〈F, v〉, v ∈ V (2.2)

if and only if λ = M(u) satisfies λ = g(λ). Thus the number of solutions of (2.2) equals the number
of roots of the equation λ = g(λ).

Proof. If u ∈ V satisfies (2.2) then with λ = M(u) the function uλ = u satisfies (2.1) and,
consequently,

g(λ) = M(uλ) = M(u) = λ.

Further, assume that λ ∈ R satisfies λ = g(λ). Consider the solution uλ of (2.1), then, clearly,
u = uλ is a solution of (2.2) since λ = g(λ) = M(uλ).

Consider the following particular case

ãj(x, u, Du, M(u)) = bj(x, u, Du)h(M(u)),

i.e.

ãj(x, u, Du, λ) = bj(x, u, Du)h(λ),

j = 1, . . . , n, and

ã0(x, u, Du, λ) = b0(x, u, Du)h(λ) + β(x)l(λ),

with some continuous functions h : R→ R+, l : R→ R and β ∈ Lq(Ω) where 1/p + 1/q = 1.
Define the operator B : V → V? by

〈B(u), v〉 =
∫

Ω

[
n

∑
j=1

bj(x, u, Du)Djv + b0(x, u, Du)v

]
, u, v ∈ V. (2.3)

Theorem 2.2. Assume that B : V → V? is a uniformly monotone, bounded, hemicontinuous operator
(see, e.g. [8]) then the unique solution of

Aλ(u) = F (2.4)

is

u = uλ = B−1
(

F− l(λ)β

h(λ)

)
(2.5)

and thus

g(λ) = M(uλ) = M
[

B−1
(

F− l(λ)β

h(λ)

)]
.

Proof. In the particular case the equation 〈Aλ(u), v〉 = 〈F, v〉 has the form

∫
Ω

[
n

∑
j=1

bj(x, u, Du)h(λ)Djv + b0(x, u, Du)h(λ)v + β(x)l(λ)v

]
dx = 〈F, v〉,
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i.e. ∫
Ω

[
n

∑
j=1

bj(x, u, Du)Djv + b0(x, u, Du)v

]
dx =

〈
F− l(λ)β

h(λ)
, v
〉

,

thus

B(u) =
F− l(λ)β

h(λ)
. (2.6)

According to the theory of monotone operators (see, e.g., [8]) the equation (2.6) has a unique
solution

u = uλ = B−1
(

F− l(λ)β

h(λ)

)
and

g(λ) = M(uλ) = M
[

B−1
(

F− l(λ)β

h(λ)

)]
.

Since B−1 : V? → V and M : V → R, l, h are continuous, g : R → R is a continuous
function.

Now consider two particular cases.
1. Assume that B, M are homogeneous in the sense

B−1(µF) = µ
1

p−1 B−1(F) for all µ ≥ 0 (p > 1),

M(µu) = µσ M(u) for all µ ≥ 0 (σ ≥ 0)

(M is nonnegative).

Theorem 2.3. Assume that l, β are arbitrary continuous functions and g is a positive continuous
function such that λ = g(λ) has exactly N roots (N = 0, 1, . . . , ∞) then our boundary value problem
(with 0 boundary condition) has exactly N solutions with

h(λ) =
[

M{B−1[F− l(λ)β]}
g(λ)

] p−1
σ

.

Proof. According to Theorem 2.2 in this particular case

g(λ) =
M{B−1[F− l(λ)β]}

h(λ)
σ

p−1
,

i.e.

h(λ) =
[

M{B−1[F− l(λ)β]}
g(λ)

] p−1
σ

.

Thus the theorem follows from Theorem 2.1.

We have this particular case with β = 0 if e.g. B is defined by the p-Laplacian, i.e.

bj(x, η, ζ) = |ζ|p−2ζ, j = 1, . . . , n, b0(x, η, ζ) = c|η|p−2η,

η ∈ R, ζ ∈ Rn with some c > 0. (If V = W1,p
0 (Ω) then c may be 0, too.) Further,

M(u) =
∫

Ω

[
n

∑
j=1

aj(x)|Dju|σ + a0(x)|u|σ
]

dx

where aj ∈ L∞(Ω), aj > 0, 0 < σ ≤ p.
2. Assume that B and M are linear
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Theorem 2.4. If g is a positive continuous function such that λ = g(λ) has N roots (N = 0, 1, . . . , ∞)
then our boundary value problem has N solutions with

h(λ) =
M[B−1(F)]− l(λ)M[B−1(β)]

g(λ)

and arbitrary continuous function l. Similarly, if M[B−1(β)] 6= 0 and g is a continuous function such
that λ = g(λ) has N roots then our boundary value problem has N solutions with

l(λ) =
M[B−1(F)]− g(λ)h(λ)

M[B−1(β)]

and arbitrary continuous function h.

Proof. According to Theorem 2.2 in this case

g(λ) =
M[B−1(F)]− l(λ)M[B−1(β)]

h(λ)
,

i.e.

h(λ) =
M[B−1(F)]− l(λ)M[B−1(β)]

g(λ)
and

l(λ) =
M[B−1(F)]− g(λ)h(λ)

M[B−1(β)]
.

So Theorem 2.4 follows from Theorem 2.1.

In this case the operator M : W1,2(Ω)→ R may have the form

Mu =
∫

Ω

[
n

∑
j=1

ajDju + a0u

]
+
∫

∂Ω
b0udσ

where aj ∈ L2(Ω), b0 ∈ L2(∂Ω).

3 Number of solutions of equations with nonlocal operators

Now consider equations (1.1) containing nonlinear and nonlocal operators of the form

B(u) = F(u) (3.1)

where B is given by (2.3) and F : V → V? is a given nonlinear operator. Clearly, u ∈ V satisfies
(3.1) if and only if

u = B−1[F(u)] = G(u) (3.2)

where G : V → V is a given operator, i.e. u is a fixed point of G. Then

F(u) = B[G(u)]. (3.3)

Now we shall consider particular cases for G.
1.

[G(u)](x) = [K(u)](x) =
∫

Ω
K(x, y)u(y)dy (3.4)

where K ∈ L2(Ω × Ω), u ∈ V ⊂ W1,2(Ω) and B is a linear strongly elliptic differential
operator.
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Theorem 3.1. If K is sufficiently smooth and good then the solution of (3.2) belongs to V and by (3.3)

[F(u)](x) =
∫

Ω
Bx[K(x, y)]u(y)dy

and (3.1) has the form

[B(u)](x) =
∫

Ω
Bx[K(x, y)]u(y)dy. (3.5)

Further, if 1 is an eigenvalue of G with multiplicity k then (3.5) has k solutions.

Proof. Equation (3.5) is equivalent with

u(x) =
∫

Ω
K(x, y)u(y)dy

which implies Theorem 3.1.

2.
G(u) = Ku + h(P(u))g (3.6)

where K is given by (3.4), P : V → R is a linear continuous functional, h : R → R is a
continuous function and g ∈ V. Assume that K is the function before, 1 is not an eigenvalue
of the operator K and B is a linear strongly elliptic differential operator.

Theorem 3.2. In this case equation (3.1) has the form

B(u) =
∫

Ω
Bx[K(x, y)]u(y)dy + h(P(u))Bg. (3.7)

Further, u is a solution of (3.7) if and only if u = h(λ)[I − K]−1(g) where λ is a root of the equation

λ = h(λ)P([I − K]−1(g)). (3.8)

Thus the number of solutions of (3.7) equals the number of solutions of equation (3.8).

Proof. Equation (3.7) is fulfilled if and only if

u =
∫

Ω
K(x, y)]u(y)dy + h(P(u))g

i.e.
(I − K)u = h(P(u))g,

u = h(P(u)(I − K)−1g. (3.9)

Let uλ = h(λ)(I − K)−1g, then

P(uλ) = h(λ)P[(I − K)−1g].

Consequently, (3.9) (and so (3.7)) is satisfied if and only if λ = P(u) satisfies (3.8).

3.
[G(u)](x) = P(u)h(u(x)) (3.10)

where h : R → R is a given C1 function such that u ∈ V implies h(u) ∈ V (V ⊂ W1,p(Ω))
and P : V → R is defined by P(u) =

∫
Ω g(y)u(y)dy where g ∈ Lq(Ω) (1/p + 1/q = 1), g ≥ 0.

Further, let B be homogeneous in the sense B(µF) = µp−1B(F) for µ ≥ 0 (p > 1).
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Theorem 3.3. In this case (3.1) has the form

B(u) = [P(u)]p−1B[h(u)]. (3.11)

Assume that there exists an interval (z1, z2) such that

h(z)/z = c0 (some constant) for z ∈ (z1, z2) (3.12)

and
z1

∫
Ω

g(y)dy < 1/c0 < z2

∫
Ω

g(y)dy (3.13)

then there is an infinite number of functions satisfying (3.11).
If there is no interval (z1, z2) satisfying (3.12) then solutions of (3.1) may be only constant func-

tions
u(x) = c, x ∈ Ω (3.14)

where c satisfies

h(c)
∫

Ω
g(y)dy = 1. (3.15)

Thus, in this case the number of solutions of (3.1) equals the number of roots c of (3.15) which may be
any finite or infinite number depending on the function h.

(In the last case V = W1,p(Ω), i.e. we have solutions of the Neumann problem with homo-
geneous boundary condition.)

Proof. Equation (3.11) is equivalent with

u(x) = P(u)h(u(x)),

i.e.

u(x) = h(u(x))
∫

Ω
g(y)u(y)dy, x ∈ Ω. (3.16)

If (3.12) holds then (3.16) (and (3.11)) means that

u(x) = c0u(x)
∫

Ω
g(y)u(y)dy, x ∈ Ω,

i.e. (except of the trivial case u(x) = 0)∫
Ω

g(y)u(y)dy = 1/c0.

If the condition (3.13) is fulfilled then, clearly, there is an infinite number of functions u such
that

z1 < u(y) < z2 and
∫

Ω
g(y)u(y)dy = 1/c0.

If there is no interval (z1, z2) satisfying (3.12) then, clearly, u may satisfy (3.11) only if u(x) = c
where

c = ch(c)
∫

Ω
g(y)dy, 1 = h(c)

∫
Ω

g(y)dy.

4.
[G(u)](x) = P(u)u(ψ(x))

where ψ : Ω→ Ω is a C1 function with C1 inverse, P is a (possibly nonlinear) functional over
V and B is as before in 3.
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Theorem 3.4. In this case equation (3.1) has the form

B(u) = [P(u)]p−1B[u(ψ)] (3.17)

and u is a solution of (3.17) if and only if

u(x) = P(u)u(ψ(x)), x ∈ Ω. (3.18)

Clearly, u = 0 is a trivial solution of (3.18), i.e. of (3.17).
A continuous function u is a nontrivial solution of (3.17) if and only if

P(u) = 1 and u(x) = u(ψ(x)) for all x ∈ Ω (3.19)

or
P(u) = −1 and u(x) = −u(ψ(x)) for all x ∈ Ω. (3.20)

u = c is a constant solution of (3.18) if P(c) = 1. If Ω is symmetric with respect to 0 and ψ(x) = −x
(x ∈ Ω) then u satisfies (3.19) with the properties u(−x) = u(x), x ∈ Ω and P(u) = 1. Further, u
satisfies (3.20) with the properties u(−x) = −u(x), x ∈ Ω and P(u) = −1.

Proof. Assume that a (nonidentically 0) continuous u satisfies (3.18), then we have

|u(x)| = |P(u)||u(ψ(x))|, x ∈ Ω. (3.21)

Then there is x(0) ∈ Ω such that

|u(x(0))| = sup
x∈Ω
|u(x)| > 0. (3.22)

By (3.21)
|u(x(0))| = |P(u)||u(ψ(x(0)))|. (3.23)

Assume that |P(u)| < 1. Then by (3.23) |u(ψ(x(0))| > |u(x(0))| which is impossible by (3.22).
On the other hand,

|u(ψ−1(x(0)))| = |P(u))|u(x(0))|,

thus |P(u)| > 1 would imply |u(ψ−1(x(0)))| > |u(x(0))| which is impossible by (3.22). Conse-
quently, |P(u)| = 1, i.e. either P(u) = 1 or P(u) = −1.

If P is a linear functional over V and Ω is symmetric with respect to 0 then multiplying
a function u with the property u(−x) = u(x) (resp. u(−x) = −u(x)) by a suitable constant,
we have P(u) = 1 (resp. P(u) = −1). Thus, in this case (3.19) (resp. (3.20) and so (3.17)) has
infinitely many solutions.

Another particular case for the (nonlinear) functional P:

P(u) = 1 +
[∫

Ω
(a1 − u)2dx

]
. . .
[∫

Ω
(am − u)2dx

]
with different real numbers a1, . . . , am. Then all the solutions of (3.19) are constant functions

uj(x) = aj, x ∈ Ω, j = 1, . . . , m.
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