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Abstract. In this paper, we consider the Lidstone boundary value
problem y(2m)(t) = λa(t)f(y(t), . . . , y(2j)(t), . . . y(2(m−1))(t)), 0 < t < 1,

y(2i)(0) = 0 = y(2i)(1), i = 0, . . . , m − 1, where (−1)mf > 0 and a

is nonnegative. Growth conditions are imposed on f and inequalities
involving an associated Green’s function are employed which enable us
to apply a well-known cone theoretic fixed point theorem. This in turn
yields a λ interval on which there exists a nontrivial solution in a cone
for each λ in that interval. The methods of the paper are known. The
emphasis here is that f depends upon higher order derivatives. Appli-
cations are made to problems that exhibit superlinear or sublinear type
growth.

1. Introduction

We consider the nonlinear Lidstone boundary value problem (BVP),

y(2m)(t) = λa(t)f(y(t), . . . , y(2j)(t), . . . y(2(m−1))(t)), 0 < t < 1, (1.1)

y(2i)(0) = 0 = y(2i)(1), i = 0, . . . m − 1, (1.2)

where (−1)mf > 0 is continuous and a is nonnegative. For more precise
conditions on f and a, let (−1)j [a, b] = [a, b] if j is even and (−1)j [a, b] =
[−b,−a] if j is odd. Let

m−1
∏

j=0

[aj , bj ] = [a0, b0] × · · · × [am−1, bm−1].

We shall require that

(A): (−1)mf :
∏m−1

j=0 (−1)j [0,∞) → [0,∞) is continuous,

(B): a : [0, 1] → [0,∞) is continuous and does not vanish identically on
any subinterval.

This work is primarily motivated by the original work of Erbe and Wang
[15] for m = 1. To our knowledge, Erbe and Wang [15] are the first to apply
the methods employed here to the cases that f is superlinear or sublinear. A
flurry of extensions to nth order problems have been obtained in recent years
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(for example, see [1], [2], [22], [23], [11], [12]). Henderson and Wang [17] were
the first to introduce the problem as a nonlinear eigenvalue problem.

In all the above cited works, the nonlinear term, f , only depends on
position. The primary interest of this paper is that the nonlinear term, f ,
depends on position, acceleration and other even order derivatives of the
unknown function. Recent related works in which dependence on higher
order derivatives is allowed can be found in [4] or [9].

The Lidstone boundary value problem (BVP) was first studied by Lid-
stone [21]; Agarwal and Wong’s work [3] has generated renewed interest in
the problem. Recently, Davis, Henderson, and Lamar ([6], [7], [10], [19])
have studied the problem intensely. A feature of the Lidstone BVP that
is exploited in this paper is that it can be analyzed as a nested family of
second order conjugate BVPs. This feature has been employed by Davis,
Eloe, Henderson, Islam and Thompson ([14], [8], and [13]). The primary
contribution of this paper is that this nested feature is exploited so that
the methods employed by Erbe and Wang [15] can be be applyed to the
BVP, (1.1), (1.2). Moreover, we indicate that the contribution is of interest
by exhibiting applications to problems that exhibit superlinear or sublinear
type growth.

We close the introduction with one open question. Can the methods em-
ployed here apply to a Lidstone BVP with nonlinear dependence on odd
order derivatives of the unknown function? That question is completely
open. The problem is that large in norm does not imply large component-
wise; by exploiting the nested feature of Lidstone BVPs in this paper, large
in norm will, in fact, imply large in the appropriate components.

2. The Fixed Point Operator

The method developed by Erbe and Wang [15] employs an application of
the cone theoretic fixed point theorem that we credit to Krasnosel’skii [18].
Also see [16]. For simplicity we state the theorem here.

Theorem 2.1. Let B be a Banach space, and let P ⊂ B be a cone in B.
Assume Ω1,Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∪ (Ω2 \ Ω1) → P

be a completely continuous operator such that, either

(i): ||T u|| ≤ ||u||, u ∈ P ∪ ∂Ω1, and ||T u|| ≥ ||u||, u ∈ P ∩ ∂Ω2, or
(ii): ||T u|| ≥ ||u||, u ∈ P ∩ ∂Ω1, and ||T u|| ≤ ||u||, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

We now construct the fixed point operator upon which we apply the above
fixed point theorem. To do so, we exploit that the Lidstone BVP, (1.1),
(1.2), can be constructed as a nested sequence of second order conjugate
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type BVPs. In particular, we shall construct a second order BVP that is
equivalent to (1.1), (1.2). In Section 3 we shall apply the above fixed point
theorem to the equivalent second order BVP.

The Green’s function for y′′(t) = 0, 0 < t < 1, y(0) = y(1) = 0, is

G(t, s) =

{

t(s − 1), 0 ≤ t ≤ s ≤ 1,

s(t − 1), 0 ≤ s ≤ t ≤ 1.

Set G1(t, s) := G(t, s), and for j = 2, . . . m, define recursively

Gj(t, s) =

∫ 1

0
G(t, r)Gj−1(r, s) dr.

As a result, Gj(t, s) is the Green’s function for the BVP,

y(2j)(t) = 0, 0 < t < 1,

y(2i)(0) = 0 = y(2i)(1), i = 0, . . . , j − 1,

for each j = 1 . . . m. One can verify this directly ([5], page 192) or see [13]
or [19, 20].

For each j = 1, . . . ,m − 1, define Aj : C[0, 1] → C[0, 1] by

Ajv(t) =

∫ 1

0
Gj(t, s)v(s)ds.

By the construction of Aj it follows that

(Ajv)(2j)(t) = v(t), 0 < t < 1,

(Ajv)(2i)(0) = (Ajv)(2i)(1), i = 0, . . . , j − 1.

Thus, it follows that the BVP, (1.1), (1.2), has a solution if, and only if, the
BVP,

v′′(t) = f(Am−1v(t), . . . , A1v(t), v(t)), 0 < t < 1,

v(0) = v(1) = 0,

has a solution. If y is a solution of the BVP, (1.1), (1.2), then v = y(2(m−1))

is a solution of the second order BVP; conversely, if v is a solution of the
second order BVP, then y = Am−1v is a solution of the BVP, (1.1), (1.2).

Define T : C[0, 1] → C[0, 1] by

T v(t) = λ

∫ 1

0
a(s)G(t, s)f(Am−1v(s), . . . , A1v(s), v(s))ds.

The properties of each Gj readily imply that T : C[0, 1] → C[0, 1] is com-
pletely continuous. It now follows that there exists a solution of the BVP,
(1.1), (1.2), if, and only if, there exists a continuous fixed point of T . More-
over, the relation between solutions, y, of the BVP, (1.1), (1.2), and fixed

points, v, of T , is given by y(t) = Am−1v(t), or y(2(m−1))(t) = v(t).
Note that G1 < 0 on (0, 1) × (0, 1), and (−1)jGj > 0 on (0, 1) × (0, 1).

Thus, y is a positive solution of the BVP, (1.1), (1.2), if, and only if,
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(−1)m−1y(2(m−1)) = (−1)m−1v is positive, where v is the corresponding
continuous fixed point of T . In the next section then, we restrict our anal-
ysis to finding λ intervals upon which T generates a nontrivial fixed point,
v, such that (−1)m−1v(t) > 0, 0 < t < 1.

3. Existence of Positive Solutions

We remind the reader of two fundamental bounds involving the Green’s
function, G1.

0 < −(G1(t, s)) ≤ s(1 − s), 0 < t, s < 1,

−(G1(t, s)) ≥ (1/4)s(1 − s), (1/4) ≤ t ≤ (3/4), 0 ≤ s ≤ 1.

From here, four estimates which we shall employ are readily obtained.

max
0≤t≤1

∫ 1

0
|G1(t, s)|ds ≤ (1/8), (3.1)

min
1/4≤t≤3/4

∫ 3/4

1/4
|G1(t, s)|ds ≥ (1/16). (3.2)

If v ∈ C[0, 1], then

||Ajv|| ≤ ||v||/8j , j = 1, . . . ,m − 1. (3.3)

(|| · || denotes the usual supremum norm on [0, 1].) If (−1)(m−1)v(t) > 0, 0 <

t < 1, and if (−1)(m−1)v(t) > ||v||/4 for 1/4 ≤ t ≤ 3/4, then

min
1/4≤t≤3/4

|Ajv(t)| ≥ ||v||/(4(16)j ), j = 1, . . . ,m − 1. (3.4)

(3.3) and (3.4) are readily obtained from (3.1) and (3.2). (3.3) and (3.4)
motivate conditions (C1) and (C2) given below.

(C1): There exist k0j ≥ (1/8)j−1, j = m, . . . , 2, such that

lim
(−1)m−1v→0+

(−1)mf((−1)m−1k0mv, . . . ,−k02v, v)/(−1)m−1v = f0,

and there exist 0 < k∞j ≤ (1/16)j−1, j = m, . . . , 2, such that

lim
(−1)m−1v→∞

(−1)mf((−1)m−1k∞mv, . . . ,−k∞2v, v)/(−1)m−1v = f∞.

(C2): There exist 0 < k0j ≤ (1/16)j−1, j = m, . . . , 2, such that

lim
(−1)m−1v→0+

(−1)mf((−1)m−1k0mv, . . . ,−k02v, v)/(−1)m−1v = f0,

and there exist k∞j ≥ (1/8)j−1, j = m, . . . , 2, such that

lim
(−1)m−1v→∞

(−1)mf((−1)m−1k∞mv, . . . ,−k∞2v, v)/(−1)m−1v = f∞.

(D): (−1)mf(u0, u1, . . . , um−1) is increasing in each u2j and decreasing

in each u2j+1 for (u0, u1, . . . , um−1) ∈
∏m−1

j=0 (−1)j [0,∞).
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We shall now state and prove a typical result as an application of Theorem
2.1. To apply Theorem 2.1 let B denote the Banach space C[0, 1] with the
supremum norm

||v|| = max
0≤t≤1

|v(t)|

and define the cone P ⊂ B by P :=

{v ∈ B : (−1)m−1v(t) ≥ 0, 0 ≤ t ≤ 1, min
1/4≤t≤3/4

(−1)m−1v(t) ≥ (1/4)||v||}.

Theorem 3.1. Assume that conditions (A), (B), (C1), and (D) are satis-
fied. Then, for each λ satisfying

4/(

∫ 3/4

1/4
−G(1/2, s)a(s)dsf∞) < λ < 1/(

∫ 1

0
s(1 − s)a(s)dsf0), (3.5)

there is at least one nontrivial solution, y, of the BVP, (1.1), (1.2), such

that v = y(2(m−1)) belongs to P.

Proof. Let λ satisfy (3.5) and let ε > 0 be such that

4/(

∫ 3/4

1/4
−G(1/2, s)a(s)ds(f∞ − ε)) ≤ λ ≤ 1/(

∫ 1

0
s(1 − s)a(s)ds(f0 + ε)).

Define T : P → B by

T v(t) = λ

∫ 1

0
a(s)G(t, s)f(Am−1v(s), . . . , A1v(s), v(s))ds.

To see that T : P → P apply Conditions (A) and (B) and recall that G
is negative on (0, 1) × (0, 1). Moreover, (−1)m(T v)′′(t) = a(t)(−1)mf ≥ 0,
0 < t < 1, by Conditions (A) and (B), and T v(0) = T v(1) = 0; in particular,
due to concavity,

min
1/4≤t≤3/4

(−1)m−1T v(t) ≥ ||T v||/4.

We now construct the domains, Ω1 and Ω2 in order to apply Theorem 2.1
(i). Apply Condition (C1) and find H1 > 0 such that

(−1)mf((−1)m−1k0mv, . . . ,−k02v, v) ≤ (f0 + ε)(−1)m−1v,

for all 0 < (−1)m−1v ≤ H1. Let v ∈ P with ||v|| = H1. Apply (3.3) and
Condition (D) to see that

(−1)mf(Am−1v, . . . , v) ≤ (−1)mf(||v||/8m−1, . . . , (−1)m−1||v||)

≤ (−1)mf(k0,m||v||, . . . , (−1)m−1||v||).

Thus,

|T v(t)| ≤ λ

∫ 1

0
s(1 − s)a(s)(−1)mf(Am−1v(s), . . . , v(s))ds

≤ λ

∫ 1

0
s(1 − s)a(s)ds(f0 + ε)||v|| ≤ ||v||.
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Define
Ω1 = {x ∈ B : ||x|| < H1},

and we have shown that

||T v|| ≤ ||v||, v ∈ P ∩ ∂Ω1.

To find Ω2, find H > 0 such that

(−1)mf((−1)m−1k∞mv, . . . ,−k∞2v, v) ≥ (f∞ − ε)(−1)m−1v,

for all 0 < (−1)m−1v ≥ H. Let H2 = max{2H1, 4H} and set

Ω2 = {x ∈ B : ||x|| < H2}.

Let v ∈ P, ||v|| = H2. Then

min
1/4≤t≤3/4

(−1)m−1v(t) ≥ ||v||/4 ≥ H.

Apply (3.4) and Condition (D), for s ∈ [1/4, 3/4], to obtain

(−1)mf(Am−1v(s), . . . , v(s)) ≥ (−1)mf(||v||/4(16)m−1 , . . . , (−1)m−1||v||/4)

≥ (−1)mf(k∞,m||v||/4, . . . , (−1)m−1||v||/4).

Thus,

|T v(1/2)| ≥ λ

∫ 3/4

1/4
−G(1/2, s)a(s)(−1)mf(Am−1v(s), . . . , v(s))ds

≥ λ

∫ 3/4

1/4
−G(1/2, s)a(s)ds(f∞ − ε)(||v||/4) ≥ ||v||.

In particular, define
Ω2 = {x ∈ B : ||x|| < H2},

and
||T v|| ≥ ||v||, v ∈ P ∩ ∂Ω2.

This completes the proof of Theorem 3.1.
We remark that if f is superlinear (i.e., f0 = 0, f∞ = ∞) then the proof

of Theorem 3.1 is readily adapted to show that the BVP, (1.1), (1.2), has
a nontrivial solution, y, such that v = y(2(m−1)) belongs to P, for each
0 < λ < ∞. To illustrate that this observation is of interest, set m = 2 and
consider the fourth order Lidstone BVP that relates to the cantilever beam
problem. Note that each of

f1(u, v) = u2 + v2, f2(u, v) = −uv

satisfy conditions (A), (C1) and (D).
We will state without proof a second application of Theorem 2.1. The

proof, when f depends only on position is standard (see [15]) and the exten-
sion to the problem addressed here is completely analogous to the extension
illustrated in the proof of Theorem 3.1.
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Theorem 3.2. Assume that conditions (A), (B), (C2), and (D) are satis-
fied. Then, for each λ satisfying

4/(

∫ 3/4

1/4
−G(1/2, s)a(s)dsf0) < λ < 1/(

∫ 1

0
s(1 − s)a(s)dsf∞),

there is at least one nontrivial solution, y, of the BVP, (1.1), (1.2), such
that v = y(2(m−1)) belongs to P.

In the case that f is sublinear (i.e., f0 = ∞, f∞ = 0) the proof of Theorem
3.2 is readily adapted to show that the BVP, (1.1), (1.2), has a nontrivial
solution, y, such that v = y(2(m−1)) belongs to P, for each 0 < λ < ∞. To
illustrate that this observation is of interest, again set m = 2 and note that
each of

f3(u, v) = u2/3 + v2/3, f4(u, v) = −(uv)1/3

satisfy conditions (A), (C2) and (D).
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