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Abstract. We consider the following semilinear problem

−∆u(x) = a(x)uσ(x), x ∈ Ω\{0} (in the distributional sense),
u > 0, in Ω\{0},
lim
|x|→0

|x|n−2 u(x) = 0,

u(x) = 0, x ∈ ∂Ω,

where σ < 1, Ω is a bounded regular domain in Rn (n ≥ 3) containing 0 and a is
a positive continuous function in Ω\{0}, which may be singular at x = 0 and/or at
the boundary ∂Ω. When the weight function a(x) satisfies suitable assumption related
to Karamata class, we prove the existence of a positive continuous solution on Ω\{0},
which could blow-up at the origin. The global asymptotic behavior of this solution is
also obtained.

Keywords: singular positive solution, Green’s function, Karamata class, Kato class,
blow-up.
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1 Introduction

Let Ω be a bounded C1,1-domain in Rn (n ≥ 3) containing 0. In [33], Zhang and Zhao
proved the existence of infinitely many positive solutions for the following superlinear elliptic
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problem 
−∆u(x) = b(x)up(x), x ∈ Ω\{0} (in the distributional sense),

u > 0, in Ω\{0},
u(x) = 0, x ∈ ∂Ω,

u(x) ∼ c
|x|n−2 near x = 0, for any sufficiently small c > 0,

(1.1)

where p > 1 and b is a Borel measurable function such that the function x 7→ b(x)
|x|(n−2)(p−1) is in

the Kato class Kn(Ω) given by

Kn(Ω) =

{
q ∈ B(Ω), lim

r→0

(
sup
x∈Ω

∫
Ω∩B(x,r)

|q(y)|
|x− y|n−2 dy

)
= 0

}
,

where B(Ω) be the set of Borel measurable functions in Ω.
In [23], Mâagli and Zribi generalized the result of Zhang and Zhao [33] by considering the

following class K(Ω):

K(Ω) =

{
q ∈ B(Ω), lim

r→0

(
sup
x∈Ω

∫
Ω∩B(x,r)

δ(y)
δ(x)

G(x, y)|q(y)|dy

)
= 0

}
,

where G(x, y) is the Green’s function of the Laplace operator in Ω and δ(x) = d(x, ∂Ω) denotes
the Euclidean distance from x to ∂Ω. We recall that for y ∈ Ω, the Green’s function G(x, y) of
the Laplacian in Ω is defined as the solution of the following problem{

−∆G(·, y)(x) = δy(x), x ∈ Ω,

G(x, y) = 0, x ∈ ∂Ω,

where δy denotes the Dirac measure at y.
Note that the class K(Ω) properly contains Kn(Ω). Indeed, from [23, Remark 2 and Re-

mark 4], we know that

x 7→ |x|−µ (δ(x))−λ ∈ K(Ω)⇐⇒ µ < 2 and λ < 2,

and for 1 ≤ λ < 2, the function x 7→ (δ(x))−λ /∈ Kn(Ω).
For more results concerning the existence, uniqueness and asymptotic behavior of positive

singular solutions associated with similar problems, we refer the reader to [1,3,7,8, 12–15,20–
22, 27, 28, 30, 31] and their references.

In the present paper, we are interested in the singular and sublinear case. More precisely,
we are concerned with the existence and global behavior of positive continuous solutions to
the following nonlinear problem:

−∆u(x) = a(x)uσ(x), x ∈ Ω\{0} (in the distributional sense),

u > 0, in Ω\{0},
lim
|x|→0

|x|n−2 u(x) = 0,

u(x) = 0, x ∈ ∂Ω,

(1.2)

where σ < 1 and a is a positive continuous function in Ω\{0} which may be singular at
x = 0 and/or at the boundary ∂Ω. The weight function a(x) is required to satisfy suitable
assumptions related to the following Karamata class K.
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Definition 1.1. Let η > 0 and L be a function defined on (0, η). Then L belongs to the class K if

L (t) := c exp
(∫ η

t

v(s)
s

ds
)

,

where c > 0 and v ∈ C([0, η]) with v(0) = 0.

Remark 1.2. This definition implies that the class K is given by

K =

{
L : (0, η) −→ (0, ∞) , L ∈ C1((0, η)) and lim

t→0+

tL′(t)
L(t)

= 0
}

.

We refer to [2,25,29] for examples of functions belonging to the class K. A class of functions
in this class is defined by

L(t) =
m

∏
k=1

(
logk

(ω

t

))ξk
,

where logk t = log ◦ log ◦ · · · ◦ log t (k times), ξk ∈ R, and ω is a sufficiently large positive real
number such that L is defined and positive on (0, η), and are frequently used as some weight
functions (see, for example, [17] and [19]).

Observe that functions belonging to the class K are in particular slowly varying functions.
The initial theory of such functions was developed by Karamata in [16].

In [7], Cîrstea and Rădulescu have proved that the Karamata theory is very useful to study
the asymptotic analysis of solutions near the boundary for large classes of nonlinear elliptic
problems.

Throughout this paper, we assume that

(H) a is a positive continuous function in Ω\{0} satisfying

a(x) ≈ |x|−µ L1(|x|)(δ(x))−λL2(δ(x)), for x ∈ Ω\{0}, (1.3)

where σ < 1, µ ≤ n + (2− n)σ, λ ≤ 2 and L1, L2 ∈ K defined on (0, η) (with η >

diam (Ω)) such that∫ η

0
sn+(2−n)σ−µ−1L1(s)ds < ∞,

∫ η

0
s1−λL2(s)ds < ∞. (1.4)

We introduce the function θ defined in Ω\{0} by

θ(x) := |x|min(0, 2−µ
1−σ )

(
L̃1(|x|)

) 1
1−σ

(δ(x))min(1, 2−λ
1−σ )

(
L̃2(δ(x))

) 1
1−σ

, (1.5)

where L̃1 and L̃2 are defined on (0, η) by

L̃1(t) :=



1, if µ < 2,∫ η
t

L1(s)
s ds, if µ = 2,

L1(t), if 2 < µ < n + (2− n)σ,∫ t
0

L1(s)
s ds, if µ = n + (2− n)σ,



4 I. Bachar, H. Mâagli and V. D. Rădulescu

and

L̃2(t) :=



1, if λ < 1,∫ η
t

L2(s)
s ds, if λ = 1,

L2(t), if 1 < λ < 2,∫ t
0

L2(s)
s ds, if λ = 2.

Using Karamata’s theory and the Schauder fixed point theorem, we prove the following
qualitative property.

Theorem 1.3. Let σ < 1 and assume that the function a satisfies (H). Then problem (1.2) has at least
one positive continuous solution u on Ω\{0} such that

1
c

θ(x) ≤ u(x) ≤ cθ(x), (1.6)

for x ∈ Ω\{0}, where c is a positive constant.

Remark 1.4. For µ > 2, it is important to note that u(x)→ ∞ as |x| → 0.

From now on, we denote by B+ (Ω) the collection of all nonnegative Borel measurable
functions in Ω. We refer to the set C(Ω) of all continuous functions in Ω and let C0(Ω) be the
subclass of C(Ω) consisting of functions which vanish continuously on ∂Ω. For f , g ∈ B+ (Ω) ,
we say that f ≈ g in Ω, if there exists c > 0 such that 1

c f (x) ≤ g(x) ≤ c f (x), for all x ∈ Ω.
The letter c will denote a generic positive constant which may vary from line to line.

We define the potential kernel V on B+ (Ω) by

V f (x) =
∫

Ω
G(x, y) f (y)dy.

We recall that for any function f ∈ B+ (Ω) such that f ∈ L1
loc(Ω) and V f ∈ L1

loc(Ω), we
have

− ∆ (V f ) = f , in Ω (in the distributional sense). (1.7)

Note that for any function f ∈ B+ (Ω) such that V f (x0) < ∞ for some x0 ∈ Ω, we have
V f ∈ L1

loc(Ω) (see [6, Lemma 2.9]).

2 Preliminaries and key tools

2.1 Green’s function

In this section, we recall some basic properties on G(x, y), the Green’s function of the Laplace
operator in Ω. By [32], we have

G(x, y) ≈ 1

|x− y|n−2 min

{
1,

δ(x)δ(y)

|x− y|2

}
, x, y ∈ Ω. (2.1)

Remark 2.1. Since for a > 0, min(1, a) ≈ a
1 + a

, we deduce from (2.1) that for x, y ∈ Ω,

G(x, y) ≈ δ(x)δ(y)

|x− y|n−2
(
|x− y|2 + δ(x)δ(y)

) . (2.2)
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Lemma 2.2. Let t > 0. Then for x ∈ Rn, we have∫
Sn−1

1

|x− tω|n−2 σ(dω) =
1

max (|x| , t)n−2 ,

where σ is the normalized measure on the unit sphere Sn−1 of Rn.

Proof. See [26, Proposition 1.7].

The next result is due to Mâagli and Zribi, see [22, Lemma 1].

Lemma 2.3. Let g ∈ B+(Ω) and v be a nonnegative superharmonic function on Ω. Then for any w ∈
B(Ω) such that V (g |w|) < ∞ and w + V (gw) = v, we have

0 ≤ w ≤ v.

2.2 Kato class K(Ω)

In this subsection, we recall and prove some properties concerning the class K(Ω).

Proposition 2.4. Let q ∈ K(Ω), x0 ∈ Ω and h0 be a positive superharmonic function in Ω. Then we
have

(i)
lim
r→0

(
sup
x∈Ω

1
h0(x)

∫
Ω∩B(x0,r)

G(x, y)h0(y)|q(y)|dy

)
= 0.

(ii) The function x 7→ δ(x)q(x) is in L1(Ω).

Proof. See [23].

Proposition 2.5. Let q ∈ K(Ω). Then the function

v(x) := |x|n−2
∫

Ω
G(x, y) |y|2−n q(y)dy

belongs to C0(Ω).

Proof. Let ε > 0, x0 ∈ Ω and q ∈ K(Ω). Using Proposition 2.4 (i) with h0(x) = |x|2−n , there
exists r > 0, such that

sup
ξ∈Ω
|ξ|n−2

∫
Ω∩B(0,r)

G(ξ, y) |y|2−n |q(y)|dy ≤ ε

8

and
sup
ξ∈Ω
|ξ|n−2

∫
Ω∩Bc(0,r)∩B(x0,r)

G(ξ, y) |y|2−n |q(y)|dy ≤ ε

8
.

If x0 ∈ Ω and x ∈ B(x0, r
2 ) ∩Ω, we have

|v(x)− v(x0)| ≤ 2 sup
ξ∈Ω
|ξ|n−2

∫
Ω∩B(0,r)

G(ξ, y) |y|2−n |q(y)|dy

+ 2 sup
ξ∈Ω
|ξ|n−2

∫
Ω∩Bc(0,r)∩B(x0,r)

G(ξ, y) |y|2−n |q(y)|dy

+
∫

Ω0

∣∣∣|x|n−2 G(x, y)− |x0|n−2 G(x0, y)
∣∣∣ |y|2−n |q(y)|dy,

≤ ε

2
+
∫

Ω0

∣∣∣|x|n−2 G(x, y)− |x0|n−2 G(x0, y)
∣∣∣ |y|2−n |q(y)|dy,
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where Ω0 = Ω ∩ Bc(0, r) ∩ Bc(x0, r).
Since for all x ∈ B(x0, r

2 ) ∩Ω and y ∈ Ω0, we have |x− y| ≥ r
2 and |y| ≥ r, we deduce by

(2.2) that

|x|n−2 G(x, y) |y|2−n ≤ c
δ(x)δ(y)
|x− y|n

≤ c̃
rn δ(y),

where c and c̃ are some positive constants.
Since (x, y) 7→ |x|n−2 G(x, y) is continuous on

(
B(x0, r

2 ) ∩Ω
)
× Ω0, we get by Proposi-

tion 2.4 (ii) and Lebesgue’s dominated convergence theorem,∫
Ω0

∣∣∣|x|n−2 G(x, y)− |x0|n−2 G(x0, y)
∣∣∣ |y|2−n |q(y)|dy→ 0 as x → x0.

It follows that there exists δ > 0 with δ < r
2 such that if x ∈ B(x0, δ) ∩Ω,∫

Ω0

∣∣∣|x|n−2 G(x, y)− |x0|n−2 G(x0, y)
∣∣∣ |y|2−n |q(y)|dy ≤ ε

2
.

Hence for x ∈ B(x0, δ) ∩Ω, we have

|v(x)− v(x0)| ≤ ε.

This implies that
lim

x→x0
v(x) = v(x0).

If x0 ∈ ∂Ω and x ∈ B(x0, r
2 ) ∩Ω, then we have

|v(x)| ≤ sup
ξ∈Ω
|ξ|n−2

∫
Ω∩B(0,r)

G(ξ, y) |y|2−n |q(y)|dy

+ sup
ξ∈Ω
|ξ|n−2

∫
Ω∩Bc(0,r)∩B(x0,r)

G(ξ, y) |y|2−n |q(y)|dy

+
∫

Ω0

|x|n−2 G(x, y) |y|2−n |q(y)|dy.

Now, since limx→x0 |x|
n−2 G(x, y) |y|2−n = 0, for all y ∈ Ω0, we deduce by similar arguments

as above that
lim

x→x0
v(x) = v(x0).

So, we conclude that v ∈ C0(Ω).

2.3 Karamata class

In this section, we collect some properties of the Karamata functions, which will be used later.

Lemma 2.6 (See [25, 29]). Let γ ∈ R and L ∈ K. We have

(i) If γ > −1, then
∫ η

0 sγL(s)ds converges and
∫ t

0 sγL(s)ds ∼
t→0+

t1+γ L(t)
1+γ .

(ii) If γ < −1, then
∫ η

0 sγL(s)ds diverges and
∫ η

t sγL(s)ds ∼
t→0+

− t1+γ L(t)
1+γ .
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Lemma 2.7 (See [5, 29]).

(i) For L ∈ K and ε > 0, we have

lim
t→0+

tεL(t) = 0 and lim
t→0+

t−εL(t) = ∞.

(ii) Let L1, L2 ∈ K and p ∈ R. Then we have

L1 + L2, L1L2, and Lp
1 are in K.

(iii) For L ∈ K, we have

lim
t→0+

L(t)∫ η
t

L(s)
s ds

= 0.

In particular, we have

t 7→
∫ η

t

L(s)
s

ds ∈ K.

If further
∫ η

0
L(s)

s ds < ∞, then we have lim
t→0+

L(t)∫ t
0

L(s)
s ds

= 0.

In particular

t→
∫ t

0

L(s)
s

ds ∈ K.

Proposition 2.8. For i ∈ {1, 2}, let Mi ∈ K and λi ∈ R. The following properties are equivalent.

(i) The function x 7→ |x|−λ1 M1(|x|) (δ(x))−λ2 M2 (δ(x)) is in K(Ω).

(ii)
∫ η

0 s1−λi Mi(s)ds < ∞, for i ∈ {1, 2}.

(iii) λi < 2 or λi = 2 with
∫ η

0
Mi(s)

s ds < ∞, for i ∈ {1, 2}.

Proof. The proof follows by similar arguments as in [24, Proposition 7].

Next, we recall the following lemma due to Lazer and McKenna [18, p. 726].

Lemma 2.9. ∫
Ω
(δ(x))r dx < ∞ if and only if r > −1.

Following the proof of the previous lemma, we deduce the following property.

Remark 2.10. Let η > 0 and ψ be a nonnegative continuous monotone function on (0, η) such
that

∫ η
0 ψ(t)dt < ∞. Then ∫

Ω
ψ (δ(x)) dx < ∞.

Proposition 2.11. Let ν ≤ 2 and L ∈ K defined on (0, η) (η > diam(Ω)) such that
∫ η

0 t1−νL(t)dt <
∞. Then

0 <
∫

Ω
(δ(x))1−ν L(δ(x))dx < ∞,

that is,
∫

Ω (δ(x))1−ν L(δ(x))dx ≈ 1.
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Proof. Case 1: ν < 2.
Using Lemma 2.7 (i), we deduce that the function x 7→ (δ(x))1− ν

2 L(δ(x)) is positive and
belongs to C0(Ω). Thus, there exists c > 0 such that for x ∈ Ω

0 < (δ(x))1−ν L(δ(x)) ≤ c (δ(x))−
ν
2 .

Therefore by Lemma 2.9, we deduce that

0 <
∫

Ω
(δ(x))1−ν L(δ(x))dx < ∞.

Case 2: ν = 2.
Let ψ(t) = L(t)

t . Since by Remark 1.2 limt→0+
tL′(t)
L(t) = 0, we deduce that limt→0+

tψ′(t)
ψ(t) = −1.

So the function ψ is nonincreasing in a neighborhood of zero. Hence the result follows from
Remark 2.10. This ends the proof.

The next result will play an important role in the proof of our main result.

Proposition 2.12. Let γ ≤ n, ν ≤ 2 and L3, L4 ∈ K such that∫ η

0
sn−γ−1L3(s)ds < ∞ and

∫ η

0
s1−νL4(s)ds < ∞, for η > diam (Ω) . (2.3)

Set
b(x) = |x|−γ L3(|x|)(δ(x))−νL4(δ(x)), for x ∈ Ω\{0}.

Then for x ∈ Ω\{0},

Vb(x) ≈ |x|min(0,2−γ) L̃3(|x|)(δ(x))min(1,2−ν) L̃4(δ(x)),

where L̃3 and L̃4 are defined on (0, η) by

L̃3(t) :=



1, if γ < 2,∫ η
t

L3(s)
s ds, if γ = 2,

L3(t), if 2 < γ < n,∫ t
0

L3(s)
s ds, if γ = n,

and

L̃4(t) :=



1, if ν < 1,∫ η
t

L4(s)
s ds, if ν = 1,

L4(t), if 1 < ν < 2,∫ t
0

L4(s)
s ds, if ν = 2.

Proof. Let r > 0 such that B(0, 3r) ⊂ Ω. For x ∈ Ω\{0}, we have

Vb(x) =
∫

B(0,2r)
G(x, y)b(y)dy +

∫
Ω\B(0,2r)

G(x, y)b(y)dy.

We distinguish two cases.
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Case 1. 0 < |x| < r. Using (2.2), we obtain that

Vb(x) ≈
∫

B(0,2r)

1

|x− y|n−2 |y|
−γ L3(|y|)dy +

∫
Ω\B(0,2r)

(δ(y))1−νL4(δ(y))dy.

Now we have

0 <
∫

Ω\B(0,2r)
(δ(y))1−νL4(δ(y))dy ≤

∫
Ω
(δ(y))1−νL4(δ(y))dy.

Using Lemma 2.2 and Proposition 2.11, we deduce that

Vb(x) ≈
∫ 2r

0

tn−1−γ

max (|x| , t)n−2 L3(t)dt + 1

≈ |x|2−n
∫ |x|

0
tn−1−γL3(t)dt +

(
1 +

∫ 2r

|x|
t1−γL3(t)dt

)
.

Using (2.3) and Lemma 2.6, we deduce that

∫ |x|
0

tn−γ−1L3(t)dt ≈

|x|
n−γ L3(|x|), if γ < n,∫ |x|

0
L3(t)

t dt, if γ = n

and

1 +
∫ 2r

|x|
t1−γL3(t)dt ≈


1, if γ < 2,∫ η

|x|
L3(t)

t dt, if γ = 2,

|x|2−γ L3(|x|), if 2 < γ ≤ n.

Hence, it follows by (2.3) and Lemmas 2.6 and 2.7 that for 0 < |x| < r,

Vb(x) ≈



1, if γ < 2,∫ η

|x|
L3(t)

t dt, if γ = 2,

|x|2−γ L3(|x|), if 2 < γ < n,

|x|2−γ ∫ |x|
0

L3(t)
t dt, if γ = n.

It follows that
Vb(x) ≈ |x|min(0,2−γ) L̃3(|x|), for 0 < |x| < r. (2.4)

Case 2. x ∈ Ω\B(0, 3r). Using (2.2), we have for y ∈ B(0, 2r),

G(x, y) ≈ δ(x) and (δ(y))−νL4(δ(y)) ≈ 1.

Therefore

Vb(x) ≈ δ(x)
∫

B(0,2r)
|y|−γ L3(|y|)dy +

∫
Ω\B(0,2r)

G(x, y)(δ(y))−νL4(δ(y))dy.

Since
∫ η

0 sn−γ−1L3(s)ds < ∞, we deduce that

Vb(x) ≈ δ(x) +
∫

Ω\B(0,2r)
G(x, y)(δ(y))−νL4(δ(y))dy

≈
∫

B(0,2r)
G(x, y)(δ(y))−νL4(δ(y))dy +

∫
Ω\B(0,2r)

G(x, y)(δ(y))−νL4(δ(y))dy

≈
∫

Ω
G(x, y)(δ(y))−νL4(δ(y))dy.



10 I. Bachar, H. Mâagli and V. D. Rădulescu

Therefore by [21, Proposition 1], we deduce that

Vb(x) ≈ (δ(x))min(1,2−ν) L̃4(δ(x)), for x ∈ Ω\B(0, 3r). (2.5)

Now, it is clear that the function

x 7→ |x|min(0,2−γ) L̃3(|x|)(δ(x))min(1,2−ν) L̃4(δ(x))

is positive and continuous on Ω\{0}.
On the other hand, by using (2.3) and Proposition 2.8, the function

x 7→ q(x) := |x|n−2−γ L3(|x|)(δ(x))−νL4(δ(x))

belongs to the class K(Ω).
So, observing that b(x) = |x|2−n q(x), we deduce by Proposition 2.5 that the function Vb is

positive and continuous on Ω\{0}.
Hence

Vb(x) ≈ |x|min(0,2−γ) L̃3(|x|)(δ(x))min(1,2−ν) L̃4(δ(x)), on D, (2.6)

where D is the compact set defined by D := {x ∈ Ω, r ≤ |x| ≤ 3r}.
Combining (2.4), (2.5) and (2.6), we obtain for x ∈ Ω\{0},

Vb(x) ≈ |x|min(0,2−γ) L̃3(|x|)(δ(x))min(1,2−ν) L̃4(δ(x)).

This completes the proof.

Proposition 2.13. Under condition (H), we have

Vp(x) ≈ θ(x), for x ∈ Ω\{0},

where p(x) := a(x)θσ(x), σ < 1 and θ is defined in (1.5).

Proof. Let a be a function satisfying (H). Using (1.3) and (1.5), we obtain

p(x) ≈ |x|−γ L1(|x|)
(

L̃1(|x|)
) σ

1−σ
(δ(x))−νL2(δ(x))

(
L̃2(δ(x))

) σ
1−σ

,

where γ = µ−min
(
0, 2−µ

1−σ

)
σ and ν = λ−min

(
1, 2−λ

1−σ

)
σ.

Since µ ≤ n + (2− n)σ and λ ≤ 2, then one can easy check that γ ≤ n and ν ≤ 2.

Now using Lemmas 2.6 and 2.7 and Proposition 2.12 with L3 = L1
(

L̃1
) σ

1−σ ∈ K and

L4 = L2
(

L̃2
) σ

1−σ ∈ K, we deduce that for x ∈ Ω\{0},

Vp(x) ≈ |x|min(0,2−γ) L̃3(|x|)(δ(x))min(1,2−ν) L̃4(δ(x)).

Since min(0, 2− γ) = min
(
0, 2−µ

1−σ

)
and min(1, 2− ν) = min

(
1, 2−λ

1−σ

)
, we deduce for x ∈

Ω\{0},
Vp(x) ≈ |x|min(0, 2−µ

1−σ ) L̃3(|x|)(δ(x))min(1, 2−λ
1−σ ) L̃4(δ(x)) ≈ θ(x).

This completes the proof.
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3 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. So, we need to establish some prelim-
inary results. Our approach is inspired from methods developed in [22, 24] with necessary
modifications.

For α > 0, we denote by (Pα) the following problem

−∆u(x) = a(x)uσ(x), x ∈ Ω\{0} (in the distributional sense),

u > 0 in Ω\{0},
lim
|x|→0

|x|n−2 u(x) = α,

lim
x→∂Ω

|x|n−2 u(x) = α.

(Pα)

Proposition 3.1. Let σ < 0 and assume that hypothesis (H) is satisfied. Then for each α > 0, problem
(Pα) has at least one positive solution uα ∈ C(Ω\{0}) satisfying for x ∈ Ω\{0}

uα(x) = α |x|2−n +
∫

Ω
G(x, y)a(y)uσ

α(y)dy. (3.1)

Proof. Let σ < 0 and α > 0. Using hypothesis (H) and Proposition 2.8, we deduce that the
function q(y) := |y|(2−n)(σ−1) a(y) belongs to K(Ω).

By Proposition 2.5, we conclude that the function

x 7→ h(x) := |x|n−2
∫

Ω
G(x, y)a(y) |y|(2−n)σ dy is in C0

(
Ω
)

. (3.2)

Let β := α + ασ ‖h‖∞ . In order to apply a fixed point argument, we consider the convex
set Λ given by

Λ = {v ∈ C
(
Ω
)

: α ≤ v ≤ β}.

Define the operator T on Λ by

Tv(x) = α + |x|n−2
∫

Ω
G(x, y)a(y) |y|(2−n)σ vσ(y)dy.

We claim that TΛ is equicontinuous at each point of Ω.
Indeed, let x0 ∈ Ω. Since for all v ∈ Λ, vσ ≤ ασ, we have for each v ∈ Λ and all x ∈ Ω,

|Tv(x)− Tv(x0)| ≤ ασ
∫

Ω

∣∣∣|x|n−2 G(x, y)− |x0|n−2 G(x0, y)
∣∣∣ |y|2−n q(y)dy,

where q(y) = |y|(2−n)(σ−1) a(y) ∈ K(Ω).
Now, by the proof of Proposition 2.5, we have for all ε > 0, there exists δ > 0 such that

if x ∈ Ω and |x− x0| < δ =⇒ ασ
∫

Ω

∣∣∣|x|n−2 G(x, y)− |x0|n−2 G(x0, y)
∣∣∣ |y|2−n q(y)dy ≤ ε.

This implies that for all ε > 0, there exists δ > 0 such that

if x ∈ Ω and |x− x0| < δ =⇒ |Tv(x)− Tv(x0)| ≤ ε, for all v ∈ Λ.

So the family TΛ is equicontinuous at each point of Ω and the claim is proved. In particular,
for all v ∈ Λ, Tv ∈ C

(
Ω
)

and therefore TΛ ⊂ Λ.
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Moreover, since the family {Tv(x), v ∈ Λ} is uniformly bounded in Ω, then by Arzelà–Ascoli
theorem (see, for example [4, Theorem 2.3]) the set T (Λ) becomes relatively compact in C

(
Ω
)

.
Next, we prove the continuity of T in Λ. Let (vk)k ⊂ Λ and v ∈ Λ such that ‖vk − v‖∞ → 0 as
k→ ∞. Then we have

|Tvk(x)− Tv(x)| ≤ |x|n−2
∫

Ω
G(x, y)a(y) |y|(2−n)σ |vσ

k (y)− vσ(y)| dr.

Now, since
|vσ

k (y)− vσ(y)| ≤ 2ασ,

we deduce by (3.2) and the convergence dominated theorem that

∀x ∈ Ω, Tvk(x)→ Tv(x) as k→ ∞.

Since T (Λ) is relatively compact in C
(
Ω
)

, we obtain

‖Tvk − Tv‖∞ → 0 as k→ ∞.

So T is a compact mapping of Λ to itself. Therefore, by the Schauder fixed point theorem,
there exists vα ∈ Λ such that for each x ∈ Ω

vα(x) = α + |x|n−2
∫

Ω
G(x, y)a(y) |y|(2−n)σ vσ

α(y)dy. (3.3)

Since vσ
α ≤ ασ, we deduce from (3.3) and (3.2) that

lim
x→∂Ω

vα(x) = α. (3.4)

We claim that
lim
|x|→0

vα(x) = α. (3.5)

Indeed, let r > 0 such that B(0, 3r) ⊂ Ω and x ∈ B(0, r)\{0}. Since α ≤ vα ≤ β, by using (3.3),
hypothesis (H) and similar arguments as in the proof of Proposition 2.12, we obtain

(vα(x)− α) ≈ |x|n−2

(∫ 2r

0

tn+(2−n)σ−1−µ

max (|x| , t)n−2 L1(t)dt + 1

)
. (3.6)

Now since n ≥ 3, and for x ∈ B(0, r)\{0} and t ∈ (0, 2r), we have

|x|n−2 tn+(2−n)σ−1−µ

max (|x| , t)n−2 L1(t) ≤ tn+(2−n)σ−1−µL1(t) =: ψ(t) ∈ L1(0, η),

and

lim
|x|→0

|x|n−2 tn+(2−n)σ−1−µ

max (|x| , t)n−2 L1(t) = 0,

we deduce from (3.6) and the dominated convergence theorem that

lim
|x|→0

(vα(x)− α) = 0.

Put uα(x) = |x|2−n vα(x), for x ∈ Ω\{0}. Then uα ∈ C
(
Ω\{0}

)
and we have

uα(x) = α |x|2−n +
∫

Ω
G(x, y)a(y)uσ

α(y)dy, (3.7)
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and
α |x|2−n ≤ uα(x) ≤ β |x|2−n . (3.8)

Now, since the function y 7→ a(y)uσ
α(y) ∈ L1

loc(Ω\{0}) and from (3.7) the function x 7→∫
Ω G(x, y)a(y)uσ

α(y)dy ∈ L1
loc(Ω\{0}), we deduce by (1.7) that uα satisfies

−∆uα(x) = a(x)uσ
α(x), x ∈ Ω\{0}, (in the distributional sense).

By (3.4), we have
lim
|x|→0

|x|n−2 uα(x) = lim
x→∂Ω

|x|n−2 uα(x) = α.

This completes the proof.

Corollary 3.2. Let σ < 0, and assume that hypothesis (H) is satisfied. For 0 < α1 ≤ α2, we denote
by uαi ∈ C(Ω\{0}) the solution of problem (Pα) given by (3.1). Then we have

0 ≤ uα2(x)− uα1(x) ≤ (α2 − α1) |x|2−n , for x ∈ Ω\{0}. (3.9)

Proof. Let g be the function defined on Ω\{0} by

g(x) =

a(x)
uσ

α2
(x)−uσ

α1
(x)

uα1 (x)−uα2 (x) , if uα1(x) 6= uα2(x)

0, if uα1(x) = uα2(x).

Since σ < 0, then g ∈ B+ (Ω\{0}) and we have

uα2 − uα1
+ V

(
g
(

uα2 − uα1

))
= (α2 − α1) |x|2−n . (3.10)

On the other hand, by using (3.1), (3.2) and (3.8), we obtain for x ∈ Ω\{0},

V(g
∣∣∣uα2 − uα1

∣∣∣)(x) ≤ (ασ
1 + ασ

2 )
∫

Ω
G(x, y)a(y) |y|(2−n)σ dy < ∞.

Therefore inequalities in (3.9) follow from (3.10) and Lemma 2.3.

Proposition 3.3. Let σ < 0. Under hypothesis (H), problem (1.2) has at least one positive solution
u ∈ C(Ω\{0}) satisfying for x ∈ Ω\{0}

u(x) =
∫

Ω
G(x, y)a(y)uσ(y)dy. (3.11)

Proof. Let (αk)k be a positive sequence decreasing to zero. Let uk ∈ C(Ω\{0}) be the solution
of problem (Pαk) given by (3.1). By Corollary 3.2, the sequence (uk)k decreases to a function u,
and since σ < 0 the sequence

(
uk − αk |x|2−n )

k increases to u. Therefore, by using (3.1), (3.8)
and the fact that σ < 0, we obtain for each x ∈ Ω\{0},

u(x) ≥ uk(x)− αk |x|2−n =
∫

Ω
G(x, y)a(y)uσ

k (y)dy

≥ βσ
k

∫
Ω

G(x, y)a(y) |y|(2−n)σ dy > 0,

where βk := αk + ασ
k ‖h‖∞ and h is given by (3.2).

By the monotone convergence theorem, we obtain

u(x) =
∫

Ω
G(x, y)a(y)uσ(y)dy.
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Since for each x ∈ Ω\{0}, u(x) = infk uk(x) = supk
(
uk(x)− αk |x|2−n ), then u is upper

and lower semi-continuous function on Ω\{0} and so u ∈ C(Ω\{0}).
Since the function y 7→ a(y)uσ(y) is in L1

loc(Ω\{0}) and from (3.11) the function x 7→∫
Ω G(x, y)a(y)uσ(y)dy is also in L1

loc(Ω\{0}), we deduce by (1.7) that

−∆u(x) = a(x)uσ(x), x ∈ Ω\{0}, (in the distributional sense).

Finally, using the fact that for all x ∈ Ω\{0}, 0 < u(x) ≤ uk(x) and that uk is a solution of
problem (Pαk) , we deduce that

lim
|x|→0

|x|n−2 u(x) = 0 and lim
x→∂Ω

u(x) = 0.

Hence u is a solution of problem (1.2).

Proof of Theorem 1.3

Assume that the function a satisfies hypothesis (H). By Proposition 2.13, there exists M ≥ 1
such that for each Ω\{0},

1
M

θ (x) ≤ Vp (x) ≤ Mθ (x) , (3.12)

where θ is the function defined in (1.5) and p(y) := a(y)θσ(y).
To prove Theorem 1.3, we discuss the following two cases.

Case 1: σ < 0.

By Proposition 3.3 problem (1.2) has a positive continuous solution u satisfying (3.11). We
claim that u satisfies (1.6).

By (3.12), we have
Mσ (Vp)σ (x) ≤ θσ (x) ≤ M−σ (Vp)σ (x) , (3.13)

Let c = M−
σ

1−σ . Then by elementary calculus we have

cVp = V
(
a (cVp)σ)+ V f , (3.14)

where f (x) := ca(x)[θσ(x)−Mσ (Vp)σ (x)], for x ∈ Ω\{0}.
Clearly, we have f ∈ B+ (Ω\{0}) and by using (3.11) and (3.14), we obtain

cVp− u + V
(
a
(
uσ − (cVp)σ)) = V f . (3.15)

Let g be the function defined on Ω\{0} by

g(x) =

{
a(x) uσ(x)−(cVp)σ(x)

(cVp)(x)−u(x) , if u(x) 6= (cVp) (x),

0, if u(x) = (cVp) (x).

Since σ < 0, then g ∈ B+ (Ω\{0}) and we have

a
(
uσ − (cVp)σ) = g (cVp− u) . (3.16)

Therefore the relation (3.15) becomes

cVp− u + V (g (cVp− u)) = V f .
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Now since f ∈ B+ (Ω\{0}) by using (3.16), (3.11), (3.14) and (3.12), we obtain

V (g |cVp− u|) ≤ V (auσ) + V
(
a (cVp)σ)

≤ u + cVp

≤ u + cMθ < ∞.

Hence by Lemma 2.3, we obtain
u ≤ cVp.

Similarly, we prove that
1
c

Vp ≤ u.

Thus, by (3.12) u satisfies (1.6).

Case 2: 0 ≤ σ < 1.
Let ϕ(x) = |x|n−2 θ(x), for x ∈ Ω. By (3.12), we have

1
M

ϕ (x) ≤ |x|n−2 Vp (x) ≤ Mϕ (x) . (3.17)

Put c = M
1

1−σ and consider the closed convex set given by

A =

{
v ∈ C0(Ω),

1
c

ϕ ≤ v ≤ cϕ

}
.

Clearly ϕ ∈ A.
We define the operator T on A by

T v(x) := |x|n−2
∫

Ω
G(x, y)a(y) |y|(2−n)σ vσ(y)dy, x ∈ Ω.

By using (3.17), we obtain for all v ∈ A,

1
c

ϕ ≤ T v ≤ cϕ.

Since for all v ∈ A, we have

|vσ(y)| ≤ cσ ‖ϕσ‖∞ , for all y ∈ Ω,

we deduce as in the proof of Proposition 3.1 that

T v ∈ C0(Ω), for all v ∈ A.

So, T (A) ⊂ A.
Let (vk)k ⊂ C0(Ω) defined by

v0 =
1
c

ϕ and vk+1 = T vk, for k ∈N.

Since the operator T is nondecreasing and T (A) ⊂ A, we deduce that

1
c

ϕ = v0 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤ vk+1 ≤ cϕ.
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Therefore, the sequence (vk)k converges by the convergence monotone theorem to a func-
tion v satisfying for each x ∈ Ω

1
c

ϕ(x) ≤ v(x) ≤ cϕ(x) and v(x) = |x|n−2
∫

Ω
G(x, y)a(y) |y|(2−n)σ vσ(y)dy.

Since v is bounded, we prove by similar arguments as in the proof of Proposition 3.1 that
v ∈ C0(Ω).

Put u(x) = |x|2−n v(x). Then u ∈ C(Ω\{0}) and satisfies the equation

u(x) = V(auσ)(x), for x ∈ Ω\{0}. (3.18)

Finally, since the function y 7→ a(y)uσ(y) is in L1
loc(Ω\{0}) and from (3.18) the function

x 7→ V(auσ)(x) is also in L1
loc(Ω\{0}), we deduce by (1.7) that u is a solution of problem (1.2).

The proof of Theorem 1.3 is completed.

Example 3.4. Let σ < 1 and a ∈ C(Ω\{0}), such that

a(x) ≈ |x|−µ

(
log
(

3d
|x|

))−β

(δ(x))−2
(

log
(

3d
δ(x)

))−2

,

where d := diam(Ω), µ < n + (2− n) σ and β ∈ R. Then, by Theorem 1.3, problem (1.2) has
at least one positive solution u ∈ C

(
Ω\{0}

)
satisfying the following estimates.

(i) If 2 < µ < n + (2− n) σ, then for x ∈ Ω\{0},

u(x) ≈ |x|
2−µ
1−σ

(
log
(

3d
|x|

)) −β
1−σ
(

log
(

3d
δ(x)

)) −1
1−σ

.

(ii) If µ = 2 and β > 1 or µ < 2, then for x ∈ Ω\{0},

u(x) ≈
(

log
(

3d
δ(x)

)) −1
1−σ

.

(iii) If µ = 2 and β = 1, then for x ∈ Ω\{0},

u(x) ≈
(

log2

(
3d
|x|

)) 1
1−σ
(

log
(

3d
δ(x)

)) −1
1−σ

.

(iv) If µ = 2 and β < 1, then for x ∈ Ω\{0},

u(x) ≈
(

log
(

3d
|x|

)) 1−β
1−σ
(

log
(

3d
δ(x)

)) −1
1−σ

.
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[14] M. Ghergu, V. D. Rădulescu, Nonlinear PDEs. Mathematical models in biology, chemistry
and population genetics, Springer Monographs in Mathematics, Springer Verlag, Heidel-
berg, 2012. MR2865669; https://doi.org/10.1007/978-3-642-22664-9

[15] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Sec-
ond edition, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag,
Berlin, 1983. MR0737190; https://doi.org/10.1007/978-3-642-61798-0

[16] J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc.
Math. France 61(1933), 55–62. MR1504998; https://doi.org/10.24033/bsmf.1196
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