Multiplicity of positive weak solutions to subcritical singular elliptic Dirichlet problems

Tomas Godoy[™] and Alfredo Guerin

FaMAF, Universidad Nacional de Cordoba, Ciudad Universitaria, Cordoba, 5000, Argentina

Received 3 October 2017, appeared 10 January 2018 Communicated by Maria Alessandra Ragusa

Abstract. We study a superlinear subcritical problem at infinity of the form $-\Delta u = a(x)u^{-\alpha} + f(\lambda, x, u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , where Ω is a bounded domain in \mathbb{R}^n , $0 \le a \in L^{\infty}(\Omega)$, and $0 < \alpha < 3$. Under suitable assumptions on f, we prove that there exists $\Lambda > 0$ such that this problem has at least one weak solution in $H_0^1(\Omega)$ if and only if $\lambda \in [0, \Lambda]$; and also that there exists Λ^* such that for any $\lambda \in (0, \Lambda^*)$, at least two solutions exist.

Keywords: singular elliptic problems, positive solutions, sub- and supersolutions, bifurcation problems.

2010 Mathematics Subject Classification: 35J75, 35D30, 35J20.

1 Introduction and statement of the main results

In this work we consider the following singular semilinear elliptic problem with a parameter λ :

$$\begin{cases} -\Delta u = a(x) u^{-\alpha} + f(\lambda, x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \\ u > 0 & \text{in } \Omega, \end{cases}$$
(1.1)

where Ω is a bounded domain in \mathbb{R}^n with C^2 boundary, $0 < \alpha < 3$, $0 \le \lambda < \infty$ and a, f are functions defined on Ω and $[0, \infty) \times \overline{\Omega} \times [0, \infty)$ respectively.

Singular elliptic problems have been widely studied, they arise in applications to heat conduction in electrical conductors, in chemical catalysts processes, and in non Newtonian flows (see e.g., [7,11,16,20] and the references therein). The existence of solutions to problem (1.1) was proved, for the case $f \equiv 0$, and under a variety of assumptions on a, in [4,12,14,16, 20,35]. Classical solutions to problem (1.1) were obtained by Shi and Yao in [40], when Ω and a are regular enough, $f(\lambda, x, s) = \lambda s^p$, $0 < \alpha < 1$, and $0 . Free boundary singular elliptic bifurcation problems of the form <math>-\Delta u = \chi_{\{u>0\}} (-u^{-\alpha} + \lambda g(\cdot, u))$ in Ω , u = 0 on $\partial\Omega$, $u \ge 0$ in Ω , $u \not\equiv 0$ (that is: $|\{x \in \Omega : u(x) > 0\}| > 0$) were studied by Dávila and Montenegro in [13]. Problems of the form $-\Delta u = g(x, u) + h(x, \lambda u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , were

[™]Corresponding author. Email: godoy@mate.uncor.edu

studied by Coclite and Palmieri [10]. They proved that, if $g(x, u) = au^{-\alpha}$, $a \in C^1(\overline{\Omega})$, a > 0in $\overline{\Omega}$, and $h \in C^1(\overline{\Omega} \times [0,\infty))$, then there exists $\lambda^* > 0$ such that, for any $\lambda \in [0,\lambda^*)$, (1.1) has a positive classical solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ and that, if in addition, $\overline{\lim}_{s\to\infty} \frac{h(x,s)}{s} \leq 0$ uniformly on $x \in \overline{\Omega}$, then a positive classical solution exists for any $\lambda \geq 0$.

The singular biparametric bifurcation problem $-\Delta u = g(u) + \lambda |\nabla u|^p + \mu h(\cdot, u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω was studied, by Ghergu and Rădulescu, in [24]. Dupaigne, Ghergu and Rădulescu [19] treated Lane–Emden–Fowler equations with convection term and singular potential. Rădulescu [38] studied blow-up boundary solutions for logistic equations, and for Lane–Emden–Fowler equations, with a singular nonlinearity, and a subquadratic convection term. The existence of positive solutions to the inequality $Lu \ge K(x) u^p$ on the punctured ball $\Omega = B_r(0) \setminus \{0\}$ was investigated by Ghergu, Liskevich and Sobol [22] for a second order linear elliptic operator *L*. Singular initial value parabolic problems involving the *p*-Laplacian were treated by Bougherara and Giacomoni [3], and concentration phenomena for singularly perturbed elliptic problems on an annulus were studied by Manna and Srikanth [36].

Gao and Yan [21] proved the existence of positive solutions $u \in C^{2,\beta}(\Omega) \cap C(\overline{\Omega})$ to the problem $-\Delta u + f(u) - u^{-\gamma} = \lambda u$ in Ω , u = 0 on $\partial\Omega$, in the case when Ω is a bounded domain with $C^{2,\beta}$ boundary, $f \in C([0,\infty))$, $s \to s^{-1}f(s)$ is strictly increasing on $(0,\infty)$, $\gamma > 0$ and $\lambda > \lambda_1$, where λ_1 denotes the principal eigenvalue for $-\Delta$ on Ω , with homogeneous Dirichlet boundary condition. They also proved that, when $0 < \gamma < 1$, such a solution $u = u_{\lambda}$ is unique, and that if, in addition, f is strictly increasing on $[0,\infty)$, then u_{λ} is strictly increasing with respect to λ .

Ghergu and Rădulescu [25] proved several existence and nonexistence theorems for the boundary value problem with two parameters $-\Delta u + K(x)g(u) = \lambda f(x, u) + \mu h(x)$ in Ω , u > 0 in Ω , u = 0 on $\partial\Omega$, where Ω is a smooth bounded domain in \mathbb{R}^n , and λ and μ are positive parameters. The function h is positive in Ω and Hölder continuous on $\overline{\Omega}$, K is Hölder continuous on $\overline{\Omega}$ and may change sign. The function $f:\overline{\Omega} \times [0,\infty) \to \mathbb{R}$ is Hölder continuous, sublinear at infinity, superlinear at the origin, satisfies some monotonicity assumptions, and is positive on $\overline{\Omega} \times (0,\infty)$. They also assume that $g:(0,\infty) \to \mathbb{R}$ is nonnegative, nonincreasing, Hölder continuous, singular at the origin, and $\sup_{s>0} s^{\alpha}g(s) < \infty$ for some $\alpha \in (0, 1)$.

The problem $-\Delta u = ag(u) + \lambda h(u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω was considered by Cîrstea, Ghergu and Rădulescu [9] in the case when Ω is a regular enough bounded domain in \mathbb{R}^n , $0 \le a \in C^{\beta}(\overline{\Omega})$, $0 < h \in C^{0,\beta}[0,\infty)$ for some $\beta \in (0,1)$, h is nondecreasing on $[0,\infty)$, $s^{-1}h(s)$ is nonincreasing for s > 0, g is nonincreasing on $(0,\infty)$, $\lim_{s\to 0^+} g(s) = +\infty$, and $\sup_{s \in (0,\sigma_0)} s^{\alpha}g(s) < \infty$ for some $\alpha \in (0,1)$ and $\sigma_0 > 0$.

Godoy and Kaufmann [33] stated sufficient conditions for the existence of positive solutions to problems of the form $-\Delta u = Ku^{-\alpha} - \lambda Mu^{-\gamma}$ in Ω , u = 0 on $\partial\Omega$, where Ω is a smooth bounded domain in \mathbb{R}^n , *K* and *M* are nonnegative functions on Ω , $\alpha > 0$, $\gamma > 0$, and $\lambda > 0$ is a real parameter.

Kaufmann and Medri [34] obtained existence and nonexistence results for positive solutions of one dimensional singular problems of the form $-((u')^{p-2}u')' = m(x)u^{-\gamma}$ in Ω , u = 0 on $\partial\Omega$, where $\Omega \subset \mathbb{R}$ is a bounded open interval, p > 1, $\gamma > 0$, and $m : \Omega \to \mathbb{R}$ is a function that may change sign in Ω .

Orpel [37] gave sufficient conditions for the existence of classical positive solutions to problems of the form div $(a(|x|) \nabla u(x)) + f(x, u(x)) - u(x)^{-\alpha} |\nabla u(x)|^{\beta} + \langle x, \nabla u(x) \rangle g(|x|) = 0$ in Ω_R , $\lim_{|x|\to\infty} u(x) = 0$; where R > 1, $\Omega_R := \{x \in \mathbb{R}^n : |x| > R\}$, n > 2, $0 < 2\alpha \le \beta \le 2$ and a, g are sufficiently smooth functions defined on $[1, \infty)$, a is positive, and g is eventually nonnegative. Additionally, the rate of decay of u at infinity is investigated. The existence of nonnegative and non identically zero weak solutions $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ to problems of the form $-\Delta u = au^{-\alpha} - bu^p$ in Ω , u = 0 on $\partial\Omega$ was studied in [31] when Ω is a bounded $C^{1,1}$ domain in \mathbb{R}^n , $0 \le a \in L^{\infty}(\Omega)$, $a \ne 0$ (that is: $|\{x \in \Omega : a (x) \ne 0\}| > 0$), $0 < \alpha < 1$, $0 , and <math>0 \le b \in L^r(\Omega)$ for suitable values of r. More general problems of the form $-\Delta u = \chi_{\{u>0\}}au^{-\alpha} + h(\cdot, u)$ in Ω , u = 0 on $\partial\Omega$, were studied in [32] under the assumptions that Ω is a bounded $C^{1,1}$ domain in \mathbb{R}^n , $0 < \alpha < 3$, $a \in L^{\infty}(\Omega)$, $0 \ne a \ge 0$, and $h : \Omega \times [0, \infty) \to \mathbb{R}$ is a suitable Carathéodory function that is sublinear at infinity. There it was also considered the problem with a parameter $-\Delta u = \chi_{\{u>0\}}au^{-\alpha} + \lambda h(\cdot, u)$ in Ω , $u \ge 0$ in Ω , u = 0 on $\partial\Omega$.

Giacomoni, Schindler and Takac [26] considered the problem $-\Delta_p u = \lambda u^{-\alpha} + u^q$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , in the case $0 < \alpha < 1$, $1 , <math>p - 1 < q \le p^* - 1$. There it was proved that there exists $\Lambda \in (0, \infty)$ such that this problem has a solution if $\lambda \in (0, \Lambda]$, has no solution if $\lambda > \Lambda$, and has at least two solutions if $\lambda \in (0, \Lambda)$.

Aranda and Godoy [2], obtained multiplicity results for positive solutions in $W_{\text{loc}}^{1,p}(\Omega) \cap C(\overline{\Omega})$ to the problem $-\Delta_p u = g(u) + \lambda h(u)$ in Ω , u = 0 on $\partial\Omega$, for the case when Ω is a C^2 bounded and strictly convex domain in \mathbb{R}^n , 1 ; and <math>g, h are locally Lipschitz functions on $(0, \infty)$ and $[0, \infty)$ respectively, with g nonincreasing, and allowed to be singular at the origin; and h nondecreasing, with subcritical growth at infinity, and satisfying $\inf_{s>0} s^{-p+1}h(s) > 0$.

Recently Saoudi, Agarwal and Mursaleen [39], obtained a multiplicity result for positive solutions of problems of the form $-\operatorname{div}(A(x)\nabla u) = u^{-\alpha} + \lambda u^p$ in Ω , u = 0 on $\partial\Omega$, with $0 < \alpha < 1 < p < \frac{n+2}{n-2}$.

Additional references, and a comprehensive treatment of the subject, can be found in [23], [38], see also [15].

For $b \in L^{\infty}(\Omega)$ such that $b^+ \not\equiv 0$, $\lambda_1(b)$ will denote the positive principal eigenvalue for $-\Delta$ in Ω , with Dirichlet boundary condition, and weight function *b* (see Remark 2.2 below).

The aim of this work is to prove the following three theorems concerning the existence, and the multiplicity, of weak solutions to problem (1.1).

Theorem 1.1. Assume that Ω is a bounded domain in \mathbb{R}^n with C^2 boundary, and that the following conditions H1)–H5) hold:

- *H1*) $0 < \alpha < 3$.
- H2) $a \in L^{\infty}(\Omega)$, $a \ge 0$ and $a \not\equiv 0$.

H3) $f \in C([0,\infty) \times \overline{\Omega} \times [0,\infty))$, $f \ge 0$ on $[0,\infty) \times \overline{\Omega} \times [0,\infty)$ and $f(0,\cdot,\cdot) \equiv 0$ on $\overline{\Omega} \times [0,\infty)$.

- H4) There exist numbers $\eta_0 > 0$, $q \ge 1$ and a function $b \in L^{\infty}(\Omega)$, such that $b^+ \not\equiv 0$ and $f(\lambda, \cdot, s) \ge \lambda b s^q$ a.e. in Ω whenever $\lambda \ge \eta_0$ and $s \ge 0$.
- H5) There exist $p \in (1, \frac{n+2}{n-2})$, and a function $h \in C((0, \infty] \times \overline{\Omega})$ that satisfy $\min_{[\eta, \infty) \times \overline{\Omega}} h > 0$ for any $\eta > 0$, and such that, for every $\sigma > 0$,

$$\lim_{(\lambda,s)\to(\sigma,\infty)} s^{-p} f(\lambda,\cdot,s) = h(\sigma,\cdot) \quad uniformly \text{ on } \overline{\Omega}$$

Then there exists $\Lambda \in (0, \infty)$ with the following property: (1.1) has a weak solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ if and only if $0 \le \lambda \le \Lambda$. Moreover, for every $\lambda \in [0, \Lambda]$, every weak solution u in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$ belongs to $C(\overline{\Omega})$, and satisfies $u \ge cd_{\Omega}^{\kappa}$ in Ω , for some positive constant c independent of λ

and u, where $\kappa := 1$ if $0 < \alpha < 1$, $\kappa := \frac{2}{1+\alpha}$ if $1 \le \alpha < 3$, and d_{Ω} is the distance to the boundary function, defined by

$$d_{\Omega}(x) := \operatorname{dist}(x, \partial \Omega). \tag{1.2}$$

From now on (unless otherwise stated), the notion of weak solution that we use is the usual one: Let ρ be a measurable function on Ω such that $\rho \varphi \in L^1(\Omega)$ for any $\varphi \in H^1_0(\Omega)$. We say that u is a weak solution of the problem $-\Delta u = \rho$ in Ω , u = 0 on $\partial\Omega$ if $u \in H^1_0(\Omega)$ and $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle = \int_{\Omega} \rho \varphi$ for any $\varphi \in H^1_0(\Omega)$. Additionally, we will write $-\Delta u \ge \rho$ in Ω (respectively $-\Delta u \le \rho$ in Ω) to mean that $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \ge \int_{\Omega} \rho \varphi$ (resp. $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \le \int_{\Omega} \rho \varphi$) for any nonnegative $\varphi \in H^1_0(\Omega)$.

Theorem 1.2. Under the same hypothesis of Theorem 1.1, there exists $\Lambda^* > 0$ such that, for every $\lambda \in (0, \Lambda^*)$, (1.1) has at least two positive weak solutions in $H_0^1(\Omega) \cap C(\overline{\Omega})$. Moreover $\lambda = 0$ is a bifurcation point from ∞ of (1.1).

As a consequence of Theorems 1.1 and 1.2, we obtain the following theorem.

Theorem 1.3. Assume that the conditions H1)–H3) of Theorem 1.1 are fulfilled, and let $g : \Omega \times [0, \infty) \rightarrow \mathbb{R}$ satisfy the following conditions H4')–H6'):

- *H4'*) $g \in C(\overline{\Omega} \times [0, \infty))$, $g \ge 0$ on $\overline{\Omega} \times [0, \infty)$.
- *H5'*) There exist a number $q \ge 1$ and a function $b \in L^{\infty}(\Omega)$, such that $b^+ \not\equiv 0$ and $g(\cdot, s) \ge bs^q$ for any $s \ge 0$.
- *H6'*) There exist $h \in C(\overline{\Omega})$ and $p \in (1, \frac{n+2}{n-2})$ such that $\min_{\overline{\Omega}} h > 0$ and

$$\lim_{s\to\infty} s^{-p}g(\cdot,s) = h \text{ uniformly on } \Omega.$$

Then Theorems 1.1 and 1.2 hold for $f(\lambda, \cdot, s) := \lambda g(\cdot, s)$. If, in addition, $g(\cdot, 0) = 0$, then Theorems 1.1 and 1.2 hold for $f(\lambda, \cdot, s) := g(\cdot, \lambda s)$.

Our approach follows that in [2], however, there are significant differences between the two works. Here we are concerned with weak solutions in $H_0^1(\Omega) \cap C(\overline{\Omega})$; whereas solutions in $W_{\text{loc}}^{1,p}(\Omega) \cap C(\overline{\Omega})$ are considered in [2]. Also, in this paper we do not assume that Ω is convex, and we do not require that $f(\lambda, x, s)$ be a local Lipschitz function.

It is a well known fact that, when *a* is Hölder continuous on $\overline{\Omega}$, and $\min_{\overline{\Omega}} a > 0$, the classical solution of $-\Delta u = au^{-\alpha}$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , belongs to $H_0^1(\Omega)$ if, and only if, $\alpha < 3$ (see theorem 2 in [35]). It is therefore reasonable, in order to obtain weak solutions in $H_0^1(\Omega)$ to problem (1.1), we restrict ourselves to the case when the singular term of the nonlinearity has the form $au^{-\alpha}$, with *a* nonnegative and nonidentically zero function in $L^{\infty}(\Omega)$, and $0 < \alpha < 3$.

In Section 2 we consider, for $\varepsilon \ge 0$, and $0 \le \zeta \in L^{\infty}(\Omega)$, the problem $-\Delta u = a (u + \varepsilon)^{-\alpha} + \zeta$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω . We show that, under the assumptions H1)–H3), this problem has a unique weak solution $u_{\varepsilon} \in H_0^1(\Omega)$, and that its associated solution operator S_{ε} , defined by $S_{\varepsilon}(\zeta) := u_{\varepsilon}$, satisfies $S_{\varepsilon}(P) \subset P$, where $P := \{\zeta \in C(\overline{\Omega}) : \zeta \ge 0 \text{ in } \Omega\}$ is the positive cone in $C(\overline{\Omega})$. Monotonicity and compactness properties of the map $(\zeta, \varepsilon) \to S(\zeta, \varepsilon) := S_{\varepsilon}(\zeta)$ are proved.

In Section 3 we obtain an a priori bound for the L^{∞} norm of the bounded solutions of $-\Delta u = a (u + \varepsilon)^{-\alpha} + f (\lambda, \cdot, u)$ in Ω , u = 0 on $\partial \Omega$, u > 0 in Ω This is achieved by adapting, to our singular setting, the well known Gidas–Spruck blow up technique.

In Section 4, we consider problem (1.1); which we rewrite as $u = S_0(f(\lambda, \cdot, u))$. We use the properties of S_0 , and a classical fixed point theorem for nonlinear eigenvalue problems, to prove that, for any λ small enough, (1.1) has at least one positive weak solution in $H_0^1(\Omega) \cap$ $L^{\infty}(\Omega)$; moreover, the solution set for this problem (i.e., the set of the pairs (λ, u) that solve it) contains an unbounded subcontinuum (i.e., an unbounded connected subset) emanating from $(0, S_0(0))$. Using this subcontinuum, and the a priori estimate obtained in Section 3, we prove that, for every λ positive small enough, there exist at least two positive weak solutions of (1.1). Finally, a number Λ with the properties stated in Theorem 1.1 is obtained by using the sub and supersolution method (as well as the properties of the operator *S*), applied to the approximating problems $u_{\varepsilon} = S_{\varepsilon}(f(\lambda, \cdot, u_{\varepsilon}))$.

2 Preliminary results

We assume, from now on, that Ω is a bounded domain in \mathbb{R}^n with C^2 boundary, and that α and *a* satisfy the conditions *H*1)–*H*3) in the statement of Theorem 1.1. The next two remarks collect some well known facts from the linear theory of elliptic problems.

Remark 2.1. Let ν be the unit outward normal to $\partial\Omega$ and let $d_{\Omega} : \Omega \to \mathbb{R}$ be defined by (1.2), Then:

- i) If $\rho \in L^r(\Omega)$ for some r > n and if $u \in H_0^1(\Omega)$ satisfies $-\Delta u = \rho$ in $D'(\Omega)$ then $u \in W^{2,r}(\Omega) \cap W_0^{1,r}(\Omega)$, and so $u \in C^{1,\theta}(\overline{\Omega})$ for some $\theta \in (0,1)$. If in addition, $\rho \ge 0$ and $|\{x \in \Omega : \rho(x) > 0\}| > 0$ then u > 0 in Ω , $\frac{\partial u}{\partial v} < 0$ on $\partial\Omega$, and there exist positive constants c_1 and c_2 such that $c_1 d_\Omega \le u \le c_2 d_\Omega$ in Ω .
- ii) The following form of the Hopf maximum principle holds (see [6, Lemma 3.2]): suppose that $\rho \ge 0$ belongs to $L^{\infty}(\Omega)$. Let v be the solution of $-\Delta v = \rho$ in Ω , v = 0 on $\partial\Omega$. Then

$$v(x) \ge cd_{\Omega}(x) \int_{\Omega} \rho d_{\Omega}$$
 a.e. in Ω , (2.1)

where *c* is a positive constant depending only on Ω .

iii) (2.1) holds also, with the same constant c, when $0 \le \rho \in L^1_{loc}(\Omega)$ and $v \in H^1_0(\Omega)$ satisfies $-\Delta v \ge \rho$ in the sense of distributions. Indeed, for $\delta > 0$ let $\rho_{\delta} := \min \{\delta^{-1}, \rho\}$. Then $0 \le \rho_{\delta} \in L^{\infty}(\Omega)$. Let $v_{\delta} \in H^1_0(\Omega)$ be the solution of $-\Delta v_{\delta} = \rho_{\delta}$ in Ω , $v_{\delta} = 0$ on $\partial\Omega$. Then $-\Delta (v - v_{\delta}) \ge 0$ in $D'(\Omega)$ and so, since $v - v_{\delta} \in H^1_0(\Omega)$, we have $-\Delta (v - v_{\delta}) \ge 0$ in Ω . Thus, by the weak maximum principle, $v \ge v_{\delta}$ in Ω . Now, by ii), $v \ge v_{\delta} \ge cd_{\Omega} \int_{\Omega} \rho_{\delta} d_{\Omega}$ a.e. in Ω , and so, by taking the limit as $\delta \to 0^+$, we obtain (2.1).

We recall that $\lambda \in \mathbb{R}$ is called a principal eigenvalue for $-\Delta$ in Ω , with homogeneous Dirichlet boundary condition and weight function *b*, if the problem $-\Delta u = \lambda b u$ in Ω , u = 0 on $\partial\Omega$ has a solution ϕ (called a principal eigenfunction) such that $\phi > 0$ in Ω .

Remark 2.2. Let us mention some properties of principal eigenvalues and principal eigenfunctions (for a proof of i)–iii), see e.g., [17], also [30]), and [29]). If Ω is a $C^{1,1}$ domain in \mathbb{R}^n , $b \in L^{\infty}(\Omega)$ and $b^+ \neq 0$ then:

i) There exists a unique positive principal eigenvalue for $-\Delta$ in Ω , with homogeneous Dirichlet boundary condition and weight function *b*, denoted by $\lambda_1(b)$; its associated

eigenspace is one dimensional and it is included in $C^{1}(\overline{\Omega})$. Moreover, $\lambda_{1}(b)$ has the following variational characterization:

$$\lambda_{1}\left(b\right) = \inf\left\{\frac{\int_{\Omega}\left|\nabla\varphi\right|^{2}}{\int_{\Omega}b\varphi^{2}}: \varphi \in H_{0}^{1}\left(\Omega\right) \text{ and } \int_{\Omega}b\varphi^{2} > 0\right\}.$$

Furthermore, for each positive eigenfunction ϕ associated to $\lambda_1(b)$, and for δ positive and small enough, there are positive constants c_1 , c_2 such that $c_1d_{\Omega} \leq \phi \leq c_2d_{\Omega}$ in Ω and $|\nabla \phi| \geq c_1$ in A_{δ} , where $A_{\delta} := \{x \in \Omega : d_{\Omega}(x) \leq \delta\}$. In particular, ϕ^{γ} is integrable if, and only if, $\gamma > -1$.

We recall also that $\lambda_1(kb) = k^{-1}\lambda_1(b)$ for all $k \in (0, \infty)$, and that, if $b^* \in L^{\infty}(\Omega)$ and $b \leq b^*$, then $\lambda_1(b^*) \leq \lambda_1(b)$.

- ii) If $0 < \lambda < \lambda_1(b)$ and $\rho \in L^{\infty}(\Omega)$, the problem $-\Delta u = \lambda bu + \rho$ in Ω , u = 0 on $\partial\Omega$, has a unique solution $u \in \bigcap_{1 \le p < \infty} W^{2,p}(\Omega)$, and the corresponding solution operator $(-\Delta - \lambda b)^{-1} : L^{\infty}(\Omega) \to C_0^1(\overline{\Omega})$ is bounded and strongly positive, i.e., if $\rho \in L^{\infty}(\Omega)$ and $0 \le \rho \ne 0$ then u belongs to the interior of the positive cone of $C_0^1(\overline{\Omega})$ where $C_0^1(\overline{\Omega}) := \{v \in C^1(\overline{\Omega}) : v = 0 \text{ on } \partial\Omega\}$. Moreover, if in addition $b \ge 0$ in Ω , the same property holds for all $\lambda \in (-\infty, \lambda_1(b))$.
- iii) Let ρ be a nonnegative function in $C(\overline{\Omega})$ such that $\rho \neq 0$ in Ω , and let $\lambda \in [0, \infty)$. If the problem $-\Delta u = \lambda bu + \rho$ in Ω , u = 0 on $\partial\Omega$ has a nonnegative weak solution $u \in H_0^1(\Omega)$ then $\lambda < \lambda_1(b)$.
- iv) Let ρ be a nonnegative function in $L^{\infty}_{loc}(\Omega)$ such that $\rho \varphi \in L^{1}(\Omega)$ for any $\varphi \in H^{1}_{0}(\Omega)$. If $\rho \neq 0$ in Ω , $\lambda > 0$, and if $u \in H^{1}_{0}(\Omega) \cap C(\overline{\Omega})$ satisfies, for some positive constant c, $u \geq cd_{\Omega}$ in Ω and, in weak sense,

$$-\Delta u = \lambda b u + \rho \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial \Omega \tag{2.2}$$

then $\lambda \leq \lambda_1(b)$. To prove this assertion we can proceed as in the proof of Proposition 2.4 in [29], where a similar result was proved for Neumann problems. Indeed, let $v := -\ln u$ and let $w \in C_c^{\infty}(\Omega)$. Since $u \geq cd_{\Omega}$ in Ω and w has compact support we have $u^{-1}w^2 \in H_0^1(\Omega)$. Taking $u^{-1}w^2$ as a test function in (2.2), a computation gives $\lambda \int_{\Omega} bw^2 = \int_{\Omega} |\nabla w|^2 - \int_{\Omega} \rho u^{-1}w^2 - \int_{\Omega} |\nabla w + w \nabla v|^2$ and so $\lambda \int_{\Omega} bw^2 \leq \int_{\Omega} |\nabla w|^2$. Now, for $\varphi \in H_0^1(\Omega)$ such that $\int_{\Omega} b\varphi^2 > 0$, since φ is the limit in $H_0^1(\Omega)$ of some sequence $\{\varphi_j\}_{j\in\mathbb{N}} \subset C_c^{\infty}(\Omega)$, and since $\lambda \int_{\Omega} b\varphi_j^2 \leq \int_{\Omega} |\nabla \varphi_j|^2$, we get $\lambda \int_{\Omega} b\varphi^2 \leq \int_{\Omega} |\nabla \varphi|^2$, and so $\lambda \leq \frac{\int_{\Omega} |\nabla \varphi|^2}{\int_{\Omega} b\varphi^2}$. Then, by the variational characterization of $\lambda_1(b)$, we obtain $\lambda \leq \lambda_1(b)$.

We will need the following comparison principle.

Lemma 2.3. Let U be a bounded domain in \mathbb{R}^n and $\varepsilon \ge 0$. Let u and v be two positive functions in $H^1(U) \cap C(\overline{U})$, such that $a(u+\varepsilon)^{-\alpha}$ and $a(v+\varepsilon)^{-\alpha}$ belong to $L^1_{loc}(U)$. If

$$\begin{cases} -\Delta u - a \left(u + \varepsilon \right)^{-\alpha} \leq -\Delta v - a \left(v + \varepsilon \right)^{-\alpha} & \text{in } D'(U) ,\\ u - v \leq 0 & \text{on } \partial U, \end{cases}$$
(2.3)

then $u \leq v$ in U.

7

Proof. We proceed by contradiction. Let $V := \{x \in U : u(x) > v(x)\}$ and suppose that V is nonempty. Thus $u - v \in H^1(V)$ and u = v on ∂V . Then $u - v \in H^1_0(V)$ (see e.g., Theorem 8.17 and also Remark 19 in [5]). Let $\{\varphi_j\}_{j \in \mathbb{N}}$ be a sequence in $C_c^{\infty}(V)$ such that $\{\varphi_j\}_{j \in \mathbb{N}}$ converges to u - v in $H^1(V)$. Thus $\{\varphi_j^+\}_{j \in \mathbb{N}}$ is a sequence of nonnegative functions in $C_c(V) \cap H^1_0(V)$ which converges to u - v in $H^1(V)$. Now, using suitable mollifiers, we obtain a sequence $\{\psi_j\}_{j \in \mathbb{N}}$ of nonnegative functions in $C_c^{\infty}(V)$ that converges to u - v in $H^1(V)$. From (2.3) we have $\int_V \langle \nabla(u - v), \nabla \psi_j \rangle \leq \int_V a((u + \varepsilon)^{-\alpha} - (v + \varepsilon)^{-\alpha})\psi_j \leq 0$ for any $j \in \mathbb{N}$. Thus $\int_V |\nabla(u - v)|^2 \leq 0$, and so u - v = 0 on V.

Remark 2.4. The following forms of the comparison principle hold: if $\varepsilon \ge 0$, and if u, v are two functions in $H^1(\Omega)$ (respectively in $H^1(\Omega) \cap L^{\infty}(\Omega)$) which are positive a.e. in Ω and satisfy that, for any nonnegative $\varphi \in H^1_0(\Omega)$ (resp. $\varphi \in H^1_0(\Omega) \cap L^{\infty}(\Omega)$), $a(u + \varepsilon)^{-\alpha} \varphi \in L^1(\Omega)$, $a(v + \varepsilon)^{-\alpha} \varphi \in L^1(\Omega)$ and

$$\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle - \int_{\Omega} a \left(u + \varepsilon \right)^{-\alpha} \varphi \leq \int_{\Omega} \langle \nabla v, \nabla \varphi \rangle - \int_{\Omega} a \left(v + \varepsilon \right)^{-\alpha} \varphi,$$

and if, in addition, $u - v \le 0$ on $\partial\Omega$ (i.e., $(u - v)^+ \in H_0^1(\Omega)$), then $u \le v$ in Ω . Indeed, by taking $\varphi = (u - v)^+$ as a test function we get $\int_{\Omega} |\nabla((u - v)^+)|^2 \le 0$, and so $u \le v$ in Ω .

If *a* and *u* are functions defined on Ω , we will write $\chi_{\{u>0\}}au^{-\alpha}$ to denote the function $w: \Omega \to \mathbb{R}$ defined by $w(x) := a(x)u(x)^{-\alpha}$ if $u(x) \neq 0$, and w(x) = 0 otherwise.

Lemma 2.5. If $\zeta \in L^{\infty}(\Omega)$, then there exists $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ such that:

i) *u* satisfies

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} a u^{-\alpha} + \zeta & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \\ u \ge 0 & \text{in } \Omega, \quad u > 0 \quad a.e. \text{ in } \{a > 0\} \end{cases}$$

$$(2.4)$$

in the following sense: for any $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, it holds that $(\chi_{\{u>0\}}au^{-\alpha} + \zeta) \varphi \in L^1(\Omega)$ and $\int_U \langle \nabla u, \nabla \varphi \rangle = \int_U (\chi_{\{u>0\}}au^{-\alpha} + \zeta) \varphi$;

ii) if, in addition, $\zeta \ge 0$ *then u is the unique solution in* $H_0^1(\Omega) \cap L^{\infty}(\Omega)$ *to the above problem (in the sense stated in i)) and there exists a positive constant c, independent of* ζ *, such that u* $\ge cd_{\Omega}$ *a.e. in* Ω .

Proof. i) follows as a particular case of [32, Theorem 1.2]. To see ii), observe that if $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a solution of (2.4) in the sense of i), then $(\chi_{\{u>0\}}au^{-\alpha} + \zeta) \varphi \in L^1(\Omega)$ for any $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, and so $\chi_{\{u>0\}}au^{-\alpha} \in L_{loc}^1(\Omega)$. Also $\chi_{\{u>0\}}au^{-\alpha} \neq 0$ and $-\Delta u \geq \chi_{\{u>0\}}au^{-\alpha}$ in $D'(\Omega)$. Thus, by Remark 2.1 iii), there exists a positive constant c (in principle, depending perhaps on u) such that $u \geq cd_\Omega \int \chi_{\{u>0\}}au^{-\alpha} d_\Omega$ in Ω . Then, for some positive constant c', we have $u \geq c'd_\Omega$ in Ω and so $\chi_{\{u>0\}}au^{-\alpha} + \zeta = au^{-\alpha} + \zeta$ in Ω . Let w be a solution of (2.4), in the sense of i), corresponding to $\zeta = 0$. By Remark 2.4 we have $u \geq w$ in Ω , and, as above, we have $w \geq cd_\Omega$ in Ω for some constant c > 0. Since c is independent of ζ , the last assertion of ii) holds. In particular, u is positive in Ω . Now, the uniqueness assertion follows from Remark 2.4.

Lemma 2.6. If ζ is a nonnegative function in $L^{\infty}(\Omega)$, then for each $\varepsilon > 0$ the problem:

$$\begin{cases} -\Delta u = a (u + \varepsilon)^{-\alpha} + \zeta & in \Omega, \\ u = 0 & on \partial\Omega, \\ u > 0 & a.e. in \Omega. \end{cases}$$
(2.5)

has a unique weak solution $u \in H_0^1(\Omega)$ to (2.5). Moreover, $u \in L^{\infty}(\Omega)$, and there exists a positive constant *c* such that $u \ge cd_{\Omega}$ in Ω .

Proof. Let ψ be the solution of $-\Delta \psi = a$ in Ω , $\psi = 0$ on $\partial\Omega$, thus $\psi \in W^{2,r}(\Omega) \cap W_0^{1,r}(\Omega)$ for any $r \in (1, \infty)$ and there exist positive constants c_1, c_2 such that $c_1 d_\Omega \leq \psi \leq c_2 d_\Omega$ in Ω . Define $\underline{u} := \eta \psi$, where η is a small enough positive number such that $\eta a \leq a (\eta \psi + \varepsilon)^{-\alpha}$ in Ω . Thus $-\Delta \underline{u} = \eta a \leq a (\eta \psi + \varepsilon)^{-\alpha} \leq a (\underline{u} + \varepsilon)^{-\alpha} + \zeta$ in Ω , also $\underline{u} = 0$ on $\partial\Omega$, and so \underline{u} is a subsolution of (2.5). Let \overline{u} be the solution of $-\Delta \overline{u} = \varepsilon^{-1}a + \zeta$ in Ω , $\zeta = 0$ on $\partial\Omega$. Thus $\overline{u} \in W^{2,r}(\Omega) \cap W_0^{1,r}(\Omega)$ for any $r \in (1,\infty)$ and there exists a positive constant c_3 such that $\overline{u} \geq c_3 d_\Omega$ in Ω . Also, $-\Delta \overline{u} \geq a (\overline{u} + \varepsilon)^{-\alpha} + \zeta$ in Ω , i.e., \overline{u} is a supersolution of (2.5). Taking into account that $\psi \leq c_2 d_\Omega$ in Ω and $\overline{u} \geq c_3 d_\Omega$ in Ω we can assume, by diminishing η if necessary, that $\underline{u} \leq \overline{u}$ in Ω . Thus [18, Theorem 4.9] gives a weak solution $u \in H_0^1(\Omega)$ to problem (2.5) such that $\underline{u} \leq u \leq \overline{u}$ in Ω . Then $u \geq \eta c_1 d_\Omega$ in Ω (with η depending on ε and ζ) and $u \in L^{\infty}(\Omega)$. Finally, if u and v are two weak solutions in $H_0^1(\Omega)$ to problem (2.5), Remark 2.4 gives u = v.

Lemma 2.7. If $0 \leq \zeta \in L^{\infty}(\Omega)$ and $\varepsilon \in (0,1]$, then the solution u to problem (2.5), given by Lemma 2.6, satisfies $u \geq cd_{\Omega}$ in Ω for some positive constant c independent of ε and ζ .

Proof. By Lemma 2.6, u > 0 a.e. in Ω . Let w be as in the proof of Lemma 2.5. Thus there exists a positive constant c such that $w \ge cd_{\Omega}$ in Ω . As in Lemma 2.5 we have $u \ge w$ in Ω . Thus $u \ge cd_{\Omega}$ in Ω . Since c is independent of ε and ζ , the lemma follows.

Remark 2.8. Let us recall the Hardy inequality (see e.g., [5], p. 313): There exists a positive constant *c* such that $\left\|\frac{\varphi}{d_{\Omega}}\right\|_{L^{2}(\Omega)} \leq c \left\|\nabla\varphi\right\|_{L^{2}(\Omega)}$ for all $\varphi \in H_{0}^{1}(\Omega)$.

Lemma 2.9. Let $\zeta \in L^{\infty}(\Omega)$ be such that $\zeta \ge 0$, and let $\varepsilon \in (0,1]$ (respectively $\varepsilon = 0$), and let u be the solution to problem

$$\begin{cases} -\Delta u = a \left(u + \varepsilon \right)^{-\alpha} + \zeta & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(2.6)

given by Lemma 2.6 (resp. by Lemma 2.5, in the sense stated there). Then:

- i) if $1 < \alpha < 3$ then there exists a positive constant c such that $u \leq cd_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω , whenever $\max\{\|a\|_{\infty}, \|\zeta\|_{\infty}\} \leq M;$
- *ii)* if $0 < \alpha \leq 1$ and $\gamma \in (0,1)$ then there exists a positive constant c such that $u \leq cd_{\Omega}^{\gamma}$ in Ω , whenever $\max \{ \|a\|_{\infty}, \|\zeta\|_{\infty} \} \leq M$.

Proof. Let λ_1 be the principal eigenvalue for $-\Delta$ on Ω , with weight function **1** and let φ_1 be the corresponding positive principal eigenfunction normalized by $\|\varphi_1\|_{\infty} = 1$. For $\delta > 0$ let $A_{\delta} := \{x \in \Omega : d_{\Omega}(x) \le \delta\}$ and let $\Omega_{\delta} := \{x \in \Omega : d_{\Omega}(x) > \delta\}$. For δ positive and small enough there exists a positive constant c_{δ} such that $|\nabla \varphi_1| \ge c_{\delta}$ in A_{δ} , and, by diminishing c_{δ} if necessary, we can assume that $\varphi_1 \ge c_{\delta}$ in Ω_{δ} . To see i), we consider first the case when $1 < \delta$

 $\alpha < 3$ and $\varepsilon = 0$. Clearly $\varphi_1^{\frac{2}{1+\alpha}} \in L^2(\Omega)$ and, since $\nabla(\varphi_1^{\frac{2}{1+\alpha}}) = \frac{2}{1+\alpha}\varphi_1^{\frac{1-\alpha}{1+\alpha}}\nabla(\varphi_1)$ and $\frac{1-\alpha}{1+\alpha} > -\frac{1}{2}$ we have also $\nabla(\varphi_1^{\frac{2}{1+\alpha}}) \in L^2(\Omega)$. Thus $\varphi_1^{\frac{2}{1+\alpha}} \in H_0^1(\Omega)$. Let $q := (\frac{(1+\alpha)M}{2c_{\delta}^2} \max\{\frac{1+\alpha}{\alpha-1}, \frac{1}{\lambda_1}\})^{\frac{1}{1+\alpha}}$. A computation gives

$$-\Delta\left(q\varphi_{1}^{\frac{2}{1+\alpha}}\right) = q\frac{2}{1+\alpha}\lambda_{1}\varphi_{1}^{\frac{2}{1+\alpha}} + q\frac{2}{1+\alpha}\frac{\alpha-1}{1+\alpha}\left(\varphi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha}\left|\nabla\varphi_{1}\right|^{2},$$
(2.7)

and thus

$$\begin{split} -\Delta\left(q\varphi_{1}^{\frac{2}{1+\alpha}}\right) &\geq q^{1+\alpha}\frac{2}{1+\alpha}\frac{\alpha-1}{1+\alpha}c_{\delta}^{2}\left(q\varphi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha} \geq a\left(q\varphi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha} \quad \text{in } A_{\delta}, \\ -\Delta\left(q\varphi_{1}^{\frac{2}{1+\alpha}}\right) &\geq \frac{2}{1+\alpha}\lambda_{1}q\varphi_{1}^{\frac{2}{1+\alpha}} \geq a\left(q\varphi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha} \quad \text{in } \Omega_{\delta}. \end{split}$$

Then

$$-\Delta\left(q\varphi_1^{\frac{2}{1+\alpha}}\right) \ge a\left(q\varphi_1^{\frac{2}{1+\alpha}}\right)^{-\alpha} \quad \text{in } \Omega.$$
(2.8)

Let $\theta \in \bigcap_{1 < r < \infty} (W^{2,r}(\Omega) \cap W_0^{1,r}(\Omega))$ be the solution of $-\Delta \theta = \zeta$ in Ω , $\theta = 0$ on $\partial \Omega$. Thus

$$-\Delta\left(q\varphi_{1}^{\frac{2}{1+\alpha}}+\theta\right) \ge a\left(q\varphi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha}+\zeta \ge a\left(q\varphi_{1}^{\frac{2}{1+\alpha}}+\theta\right)^{-\alpha}+\zeta \quad \text{in }\Omega.$$
(2.9)

Then

$$\int_{\Omega} \left\langle \nabla \left(q \varphi_1^{\frac{2}{1+\alpha}} + \theta \right), \nabla \psi \right\rangle \ge \int_{\Omega} a \left(q \varphi_1^{\frac{2}{1+\alpha}} + \theta \right)^{-\alpha} \psi$$

for any nonnegative $\psi \in H_0^1(\Omega)$; also $q\varphi_1^{\frac{1}{1+\alpha}} + \theta = 0$ on $\partial\Omega$. Since u satisfies (2.4) and u > 0a.e. in Ω , the comparison principle of Remark 2.4 gives $u \leq q\varphi_1^{\frac{2}{1+\alpha}} + \theta$ a.e. in Ω . Finally, since $\|\zeta\|_{\infty} \leq M$ and $\frac{2}{1+\alpha} < 1$, we have $\theta \leq M(-\Delta)^{-1}(1) \leq Mc'\varphi_1 \leq Mc'\varphi_1^{\frac{2}{1+\alpha}}$ in Ω , where c' is a positive constant depending only on n and Ω . Also, for some constant c'' > 0, $\varphi_1^{\frac{2}{1+\alpha}} \leq c''d_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω , for a positive constant c depending only on M, α , and Ω , therefore i) holds when $\varepsilon = 0$. The proof of i) for the case $\varepsilon \in (0, 1]$ reduces to the previous one. Indeed, Remark 2.4 gives $u \leq u_0$ in Ω , where u_0 is the solution (given by Lemma 2.5) to problem (2.6) and corresponding to $\varepsilon = 0$.

The proof of ii) follows similar lines: suppose $0 < \alpha \le 1$ and $\gamma \in (0, 1)$. Define

$$q := \left(\frac{M}{\gamma} \max\left\{\frac{1}{\lambda_1 c_{\delta}^{\gamma(1+\alpha)}}, \frac{1}{(1-\gamma) c_{\delta}^2}\right\}\right)^{\frac{1}{1+\alpha}}.$$

Then

$$-\Delta\left(q\varphi_{1}^{\gamma}\right) = \gamma q\lambda_{1}\varphi_{1}^{\gamma} + q\gamma\left(1-\gamma\right)\varphi_{1}^{\gamma-2}\left|\nabla\varphi_{1}\right|^{2} \quad \text{in } \Omega,$$

and so

$$\begin{aligned} -\Delta \left(q \varphi_1^{\gamma} \right) &\geq q \gamma \left(1 - \gamma \right) \varphi_1^{\gamma - 2} \left| \nabla \varphi_1 \right|^2 \geq a \left(q \varphi_1^{\gamma} \right)^{-\alpha} & \text{in } A_{\delta}, \\ -\Delta \left(q \varphi_1^{\gamma} \right) &\geq \gamma q \lambda_1 \varphi_1^{\gamma} \geq a \left(q \varphi_1^{\gamma} \right)^{-\alpha} & \text{in } \Omega_{\delta}. \end{aligned}$$

Thus $-\Delta (q \varphi_1^{\gamma}) \ge a (q \varphi_1^{\gamma})^{-\alpha}$ in Ω , which is the analogue of (2.8). From this point, the proof of ii) follows exactly as in i), replacing $\varphi_1^{\frac{2}{1+\alpha}}$ and $d_{\Omega}^{\frac{2}{1+\alpha}}$ by φ_1^{γ} and d_{Ω}^{γ} respectively.

Lemma 2.10. Let ζ be a nonnegative function belonging to $L^{\infty}(\Omega)$ and let $M \ge \max \{ \|a\|_{\infty}, \|\zeta\|_{\infty} \}$. Let $\varepsilon \in (0, 1]$ (respectively $\varepsilon = 0$); and let u be the solution to problem (2.6) given by Lemma 2.6 (resp. by Lemma 2.5, in the sense stated there). Then $u \in C(\overline{\Omega})$.

Proof. Let Ω' be a subdomain of Ω such that $\overline{\Omega'} \subset \Omega$; and let Ω'' be a subdomain of Ω such that $\overline{\Omega'} \subset \Omega'' \subset \overline{\Omega''} \subset \Omega$. By Lemmas 2.7 and 2.9 there exist positive constants c_1 , c_2 and $\gamma > 0$ such that $c_1 d_\Omega \leq u \leq c_2 d_\Omega^{\gamma}$ in Ω and so $(au^{-\alpha} + \zeta)_{|\Omega''} \in L^{\infty}(\Omega'')$. Also, $u_{|\Omega''} \in L^{\infty}(\Omega'')$. Then, by [28, Theorem 8.24], $u_{|\Omega'} \in C^{\beta}(\overline{\Omega'})$ for some $\beta \in (0, 1)$. Since this holds for any domain Ω' such that $\overline{\Omega'} \subset \Omega$, it follows that $u \in C(\Omega)$. Also, $c_1 d_\Omega \leq u \leq c_2 d_\Omega^{\gamma}$ in Ω , and so u is continuous on $\partial\Omega$. Then $u \in C(\overline{\Omega})$.

Lemma 2.11. Assume $1 < \alpha < 3$, and let $\zeta \in L^{\infty}(\Omega)$ be such that $\zeta \ge 0$. Let u be the solution to problem (2.5) given by Lemma 2.5 (in the sense stated there). Then there exists a positive constant c independent of ζ such that $u \ge cd_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω .

Proof. We consider first the case when $\underline{a} := \inf_{\Omega} a > 0$. Let λ_1 be the principal eigenvalue for $-\Delta$ in Ω with homogeneous Dirichlet boundary condition and weight function a, and let φ_1 be the corresponding positive principal eigenfunction, normalized by $\|\varphi_1\|_{\infty} = 1$. Observe that $\varphi_1^{\frac{2}{1+\alpha}} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and

$$\begin{split} -\Delta\left(\varphi_{1}^{\frac{2}{1+\alpha}}\right) &= \frac{2}{1+\alpha}\lambda_{1}a\varphi_{1}^{\frac{2}{1+\alpha}} + \frac{2}{1+\alpha}\frac{\alpha-1}{1+\alpha}\left(\varphi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha}|\nabla\varphi_{1}|^{2}\\ &\leq \beta a\left(\varphi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha} \text{ a.e. in }\Omega, \end{split}$$

where $\beta := \frac{2}{1+\alpha}\lambda_1 + \frac{2}{1+\alpha}\frac{\alpha-1}{1+\alpha}\frac{1}{\underline{a}} \|\nabla \varphi_1\|_{\infty}^2$. Then

$$-\Delta\left(\beta^{-\frac{1}{1+\alpha}}\varphi_1^{\frac{2}{1+\alpha}}\right) \leq a\left(\beta^{-\frac{1}{1+\alpha}}\varphi_1^{\frac{2}{1+\alpha}}\right)^{-\alpha}$$

in the weak sense of Lemma 2.5, (i.e., with test functions in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$). We have also, again in the weak sense of Lemma 2.5, $-\Delta u \ge au^{-\alpha}$ in Ω . Then, by Lemma 2.3, $u \ge \beta^{-\frac{1}{1+\alpha}} \varphi_1^{\frac{2}{1+\alpha}}$ in Ω and so $u \ge cd_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω for some positive constant *c* independent of ζ . Thus the lemma holds when $\inf_{\Omega} a > 0$.

To prove the lemma in the general case, consider the solution θ to the problem $-\Delta \theta = a$ in Ω , $\theta = 0$ on $\partial\Omega$. Thus $\theta \in W^{2,r}(\Omega) \cap W_0^{1,r}(\Omega)$ for any $r \in [1,\infty)$ and, for some positive constant c_1 , $\theta \ge c_1 d_\Omega$ in Ω . Let $w \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ be a solution, in the sense of Lemma 2.5, of problem (2.4) corresponding to $\zeta = 0$. By Lemma 2.3 we have $u \ge w$ in Ω and, by Lemma 2.9, there exists a positive constant c_2 such that $w \le c_2 d_\Omega$ in Ω . Now, for $\varepsilon \in (0, 1)$ and $\beta \in (0, 1)$, we have, in the weak sense of Lemma 2.5,

$$-\Delta\left((w+\varepsilon)^{\beta}\right) = -\alpha \left(w+\varepsilon\right)^{\beta-1} \Delta w - \beta \left(\beta-1\right) \left(w+\varepsilon\right)^{\beta-2} |\nabla w|^{2}$$

$$\geq \alpha a \left(w+\varepsilon\right)^{\beta-1} w^{-\alpha} \geq \alpha a \left(c_{2}d_{\Omega}+\varepsilon\right)^{\beta-\alpha-1}$$

$$\geq -\alpha \left(c_{3}\theta+\varepsilon\right)^{\beta-\alpha-1} \Delta \theta \quad \text{in } \Omega$$

$$(2.10)$$

with $c_3 = c_1^{-1} c_2$. Also,

$$-\Delta\left(\left(c_{3}\theta+\varepsilon\right)^{\frac{2\alpha}{1+\alpha}}\right)$$

$$=-\frac{2\alpha}{1+\alpha}\left(c_{3}\theta+\varepsilon\right)^{\frac{\alpha-1}{\alpha+1}}\Delta\theta-\frac{2\alpha}{1+\alpha}\left(\frac{2\alpha}{1+\alpha}-1\right)\left(c_{3}\theta+\varepsilon\right)^{\frac{2\alpha}{1+\alpha}-2}|\nabla\left(c_{3}\theta\right)|^{2}$$

$$\leq-\frac{2\alpha}{1+\alpha}\left(c_{3}\theta+\varepsilon\right)^{\frac{\alpha-1}{\alpha+1}}\Delta\theta\leq-\frac{2\alpha M_{\beta}}{1+\alpha}\left(c_{3}\theta+\varepsilon\right)^{\beta-\alpha-1}\Delta\theta,$$

$$(2.11)$$

where $M_{\beta} := (c_3 \|\theta\|_{\infty} + 1)^{\frac{\alpha-1}{\alpha+1} + \alpha + 1 - \beta}$. Thus, from (2.10) and (2.11), we get

$$-\Delta\left(\left(w+\varepsilon\right)^{\beta}\right) \geq -\frac{1+\alpha}{2M_{\beta}}\Delta\left(\left(c_{3}\theta+\varepsilon\right)^{\frac{2\alpha}{1+\alpha}}\right) \quad \text{in } D'\left(\Omega\right),$$

also, for ε small enough, $(w + \varepsilon)^{\beta} = \varepsilon^{\beta} \geq \frac{1+\alpha}{2M_{\beta}}\varepsilon^{\frac{2\alpha}{1+\alpha}} = \frac{1+\alpha}{2M_{\beta}}(c_{3}\theta + \varepsilon)^{\frac{2\alpha}{1+\alpha}}$ on $\partial\Omega$ and so, by the weak maximum principle, we have, for ε small enough, $(w + \varepsilon)^{\beta} \geq \frac{1+\alpha}{2M_{\beta}}(c_{3}\theta + \varepsilon)^{\frac{2\alpha}{1+\alpha}}$ a.e. in Ω . By taking $\lim_{\varepsilon \to 0^{+}}$ in this inequality we get, for any $\beta \in (0, 1)$,

$$w^{\beta} \ge \frac{1+lpha}{2M_{\beta}} (c_3 \theta)^{\frac{2lpha}{1+lpha}}$$
 a.e. in Ω . (2.12)

By taking $\lim_{\beta\to 0^+}$ in (2.12), using that $\lim_{\beta\to 0^+} M_\beta = (c_3 \|\theta\|_{\infty} + 1)^{\frac{2\alpha}{\alpha+1}}$, recalling that $u \ge w$ in Ω and that $\theta \ge c_1 d_\Omega$ in Ω , we get

$$u \geq \frac{1}{2} (1+\alpha) \left(\frac{c_1 c_3}{c_3 \|\theta\|_{\infty} + 1} \right)^{\frac{2\alpha}{1+\alpha}} d_{\Omega}^{\frac{2\alpha}{1+\alpha}} \quad \text{a.e. in } \Omega,$$

which ends the proof of the lemma.

Lemma 2.12. Let ζ be a nonnegative function in $L^{\infty}(\Omega)$, and let $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ be the solution (in the sense of Lemma 2.5) to (2.4). Then, for some positive constant $c, u \geq cd_{\Omega}$ in Ω if $0 < \alpha \leq 1$, and $u \geq cd_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω if $1 \leq \alpha < 3$. Moreover, u is the unique weak solution, in the usual $H_0^1(\Omega)$ sense, to the problem

$$\begin{cases} -\Delta u = au^{-\alpha} + \zeta \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega, \\ u > 0 \text{ in } \Omega. \end{cases}$$
(2.13)

Proof. To see that *u* is a weak solution of (2.4), i.e., that, for any $\psi \in H_0^1(\Omega)$, $au^{-\alpha}\psi \in L^1(\Omega)$ and

$$\int_{\Omega} \langle \nabla u, \nabla \psi \rangle = \int_{\Omega} \left(a u^{-\alpha} + \zeta \right) \psi, \qquad (2.14)$$

we consider first the case $0 < \alpha \leq 1$. Let $\psi \in H_0^1(\Omega)$ and, for $j \in \mathbb{N}$ and $x \in \Omega$, let $\psi_j(x) := \psi(x)$ if $|\psi(x)| \leq j$, $\psi_j(x) := j$ if $\psi(x) > j$, and $\psi_j(x) := -j$ if $\psi(x) < -j$. Then $\psi_j \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and so, for all j,

$$\int_{\Omega} \left\langle \nabla u, \nabla \psi_j \right\rangle = \int_{\Omega} \left(a u^{-\alpha} + \zeta \right) \psi_j \tag{2.15}$$

Also, by Lemma 2.7, there exists a positive constant *c* such that $u \ge cd_{\Omega}$ in Ω , and so, for any $j \in \mathbb{N}$,

$$\left|\left(au^{-\alpha}+\zeta\right)\psi_{j}\right| \leq \|a\|_{\infty}c^{-\alpha}d_{\Omega}^{1-\alpha}\left|\frac{\psi_{j}}{d_{\Omega}}\right|+\zeta\left|\psi_{j}\right| \leq c'd_{\Omega}^{1-\alpha}\left|\frac{\psi}{d_{\Omega}}\right|+\zeta\left|\psi\right|$$
(2.16)

with $c' = ||a||_{\infty} c^{-\alpha}$; applying Hardy's inequality we get

$$\left\| c' d_{\Omega}^{1-\alpha} \left| \frac{\psi}{d_{\Omega}} \right| + \zeta \left| \psi \right| \right\|_{1} \le c \left\| d_{\Omega}^{1-\alpha} \right\|_{2} \left\| \nabla \psi \right\|_{2} + \left\| \zeta \right\|_{\infty} \left| \Omega \right|^{\frac{1}{2}} \left\| \psi \right\|_{2} < \infty.$$

$$(2.17)$$

for some positive constant *c*. Since $\{\psi_j\}_{j\in\mathbb{N}}$ converges to ψ in $H_0^1(\Omega)$ and a.e. in Ω , Lebesgue's dominated convergence theorem gives $(au^{-\alpha} + \zeta) \psi \in L^1(\Omega)$ and (2.14). Thus *u* is a weak solution (in the usual $H_0^1(\Omega)$ sense) of (2.4), it satisfies $u \ge cd_\Omega$ in Ω and, by Lemma 2.5, *u* is the unique weak solution to (2.4). Thus i) and ii) holds when $0 < \alpha \le 1$.

Consider now the case $1 < \alpha < 3$. To see that *u* is a weak solution of (2.13) we proceed as in the case $0 < \alpha \le 1$, except that instead of (2.16) we use now that, by Lemma 2.11, there exists a positive constant *c* such that $u \ge cd_{\Omega}^{\frac{2}{1+\alpha}}$. Thus,

$$\left|\left(au^{-\alpha}+\zeta\right)\psi_{j}\right| \leq \|a\|_{\infty}c^{-\frac{2\alpha}{1+\alpha}}d_{\Omega}^{1-\frac{2\alpha}{1+\alpha}}\left|\frac{\psi_{j}}{d_{\Omega}}\right|+\zeta\left|\psi_{j}\right| \leq c'd_{\Omega}^{-\frac{\alpha-1}{\alpha+1}}\left|\frac{\psi}{d_{\Omega}}\right|+\zeta\left|\psi\right|$$
(2.18)

with c' a constant independent of j. Since $\alpha < 3$ we have $\|d_{\Omega}^{-\frac{\alpha-1}{\alpha+1}}\|_2 < \infty$ and so, by Hardy's inequality, $\|c'd_{\Omega}^{-\frac{\alpha-1}{\alpha+1}}\|\frac{\psi}{d_{\Omega}}\| + \zeta \|\psi\|\|_1 < \infty$. Then, as in the case $0 < \alpha \le 1$, Lebesgue's dominated convergence theorem gives $(au^{-\alpha} + \zeta) \psi \in L^1(\Omega)$ and (2.14). Thus u is a weak solution (in the usual $H_0^1(\Omega)$ sense) of (2.13), it satisfies $u \ge cd_{\Omega}^{\frac{2}{1+\alpha}}$ a.e. in Ω and, by the comparison principle in Remark 2.4, u is the unique weak solution (in the usual $H_0^1(\Omega)$ sense) to problem (2.13). \Box

Let $P_{\infty} := \{\zeta \in L^{\infty}(\Omega) : \zeta \ge 0 \text{ a.e. in } \Omega\}$, and, for $\varepsilon \ge 0$, let $S_{\varepsilon} : P_{\infty} \to H_0^1(\Omega) \cap L^{\infty}(\Omega)$ be defined by $S_{\varepsilon}(\zeta) := u$, where u is the unique weak solution (provided by Lemma 2.6 when $\varepsilon > 0$, and by Lemma 2.12 when $\varepsilon = 0$) to problem (2.5). Consider $S : P_{\infty} \times [0, \infty) \to H_0^1(\Omega) \cap L^{\infty}(\Omega)$ defined by $S(\zeta, \varepsilon) := S_{\varepsilon}(\zeta)$. Except explicit mention on the contrary, we will consider P_{∞} endowed with the topology of the L^{∞} norm.

Lemma 2.13. Let $\{\zeta_j\}_{j\in\mathbb{N}}$ be a bounded sequence in $L^{\infty}(\Omega)$ such that $\zeta_j \ge 0$ for all j, and let $\{\varepsilon_j\}_{j\in\mathbb{N}}$ be a sequence in $[0,\infty)$. Then $\{S_{\varepsilon_j}(\zeta_j)\}_{i\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$.

Proof. For $j \in \mathbb{N}$, let $u_j := S_{\varepsilon_j}(\zeta_j)$. Since u_j is a weak solution of $-\Delta u_j = a (u_j + \varepsilon_j)^{-\alpha} + \zeta_j$ in Ω , $u_j = 0$ on $\partial \Omega$, and using u_j as a test function, we get

$$\int_{\Omega} |\nabla u_j|^2 = \int_{\Omega} a \left(u_j + \varepsilon_j \right)^{-\alpha} u_j + \int_{\Omega} u_j \zeta_j.$$
(2.19)

If $0 < \alpha \le 1$, since $\{\zeta_j\}_{j \in \mathbb{N}}$ is bounded in $L^{\infty}(\Omega)$, (2.19), the Poincaré inequality gives

$$\|\nabla u_j\|_2^2 \le c \left(\|\nabla u_j\|_2^{1-\alpha} + \|\nabla u_j\|_2\right)$$

with *c* independent of *j*, which proves the lemma when $0 < \alpha \le 1$. Let us consider now the case $1 < \alpha < 3$. The function $z := S_0(0)$ is a weak solution of $-\Delta z = az^{-\alpha}$ in Ω , z = 0 on $\partial\Omega$ and, by Lemma 2.10, $z \in C(\overline{\Omega})$. Also $-\Delta u_j \ge au_j^{-\alpha}$ in Ω , $u_j = 0$ on $\partial\Omega$, and then, by Lemma 2.3, $u_j \ge z$ in Ω . By Lemma 2.9, $u_j \le cd_{\Omega}^{\frac{2}{1+\alpha}}$ for any *j*, with *c* a positive constant independent of *j*. Thus, from (2.19), we have

$$\int_{\Omega} \left| \nabla u_j \right|^2 \le c \int_{\Omega} \left(\left\| a \right\|_{\infty} z_j^{-\alpha} + \left\| \zeta_j \right\|_{\infty} \right) d_{\Omega}^{\frac{2}{1+\alpha}}.$$
(2.20)

Also, by Lemma 2.11, $z \ge c' d_{\Omega}^{\frac{1}{1+\alpha}}$ in Ω , for some positive constant c'. Then, from (2.20),

$$\int_{\Omega} \left| \nabla u_j \right|^2 \le c \int_{\Omega} \left(\|a\|_{\infty} \left(c' \right)^{-\alpha} d_{\Omega}^{-\frac{2\alpha}{1+\alpha}} + \left\| \zeta_j \right\|_{\infty} \right) d_{\Omega}^{\frac{2}{1+\alpha}}.$$
(2.21)

Since $1 < \alpha < 3$, we have $\frac{2(1-\alpha)}{1+\alpha} > -1$, therefore $\int_{\Omega} d_{\Omega}^{-\frac{2\alpha}{1+\alpha}} d_{\Omega}^{\frac{2}{1+\alpha}} < \infty$, and then, since $\{\zeta_j\}_{j \in \mathbb{N}}$ is bounded in $L^{\infty}(\Omega)$, the lemma follows.

Lemma 2.14.

- *i*) $\zeta \to S_{\varepsilon}(\zeta)$ *is nondecreasing on* P_{∞} *for any* $\varepsilon \ge 0$ *.*
- *ii)* $\varepsilon \to S_{\varepsilon}(\zeta)$ *is nonincreasing on* $[0, \infty)$ *for any* $\zeta \in P_{\infty}$ *.*
- *iii)* $S: P_{\infty} \times [0, \infty) \to C(\overline{\Omega})$ *is continuous.*
- *iv)* $S: P_{\infty} \times [0, \infty) \to C(\overline{\Omega})$ *is a compact map.*

Proof. i) and ii) follow directly from Lemma 2.3. To prove iii) it is enough to show that if $(\zeta, \varepsilon) \in P_{\infty} \times [0, \infty)$, and $\{(\zeta_j, \varepsilon_j)\}_{j \in \mathbb{N}} \subset P_{\infty} \times [0, \infty)$ converges to (ζ, ε) in $P_{\infty} \times [0, \infty)$, then there exists a subsequence $\{(\zeta_{j_k}, \varepsilon_{j_k})\}_{k \in \mathbb{N}}$ such that $\{S(\zeta_{j_k}, \varepsilon_{j_k})\}_{k \in \mathbb{N}}$ converges to $S(\zeta, \varepsilon)$ in $C(\overline{\Omega})$.

Let $(\zeta, \varepsilon) \in P_{\infty} \times [0, \infty)$, and let $\{(\zeta_j, \varepsilon_j)\}_{j \in \mathbb{N}} \subset P_{\infty} \times [0, \infty)$ be a sequence that converges to (ζ, ε) in $P_{\infty} \times [0, \infty)$. For $j \in \mathbb{N}$, let $u_j := S(\zeta_j, \varepsilon_j)$. By Lemma 2.13 $\{u_j\}_{j \in \mathbb{N}}$ is bounded in $H_0^1(\Omega)$, therefore there exist $u \in H_0^1(\Omega)$, and a subsequence $\{u_{j_k}\}_{k \in \mathbb{N}}$, such that $\{u_{j_k}\}_{k \in \mathbb{N}}$ converges strongly in $L^2(\Omega)$ to u, and $\{\nabla u_{j_k}\}_{k \in \mathbb{N}}$ converges weakly in $L^2(\Omega, \mathbb{R}^n)$ to ∇u . Taking a further subsequence if necessary, we can assume that $\{u_{j_k}\}_{k \in \mathbb{N}}$ converges to u, a.e. in Ω .

Let us see that $u = S(\zeta, \varepsilon)$, i.e., that $a(u + \varepsilon)^{-\alpha} \varphi \in L^1(\Omega)$ for any $\varphi \in H^1_0(\Omega)$, and

$$\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle = \int_{\Omega} \left(a \left(u + \varepsilon \right)^{-\alpha} + \zeta \right) \varphi.$$
(2.22)

Let $\varphi \in H_0^1(\Omega)$. For $k \in \mathbb{N}$, $\int_{\Omega} \langle \nabla u_{j_k}, \nabla \varphi \rangle = \int_{\Omega} (a(u_{j_k} + \varepsilon_{j_k})^{-\alpha} + \zeta_{j_k})\varphi$. Now, as $\{\nabla u_{j_k}\}_{k\in\mathbb{N}}$ converges weakly to ∇u in $L^2(\Omega, \mathbb{R}^n)$, we have that $\lim_{k\to\infty} \int_{\Omega} \langle \nabla u_{j_k}, \nabla \varphi \rangle = \int_{\Omega} \langle \nabla u, \nabla \varphi \rangle$. Also, $\zeta \varphi \in L^1(\Omega)$ and, applying the Lebesgue dominated convergence theorem, we get $\lim_{k\to\infty} \int_{\Omega} \zeta_{j_k} \varphi = \int_{\Omega} \zeta \varphi$. Therefore, to prove (2.22), it is enough to show that $a(u+\varepsilon)^{-\alpha} \varphi \in L^1(\Omega)$ and

$$\lim_{k \to \infty} \int_{\Omega} a \left(u_{j_k} + \varepsilon_{j_k} \right)^{-\alpha} \varphi = \int_{\Omega} a \left(u + \varepsilon \right)^{-\alpha} \varphi.$$
(2.23)

In order to prove this, we consider two cases; suppose first that $0 < \alpha \leq 1$. Lemma 2.7 gives a constant $c_1 > 0$ such that $u_{j_k} \geq c_1 d_\Omega$ in Ω for every k. Then, for any k, $|a (u_{j_k} + \varepsilon_{j_k})^{-\alpha} \varphi| \leq c_1^{-\alpha} ||d_\Omega^{1-\alpha}a||_{\infty} \frac{|\varphi|}{d_\Omega}$ and, by the Hardy inequality, $\frac{\varphi}{d_\Omega} \in L^2(\Omega) \subset L^1(\Omega)$. Taking into account that $\lim_{k\to\infty} a (u_{j_k} + \varepsilon_{j_k})^{-\alpha} \varphi = a (u + \varepsilon)^{-\alpha} \varphi$ a.e. in Ω , Lebesgue's dominated convergence theorem gives $a (u + \varepsilon)^{-\alpha} \varphi \in L^1(\Omega)$; and (2.23).

Let us now consider the case $1 < \alpha < 3$. Define $z := S_0(0)$. Observe that $u_{j_k} + \varepsilon_{j_k} \in H^1(\Omega) \cap C(\overline{\Omega})$, $-\Delta(u_{j_k} + \varepsilon_{j_k}) = a(u_{j_k} + \varepsilon_{j_k})^{-\alpha} + \zeta_{j_k} \ge a(u_{j_k} + \varepsilon_{j_k})^{-\alpha}$ in $D'(\Omega)$, $z \in H^1(\Omega) \cap C(\overline{\Omega})$.

 $C(\overline{\Omega})$, $-\Delta z = az^{-\alpha}$ in $D'(\Omega)$, and $u_{j_k} + \varepsilon_{j_k} \ge z$ on $\partial\Omega$. Thus, by Lemma 2.3, $u_{j_k} + \varepsilon_{j_k} \ge z$ in Ω . By Lemma 2.7, there exists a positive constant c such that $z \ge cd_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω . Then

$$\begin{aligned} \left| a \left(u_{j_k} + \varepsilon_{j_k} \right)^{-\alpha} \varphi \right| &\leq a z^{-\alpha} \left| \varphi \right| \\ &\leq c^{-\alpha} \left\| a \right\|_{\infty} d_{\Omega}^{1 - \frac{2\alpha}{1 + \alpha}} \frac{\left| \varphi \right|}{d_{\Omega}} = c^{-\alpha} \left\| a \right\|_{\infty} d_{\Omega}^{-\frac{1 - \alpha}{1 + \alpha}} \frac{\left| \varphi \right|}{d_{\Omega}} \quad \text{in } \Omega. \end{aligned}$$

Since $1 < \alpha < 3$, we have $-2\frac{\alpha-1}{\alpha+1} > -1$, and so, by the Hardy inequality, $\|d_{\Omega}^{-\frac{\alpha-1}{\alpha+1}}\frac{|\varphi|}{d_{\Omega}}\|_{1} < \infty$. Since $\lim_{k\to\infty} a (u_{j_{k}} + \varepsilon_{j_{k}})^{-\alpha} \varphi = a (u + \varepsilon)^{-\alpha} \varphi$ a.e. in Ω , Lebesgue's dominated convergence theorem applies to get $a (u + \varepsilon)^{-\alpha} \varphi \in L^{1}(\Omega)$ and (2.23). Thus $u = S_{\varepsilon}(\zeta)$.

To complete the proof of iii), it only remains to prove that $\{u_{j_k}\}_{k\in\mathbb{N}}$ (or some subsequence of it) converges to u in $C(\overline{\Omega})$. Let B > 0 be such that $\|\zeta_{j_k}\|_{\infty} \leq B$ for all $k \in \mathbb{N}$. Since $0 \leq \zeta_{j_k} \leq B$ we have $0 \leq \zeta \leq B$. Now, $0 \leq u_{j_k} = S_{\varepsilon_{j_k}}(\zeta_{j_k}) \leq S_0(B)$. Also $0 \leq u = S_{\varepsilon}(\zeta) \leq S_0(B)$. Now, $S_0(B) \in C(\overline{\Omega})$ and, by Lemmas 2.6 and 2.7, there exist positive constants c'_1, c'_2 and τ' such that $c'_1 d_{\Omega} \leq S_0(B) \leq c'_2 d_{\Omega}^{\tau'}$ in Ω . Then $S_0(B) = 0$ on $\partial\Omega$ pointwise, and so, for any $\mu > 0$ there exists $\eta > 0$ such that $0 \leq S_0(B) \leq \mu$ in $A_{\eta} := \{x \in \Omega : d_{\Omega}(x) \leq \eta\}$. Thus $0 \leq S_{\varepsilon_{j_k}}(\zeta_{j_k}) \leq \mu$ in A_{η} for all $k \in \mathbb{N}$. Also $0 \leq S_{\varepsilon}(\zeta) \leq S_0(B) \leq \mu$ in A_{η} . Then

$$\left\|S_{\varepsilon_{j_{k}}}\left(\zeta_{j_{k}}\right)-S_{\varepsilon}\left(\zeta\right)\right\|_{L^{\infty}\left(A_{\eta}\right)}\leq 2\mu \quad \text{for all } k\in\mathbb{N}.$$
(2.24)

Let $\Omega' := \Omega \setminus A_{\eta}$, and let Ω'' be a subdomain of Ω such that $\overline{\Omega'} \subset \Omega'' \subset \overline{\Omega''} \subset \Omega$. By Lemmas 2.6 and 2.7 there exist positive constants c_1, c_2 and τ such that for all $k, c_1 d_{\Omega} \leq u_{j_k} \leq c_2 d_{\Omega}^{\tau}$ in Ω . Thus there exists B' > 0 such that, for all $k, ||u_{j_k|\Omega''}||_{L^{\infty}(\Omega'')} \leq B'$ and

$$\left\|\left(a\left(u_{j_{k}}+\varepsilon_{j_{k}}\right)^{-\alpha}+\zeta_{j_{k}}\right)_{|\Omega''}\right\|_{L^{\infty}(\Omega'')}\leq B'.$$

Then, by the inner elliptic estimates in [28, Theorem 8.24], there exist B'' > 0 and $\gamma \in (0, 1)$ such that, for all k, $\|u_{j_k|\Omega'}\|_{C^{\gamma}(\overline{\Omega'})} \leq B''$. Thus, the Ascoli–Arzelà theorem applies to give a subsequence, still denoted $\{u_{j_k}\}_{k\in\mathbb{N}}$, that converges uniformly to some function v in Ω' . Since $\{u_{j_k}\}_{k\in\mathbb{N}}$ converges to u a.e. in Ω , we have u = v in Ω' . Then there exists $k_0 > 0$ such that $\|(u_{j_k} - u)_{|\Omega''}\|_{L^{\infty}(\Omega')} \leq \mu$ for $k \geq k_0$, i.e.,

$$\left\|S_{\varepsilon_{j_{k}}}\left(\zeta_{j_{k}}\right)-S_{\varepsilon}\left(\zeta\right)\right\|_{L^{\infty}\left(\Omega\setminus A_{\eta}\right)}\leq\mu\quad\text{ for all }k\geq k_{0},$$
(2.25)

and so, by (2.24) and (2.25), $\lim_{k\to\infty} S_{\varepsilon_{j_k}}(\zeta_{j_k}) = S_{\varepsilon}(\zeta)$, with convergence in $C(\overline{\Omega})$. Thus *S* is continuous.

To prove iv), consider a bounded sequence $\{(\zeta_j, \varepsilon_j)\}_{j \in \mathbb{N}} \subset P_{\infty} \times [0, \infty)$. Taking a subsequence if necessary, we can assume that $\{\varepsilon_j\}_{j \in \mathbb{N}}$ converges to some $\varepsilon \in [0, \infty)$. Let $\{\Omega_r\}_{r \in \mathbb{N}}$ be a sequence of subdomains of Ω such that $\overline{\Omega_r} \subset \Omega_{r+1}$ for all r, and $\Omega = \bigcup_{r=1}^{\infty} \Omega_r$. Let $u_j = S_{\varepsilon_j}(\zeta_j)$. Let B > 0 be such that $\|\zeta_j\|_{\infty} \leq B$ for all j. Since $0 \leq \zeta_j \leq B$ we have $0 \leq u_j = S_{\varepsilon_j}(\zeta_j) \leq S_0(B)$. By Lemmas 2.6 and 2.7, there exist positive constants c'_1, c'_2 and τ' such that, for all $j, c'_1 d_\Omega \leq u_j \leq c'_2 d_\Omega^{\tau'}$ in Ω . Thus, for each r there exists a positive constant $B_r > 0$ such that, for all $j, \|u_{j|\Omega_{r+1}}\|_{L^{\infty}(\Omega_{r+1})} \leq B_r$ and $\|(a(u_j + \varepsilon_j)^{-\alpha} + \zeta_j)|_{\Omega_{r+1}}\|_{L^{\infty}(\Omega_{r+1})} \leq B_r$. Then, by [28, Theorem 8.24], for each r there exist constants $B'_r > 0$ and $\gamma_r \in (0, 1)$ such

that, for all j, $\|u_{j|\Omega_r}\|_{C^{\gamma}(\overline{\Omega_r})} \leq B'_r$. Then, for each r, the Ascoli–Arzelà theorem gives a subsequence, still denoted by $\{u_j\}_{j\in\mathbb{N}}$ which converges uniformly in $\overline{\Omega_r}$. Now, a Cantor diagonal process gives a subsequence $\{u_{j_k}\}_{k\in\mathbb{N}}$ which converges uniformly on each $\overline{\Omega_r}$ to a function u independent of r (therefore $\{u_{j_k}\}_{k\in\mathbb{N}}$ converges uniformly to u on each compact subset of Ω). Let us show that $\{u_{j_k}\}_{k\in\mathbb{N}}$ is a Cauchy sequence in $C(\overline{\Omega})$: Since $0 \leq \zeta_{j_k} \leq B$ we have $0 \leq S_{\varepsilon_{j_k}}(\zeta_{j_k}) \leq S_0(B)$. Also $S_0(B) \in C(\overline{\Omega})$, and $S_0(B) = 0$ on $\partial\Omega$ pointwise. Since $S_0(B) \in C(\overline{\Omega})$ we have that for any $\mu > 0$ there exists $\eta > 0$ such that $0 \leq S_0(B) \leq \mu$ in A_η . Thus $0 \leq S_{\varepsilon_{j_k}}(\zeta_{j_k}) \leq \mu$ in A_η , for all $k \in \mathbb{N}$. Then $\|S(\zeta_{j_l}) - S(\zeta_{j_s})\|_{L^{\infty}(A_{\eta})} \leq 2\mu$ for all $l, s \in \mathbb{N}$. Let $\Omega^{\eta} := \Omega \setminus A_{\eta}$. Since $\{u_{j_k}\}_{l\in\mathbb{N}}$ is uniformly convergent in $\overline{\Omega^{\eta}}$ then there exists $l_0 \in \mathbb{N}$ such that $\|S_{\varepsilon_{j_l}}(\zeta_{j_l}) - S(\zeta_{j_s})\|_{L^{\infty}(\overline{\Omega^{\eta}})} \leq 2\mu$ for $l \geq l_0$ and $s \geq l_0$. Then $\{u_{j_k}\}_{k\in\mathbb{N}}$ is a Cauchy sequence in $C(\overline{\Omega})$, and so $\{u_{j_k}\}_{l\in\mathbb{N}}$ converges in $C(\overline{\Omega})$.

3 A priori estimates

We assume for the whole section that H1)–H5) of Theorem 1.1 are satisfied.

Remark 3.1. If $v \in C^1(\mathbb{R}^n)$ satisfies $-\Delta v \ge 0$ in $D'(\mathbb{R}^n)$, $v \ge 0$ in \mathbb{R}^n and $v(x_0) > 0$ for some $x_0 \in \mathbb{R}^n$, then v(x) > 0 for all $x \in \mathbb{R}^n$. Indeed, let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ be a nonnegative radial function with support in the unit ball $B = \{x \in \mathbb{R}^n : |x| < 1\}$, and such that $\int_B \varphi = 1$. For $\varepsilon > 0$ let $\varphi_{\varepsilon}(x) := \varepsilon^{-n}\varphi(\varepsilon^{-1}x)$ and let $(\varphi_{\varepsilon})^{\vee}(x) := \varphi_{\varepsilon}(-x)$. Then $v * \varphi_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$. A computation gives

$$\int_{\mathbb{R}^n}\psi\left(-\Delta\left(vst arphi_arepsilon
ight)
ight)=ig\langle-\Delta v,\left(\left(arphi_arepsilon
ight)^eest\psi
ight)ig
angle\geq 0$$

for all nonnegative $\psi \in C_c^{\infty}(\mathbb{R}^n)$. Then $-\Delta(v * \varphi_{\varepsilon}) \ge 0$ in \mathbb{R}^n , and so $u * \varphi_{\varepsilon}$ is a C^{∞} superharmonic function on \mathbb{R}^n . Thus

$$(v * \varphi_{\varepsilon})(x) \ge \frac{1}{\alpha(n) r^n} \int_{B_r(x)} (v * \varphi_{\varepsilon})(y) dy$$

for all $x \in \mathbb{R}^n$, $\varepsilon > 0$ and r > 0. We have also (see e.g., [5], Theorem 4.22) $\lim_{\varepsilon \to 0^+} (v * \varphi_{\varepsilon})(x) = v(x)$, and since $0 \le (v * \varphi_{\varepsilon})(y) \le ||v||_{L^{\infty}(B_r(x))}$ for any $y \in B_r(x)$, r > 0 and $\varepsilon > 0$, Lebesgue's dominated convergence theorem gives that $v(x) \ge \frac{1}{\alpha(n)r^n} \int_{B_r(x)} v(y) dy$ for $x \in \mathbb{R}^n$, Now we take r such that $x_0 \in B_r(x)$ to obtain v(x) > 0 for any $x \in \mathbb{R}^n$.

The following lemma is an adaptation, suitable for our purpose here, of the blow up method developed in [27], to obtain a priori estimates for the L^{∞} norm of solutions to subcritical superlinear elliptic problems. For the convenience of the reader, and as our statement is somewhat different to that in Theorem 1.1 of [27], we provide a detailed proof of it.

For r > 0, and $x \in \mathbb{R}^n$, we will write $B_r(x)$ (respectively $\overline{B}_r(x)$) to denote the open (resp. closed) ball in \mathbb{R}^n of radius r and centered at x.

Lemma 3.2. Let Θ be an equibounded family of nonnegative measurable functions in $L^{\infty}(\Omega)$, and let \mathcal{G} be a family of nonnegative functions in $C\left(\overline{\Omega}\times[0,\infty)\right)$. Assume that there exist $p \in \left(1,\frac{n+2}{n-2}\right)$, and $h \in C\left(\overline{\Omega}\right)$, such that $\min_{\overline{\Omega}} h > 0$ and $\lim_{s\to\infty} \frac{g(x,s)}{s^p} = h(x)$ uniformly on $g \in \mathcal{G}$ and $x \in \overline{\Omega}$. Then there exists a constant C such that $||u||_{\infty} < C$ whenever $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution, for

some $\theta \in \Theta$ and $g \in G$, to the problem

$$\begin{cases} -\Delta u = \theta + g(\cdot, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \\ u > 0 & \text{in } \Omega. \end{cases}$$

Proof. To prove the lemma we proceed by contradiction. Suppose that for any $k \in \mathbb{N}$ there exist $\theta_k \in \Theta$, $g_k \in \mathcal{G}$, and a weak solution $u_k \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ to the problem

$$\begin{cases} -\Delta u_k = \theta_k + g_k (\cdot, u_k) & \text{in } \Omega, \\ u_k = 0 & \text{on } \partial \Omega, \\ u_k > 0 & \text{in } \Omega \end{cases}$$
(3.1)

such that $\lim_{k\to\infty} \|u_k\|_{\infty} = \infty$. Let $f_k : \overline{\Omega} \times [0,\infty) \to \mathbb{R}$ be defined by $f_k(x,s) := \theta_k(x) + g_k(x,s)$. Since $u_k \in L^{\infty}(\Omega)$ we have $f_k(\cdot, u_k) \in L^{\infty}(\Omega)$, and so $u_k \in W^{2,r}(\Omega) \cap W_0^{1,r}(\Omega)$ for any $r \in (1,\infty)$. Thus $u_k \in C(\overline{\Omega})$, and u_k is a strong solution of (3.1). Let $P_k \in \Omega$ be such that $\|u_k\|_{\infty} = u_k(P_k)$. Taking a subsequence if necessary, we can assume that $\lim_{k\to\infty} P_k = P$ for some $P \in \overline{\Omega}$.

Case a): $P \in \Omega$: Let $d := \frac{1}{4}d_{\Omega}(P)$, $M_k := u_k(P_k)$ and $\sigma_k := M_k^{-\frac{p-1}{2}}$. Then $\sigma_k^{\frac{p}{p-1}}M_k = 1$ and $\lim_{k\to\infty} \sigma_k = 0$. For k large enough we have $||P_k - P|| < d$ and $\sigma_k < 1$. Thus $||\sigma_k y + P_k - P|| \le ||\sigma_k y|| + ||P_k - P|| < 2d$. Then, taking a further subsequence if necessary, we can assume that $\sigma_k y + P_k \in B_{2d}(P) \subset \Omega$ for any $y \in B_{\sigma_k^{-1}d}$ and $k \in \mathbb{N}$. Let $v_k : \overline{B}_{\sigma_k^{-1}d}(0) \to \mathbb{R}$ be defined by

$$v_k(y) := \sigma_k^{\frac{2}{p-1}} u_k(\sigma_k y + P_k).$$

Then $v_k \in W^{2,r}(B_{\sigma_k^{-1}d}(0))$ for any $r \in (1, \infty)$, and so $v_k \in C(\overline{B_{\sigma_k^{-1}d}(0)})$. Also, $v_k \leq \sigma_k^{\frac{2}{p-1}}M_k = 1$ in $\overline{B_{\sigma_k^{-1}d}(0)}$, and $v_k(0) = \sigma_k^{\frac{2}{p-1}}M_k = 1$. Therefore

$$\|v_k\|_{L^{\infty}\left(B_{\sigma_k^{-1}d}(0)\right)} = 1.$$

From (3.1), a computation shows that $-\Delta v_k = F_k$ in $B_{\sigma_k^{-1}d}(0)$, with F_k defined by $F_k(y) := \sigma_k^{\frac{2p}{p-1}} f_k(\sigma_k y + P_k, u_k(\sigma_k y + P_k))$. Also, $\lim_{k\to\infty} \sigma_k = 0$, and so, for R > 0, there exists $k(R) \in \mathbb{N}$ such that $B_{2R}(0) \subset B_{\sigma_k^{-1}d}(0)$ for $k \ge k(R)$. Our assumptions on Θ and \mathcal{G} imply that there exists a positive constant c such that $f_k(x,s) \le c(s^p + 1)$ for any $(x,s) \in \overline{\Omega} \times [0,\infty)$ and $k \in \mathbb{N}$. Then, for $y \in B_{2R}(0)$ and $k \ge k(R)$, we have, for some positive constant c' independent of y and k,

$$0 \le F_k(y) = \sigma_k^{\frac{2p}{p-1}} f_k(\sigma_k y + P_k, u_k(\sigma_k y + P_k)) \le c\sigma_k^{\frac{2p}{p-1}} (1 + M_k^p) \le c'.$$
(3.2)

Thus $||F_k||_{L^{\infty}(B_{2R}(0))} \leq c'$ for $k \geq k(R)$. Also $||v_k||_{L^{\infty}(B_{2R}(0))} = 1$. Thus, since $-\Delta v_k = F_k$ in $B_{2R}(0)$, the standard inner elliptic estimates (as stated, e.g., in [8, Proposition 4.1.2]), imply that $||v_k||_{W^{2,r}(B_R(0))} \leq c''_r$ for any r > n and $k \geq k(R)$, with c''_r a positive constant independent of k. Therefore there exists a subsequence, still denoted by $\{v_k\}_{k\in\mathbb{N}}$, that converges in $C^{1,\gamma}(\overline{B_R(0)})$ for some $\gamma \in (0,1)$. Let $\{R_l\}_{l\in\mathbb{N}}$ be an increasing sequence such that $\lim_{l\to\infty} R_l = \infty$. A Cantor diagonal process gives a further subsequence, still denoted by $\{v_k\}_{k\in\mathbb{N}}$, and a function $v \in C^1(\mathbb{R}^n)$ such that $\{v_k\}_{k\in\mathbb{N}}$ converges to v, in the C^1 norm, on each compact subset of \mathbb{R}^n . Moreover, $v \ge 0$ in \mathbb{R}^n , v(0) = 1 and $\|v\|_{L^{\infty}(\mathbb{R}^n)} = 1$. Note that, for each l, and for k large enough, $-\Delta v_k = F_k \ge 0$ in $B_{R_l}(0)$, then $-\Delta v \ge 0$ in $D'(\mathbb{R}^n)$. Since $v \ge 0$ in \mathbb{R}^n and v(0) = 1, we have, by Remark 3.1, v(x) > 0 for any $x \in \mathbb{R}^n$.

From our assumptions on the family \mathcal{G} we have $f_k(x,s) = \theta_k(x) + s^p h(x) + s^p \psi_k(x,s)$, with $\lim_{s\to\infty} \psi_k(x,s) = 0$ uniformly on $x \in \overline{\Omega}$ and $k \in \mathbb{N}$. Then, for R > 0, $y \in B_R(0)$ and $k \ge k(R)$,

$$0 \le F_{k}(y) = \sigma_{k}^{\frac{2p}{p-1}} f_{k}(\sigma_{k}y + P_{k}, u_{k}(\sigma_{k}y + P_{k}))$$

= $\sigma_{k}^{\frac{2p}{p-1}} \theta_{k}(\sigma_{k}y + P_{k}) + (v_{k}(y))^{p} h(\sigma_{k}y + P_{k})$
+ $v_{k}^{p}(y) \psi_{k}\left(\sigma_{k}y + P_{k}, \sigma_{k}^{-\frac{2}{p-1}}v_{k}(y)\right).$

Now, $\lim_{k\to\infty} v_k(y) = v(y) > 0$ for any $y \in \mathbb{R}^n$, then $\lim_{k\to\infty} \sigma_k^{-\frac{2}{p-1}} v_k(y) = \infty$, and so, taking into account that $\lim_{s\to\infty} \psi_k(x,s) = 0$ uniformly on $x \in \overline{\Omega}$ and $k \in \mathbb{N}$, we get, for $y \in B_R(0)$,

$$\lim_{k\to\infty}\psi_k\left(\sigma_k y+P_k,u_k\left(\sigma_k y+P_k\right)\right)=\lim_{k\to\infty}\psi_k\left(\sigma_k y+P_k,\sigma_k^{-\frac{2}{p-1}}v_k\left(y\right)\right)=0.$$

Also, $\lim_{k\to\infty} \sigma_k^{\frac{2p}{p-1}} \theta_k (\sigma_k y + P_k) = 0$. Then $\lim_{k\to\infty} F_k (y) = h(P) v^p(y)$ for $y \in B_R(0)$ and, from (3.2), $\sup_k ||F_k||_{L^{\infty}(B_R(0))} < \infty$ for $k \ge k(R)$. Thus $\{F_k\}_{k\in\mathbb{N}}$ converges to $h(P) v^p$ in $D'(\mathbb{R}^n)$ and so v satisfies $-\Delta v = h(P) v^p$ in $D'(\mathbb{R}^n)$. Also, v > 0 in \mathbb{R}^n , and $||v||_{L^{\infty}(\mathbb{R}^n)} = 1$. Then, by elliptic regularity theory (see e.g., [8, Proposition 4.1.2]), $v \in W^{2,r}_{loc}(\mathbb{R}^n)$ for any $r \in (1,\infty)$, and v satisfies, in strong sense, $-\Delta v = h(P) v^p$ in \mathbb{R}^n . Let $\eta := (h(P))^{\frac{1}{1-p}}$, and let $w := \eta v$. Thus $\eta > 0$, $w \in W^{2,r}_{loc}(\mathbb{R}^n)$ for any $r \in (1,\infty)$, and w is a bounded positive strong solution to the problem $-\Delta w = w^p$ in \mathbb{R}^n . Moreover, for each open ball $B \subset \mathbb{R}^n$ we have $w^p \in C^{\gamma}(U)$ for some $\gamma \in (0, 1)$. Then, by [28, Theorem 9.19], $w \in C^2(\mathbb{R}^n)$. But Theorem 1.2 in [27] says that such a solution w does not exist. Contradiction.

Case b): $P \in \partial\Omega$: Since Ω is a C^2 domain, there exists an open ball $B = B_r(P)$ with radius r > 0, centered at P; and a one to one mapping $\Phi = \Phi(x) = (\Phi_1(x), \dots, \Phi_n(x))$ from B onto a bounded open set $D \subset \mathbb{R}^n$ such that i) $\Phi(B \cap \Omega) \subset \mathbb{R}^n_+$, ii) $\Phi(B \cap \partial\Omega) \subset \partial\mathbb{R}^n_+$ iii) $\Phi \in C^2(B)$, $\Phi^{-1} \in C^2(D)$; where \mathbb{R}^n_+ denotes the open upper halfspace $\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_n > 0\}$ (see e.g., [28, p. 94]). After compositions with a suitable translation, and with a linear endomorphism, we can assume $\Phi(P) = 0$, and that $\Phi'(P)$ (the Jacobian matrix of Φ at P) is an orthogonal matrix. Diminishing B and D if necessary, we can also assume that $\Phi \in C^2(\overline{B})$ and $\Phi^{-1} \in C^2(\overline{D})$.

For $k \in \mathbb{N}$ and $y \in \Phi(B \cap \Omega)$, let $z_k(y) := u_k(\Phi^{-1}(y))$. Since $u_k \in W^{2,r}(\Omega)$ for any $r \in (1, \infty)$, we have $z_k \in W^{2,r}(\Phi(B \cap \Omega))$ for $1 < r < \infty$. From (3.1), a computation using the chain rule shows that z_k satisfies

$$-\sum_{1\leq i,m\leq n}a_{i,m}\left(y\right)\frac{\partial^{2}z_{k}}{\partial y_{i}\partial y_{m}}\left(y\right)+\sum_{1\leq m\leq n}b_{m}\left(y\right)\frac{\partial z_{k}}{\partial y_{m}}\left(y\right)$$
$$=f_{k}\left(\Phi^{-1}\left(y\right),z_{k}\left(y\right)\right) \quad \text{for } y\in\Phi\left(B\cap\Omega\right), \quad (3.3)$$

where each $a_{i,m} \in C^1\left(\overline{\Phi(B\cap\Omega)}\right)$, $A := (a_{i,m})$ is uniformly elliptic on $\overline{\Phi(B\cap\Omega)}$; and $b = (b_1, \ldots, b_n) \in C(\overline{\Phi(B\cap\Omega)}, \mathbb{R}^n)$. Moreover, a computation gives

$$a_{i,m}(y) = \sum_{\gamma=1}^{n} \frac{\partial \Phi_{i}}{\partial x_{\gamma}} \left(\Phi^{-1}(y) \right) \frac{\partial \Phi_{m}}{\partial x_{\gamma}} \left(\Phi^{-1}(y) \right)$$

and so, in particular, A(P) = I.

For *k* large enough $P_k \in B \cap \Omega$. For such *k*, let

$$\delta_{k}:= ext{dist}\left(\Phi\left(P_{k}
ight),\partial\Phi\left(B\cap\Omega
ight)
ight)$$

Note that for *k* sufficiently large, $\delta_k = \langle \Phi(P_k), e_n \rangle$ where $e_n = (0, \dots, 0, 1)$. Then, taking a subsequence if necessary, we can assume that $P_k \in B \cap \Omega$ and $\delta_k = \langle \Phi(P_k), e_n \rangle$ for all $k \in \mathbb{N}$. Define M_k and σ_k as in case a). Then $z_k (\Phi(P_k)) = u_k (P_k) = M_k$, $\sigma_k^{\frac{2}{p-1}} M_k = 1$, and $\lim_{k \to \infty} \sigma_k = 0$.

For $\delta > 0$ such that $[-4\delta, 4\delta]^n \cap \mathbb{R}^n_+ \subset \Phi(B \cap \overline{\Omega})$ and for $k \in \mathbb{N}$, let $Q_k := (-\sigma_k^{-1}\delta, \sigma_k^{-1}\delta)^{n-1} \times (-\sigma_k^{-1}\delta_k, \sigma_k^{-1}\delta)$. For k large enough $\sigma_k y + \Phi(P_k) \in \Phi(\overline{\Omega} \cap B)$ for any $y \in \overline{Q}_k$ and so, taking a further subsequence, we can assume that $\sigma_k y + \Phi(P_k) \in \Phi(\overline{\Omega} \cap B)$ for any $y \in \overline{Q}_k$ and $k \in \mathbb{N}$. For $k \in \mathbb{N}$, let $v_k : \overline{Q}_k \to \mathbb{R}$ be defined by

$$v_{k}(y) := \sigma_{k}^{\frac{2}{p-1}} z_{k} \left(\sigma_{k} y + \Phi\left(P_{k} \right) \right).$$

Then $v_k \in C(\overline{Q}_k)$, $v_k = 0$ on $\left[-\sigma_k^{-1}\delta, \sigma_k^{-1}\delta\right]^{n-1} \times \left\{-\sigma_k^{-1}\delta_k\right\}$, $v_k \leq \sigma_k^{\frac{2}{p-1}}M_k = 1$ in \overline{Q}_k , and $v_k(0) = \sigma_k^{\frac{2}{p-1}}M_k = 1$. Thus $\|v_k\|_{L^{\infty}(Q_k)} = 1$. Also, $v_k \in W^{2,r}(Q_k)$ for $1 < r < \infty$. From (3.3), a computation shows that, for $y \in Q_k$ and $k \in \mathbb{N}$,

$$-\sum_{1 \le m, i \le n} \alpha_{i,m,k}(y) \frac{\partial^2 v_k}{\partial y_q \partial y_m}(y) + \sum_{1 \le m \le n} \beta_{m,k}(y) \frac{\partial v_k}{\partial y_m}(y)$$
$$= \sigma_k^{\frac{2p}{p-1}} f_k\left(\Phi^{-1}\left(\sigma_k y + \Phi\left(P_k\right)\right), \sigma_k^{-\frac{2}{p-1}} v_k(y)\right) \quad (3.4)$$

where $\alpha_{i,m,k}(y) := a_{i,m}(\sigma_k y + \Phi(P_k))$, and $\beta_{m,k}(y) := \sigma_k b_m(\sigma_k y + \Phi(P_k))$.

Note that $\{\sigma_k^{-1}\delta_k\}$ is bounded from above. Indeed, if $\sup_{k \in \mathbb{N}} \sigma_k^{-1}\delta_k = \infty$ then there exists a subsequence $\{\sigma_{k_q}^{-1}\delta_{k_q}\}_{q \in \mathbb{N}}$ such that $\lim_{q \to \infty} \sigma_{k_q}^{-1}\delta_{k_q} = \infty$. Since v_{k_q} is well defined on $B_{\sigma_{k_q}^{-1}\delta_{k_q}}(0)$ and $v_{k_q}(0) = 1$, the same arguments of the case a) apply to obtain a positive and bounded solution $v \in C^2(\mathbb{R}^n)$ of

$$-\sum_{1\leq m,i\leq n}\alpha_{i,m}\left(\Phi\left(P\right)\right)\frac{\partial^{2}v}{\partial y_{q}\partial y_{m}}\left(y\right)=h\left(P\right)v^{p}\left(y\right)\quad\text{in }\mathbb{R}^{n}$$

Now, A(P) is a symmetric and positive matrix, and then there exists an invertible matrix B such that $BA(P)B^t = I$. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be defined by $Ty = yB^t$. Thus $w := (h(P))^{\frac{1}{1-p}} v \circ T$ satisfies $-\Delta w = w^p$ in \mathbb{R}^n which contradicts Theorem 1.2 in [27].

Observe also that $\inf_{k\in\mathbb{N}} \sigma_k^{-1} \delta_k > 0$. For, if not, taking a subsequence, we can assume $\lim_{k\to\infty} \sigma_k^{-1} \delta_k = 0$ and, taking a further subsequence if necessary, we can also assume that $\sigma_k^{-1} \delta_k < 1$, $\sigma_k < 1$, and $\sigma_k^{-1} \delta > 4$, for any $k \in \mathbb{N}$. Let $E_k := (-\delta, \delta)^{n-1} \times (0, \sigma_k^{-1} \delta + \sigma_k^{-1} \delta_k)$ and,

for $y \in (-\delta, \delta)^{n-1} \times [0, \sigma_k^{-1}\delta + \sigma_k^{-1}\delta_{j_{k_q}})$, let $\tilde{v}_k(y) = v_k(y - y_k)$ with $y_k := (0', \sigma_k^{-1}\delta_k)$ where, as before, 0' denotes the origin of \mathbb{R}^{n-1} .

From (3.4) we have, for $y \in E_k$,

$$-\sum_{1\leq i,m\leq n}\widetilde{a}_{i,m,k}\left(y\right)\frac{\partial^{2}\widetilde{v}_{k}}{\partial y_{q}\partial y_{m}}\left(y\right)+\sum_{1\leq m\leq n}\widetilde{b}_{m,k}\left(y\right)\frac{\partial\widetilde{v}_{k}}{\partial y_{m}}\left(y\right)=\varphi_{k}\left(y\right),$$

where $\widetilde{a}_{i,m,k}(y) := \alpha_{i,m,k}(y - y_k)$, $\widetilde{b}_{m,k}(y) := \beta_{m,k}(y - y_k)$, and

$$\varphi_{k}(y) := \sigma_{k}^{\frac{2p}{p-1}} f_{k}\left(\Phi^{-1}\left(\sigma_{k}\left(y-y_{k}\right)+\Phi\left(P_{k}\right)\right), \sigma_{k}^{-\frac{2}{p-1}} v_{k}\left(y-y_{k}\right)\right).$$

Let $Q := (-\delta, \delta)^{n-1} \times (0, 4)$, $\Gamma := (-\delta, \delta)^{n-1} \times \{0\}$, and $Q' := (-\frac{\delta}{2}, \frac{\delta}{2})^{n-1} \times [0, 2)$. Then $Q' \subset \subset Q \cup \Gamma$, and $Q \subset E_k$. Let $\tilde{A}_k(y)$ be the $n \times n$ matrix whose (i, m) entry is $\tilde{a}_{i,m,k}(y)$. Then \tilde{A}_k is uniformly elliptic on \overline{Q} , $\|\tilde{a}_{i,m,k}\|_{L^{\infty}(Q)} \leq c$ for $1 \leq i, m \leq n$, with c a positive constant independent of k. Also, the ellipticity constants of \tilde{A}_k and a modulus of continuity of its coefficients can be chosen independent of k. In addition, $\|\tilde{b}_{m,k}\|_{L^{\infty}(Q)} \leq c'$, $\|\tilde{v}_k\|_{L^{\infty}(Q)} \leq c'$ for some constant c' independent of k and, as in case a), there exists a positive constant c'' independent of k such that $\|\varphi_k\|_{L^{\infty}(Q)} \leq c'$. Let r > n. By elliptic regularity up to the boundary (see e.g., [28, Theorem 9.13]), there exists a positive constant γ such that $\|\tilde{v}_k\|_{W^{2,r}(Q)} \leq c_r$ for any k. Then there exists a positive constant γ such that $\|v_k(0) - v_k(0', -\sigma_k^{-1}\delta_k)\| = \|\tilde{v}_k(0, \sigma_k^{-1}\delta_k) - \tilde{v}_k(0', 0)\| \leq \gamma \sigma_k^{-1}\delta_k$ for any k, i.e., $1 \leq \gamma \sigma_k^{-1}\delta_k$, which contradicts $\lim_{k \to \infty} \sigma_k^{-1}\delta_k = 0$. Then $\inf_{k \in \mathbb{N}} \sigma_k^{-1}\delta_k > 0$.

Thus $\{\sigma_k^{-1}\delta_k\}$ is bounded from above and from below by positive constants, and so, taking a subsequence if necessary, we can assume $\lim_{k\to\infty} \sigma_k^{-1}\delta_k = \tau$, for some $\tau > 0$.

For $k \in \mathbb{N}$, let $w_k : \left[-\sigma_k^{-1}\delta, \sigma_k^{-1}\delta \right]^{n-1} \times \left[0, \sigma_k^{-1}\delta + \sigma_k^{-1}\delta_k \right] \to \mathbb{R}$ be given by $w_k(y) := v_k(y - y_k)$, with $y_k := (0', \sigma_k^{-1}\delta_k)$, where 0' denotes the origin in \mathbb{R}^{n-1} . Thus, w_k satisfies, for $y \in (-\sigma_k\delta, -\sigma_k\delta)^{n-1} \times (0, \sigma_k\delta + \sigma_k^{-1}\delta_k)$,

$$-\sum_{1\leq m,l\leq n}\widetilde{\alpha}_{l,m,k}\left(y\right)\frac{\partial^{2}w_{k}}{\partial y_{l}\partial y_{m}}\left(y\right)+\sum_{1\leq m\leq n}\widetilde{\beta}_{m,k}\left(y\right)\frac{\partial w_{k}}{\partial y_{m}}\left(y\right)=\widetilde{\varphi}_{k}\left(y\right),$$

where $\widetilde{\alpha}_{l,m,k}(y) := \alpha_{l,m,k}(y - y_k)$, $\widetilde{\beta}_{m,k}(y) := \beta_{m,k}(y - y_k)$ and

$$\widetilde{\varphi}_{k}(y) := \sigma_{k}^{\frac{2p}{p-1}} f_{k}\left(\Phi^{-1}\left(\sigma_{k}\left(y-y_{k}\right)+\Phi\left(P_{k}\right)\right), \sigma_{k}^{-\frac{2}{p-1}} v_{k}\left(y-y_{k}\right)\right).$$

By repeating compactness arguments used in the case a), and taking into account that, for $y \in \mathbb{R}^n_+$, $\lim_{k\to\infty} \tilde{\alpha}_{l,m,k}(y) = a_{l,m}(P)$, $\lim_{l\to\infty} \tilde{\beta}_{m,l}(y) = 0$, and A(P) = I we obtain a subsequence, still denoted $\{w_k\}_{k\in\mathbb{N}}$, that converges in \mathbb{R}^n_+ to a function $w \in C^2(\mathbb{R}^n_+)$ such that w > 0 in \mathbb{R}^n_+ , $w(0', \tau) = 1$, and

$$-\Delta w(y) = h(P) w^{p}(y) \quad \text{in } \mathbb{R}^{n}_{+}.$$
(3.5)

For R > 0, let $U^R := B_R^{n-1}(0) \times (0, R)$, where $B_R^{n-1}(0)$ denotes the open ball in \mathbb{R}^{n-1} of radius R and centered at the origin. Let r > n. As above, by elliptic regularity up to the boundary [28, Theorem 9.13], we have $||w_k||_{W^{2,r}(U^R)} \leq c_r$ for some positive constant c_r independent of k. Thus, taking a further subsequence, still denoted $\{w_k\}_{k\in\mathbb{N}}$, we have that $\{w_k\}_{k\in\mathbb{N}}$ converges uniformly on \overline{U} . Now, by considering an increasing sequence of radius $\{R_j\}_{i\in\mathbb{N}}$ such

that $\lim_{j\to\infty} R_j = \infty$, a Cantor diagonal process gives a further subsequence, still denoted by $\{w_k\}_{k\in\mathbb{N}}$, which converges uniformly on K, for each compact subset $K \subset \mathbb{R}^n_+$. Then w belongs to $C^2(\mathbb{R}^n_+) \cap C(\overline{\mathbb{R}^n_+})$ and, since $w_k = 0$ on $\partial \mathbb{R}^n_+$ for each k, we also have also w = 0 on $\partial \mathbb{R}^n_+$. Therefore $\widetilde{w} := h(P)^{\frac{1}{1-p}} w$ belongs to $C^2(\mathbb{R}^n_+) \cap C(\overline{\mathbb{R}^n_+})$ and satisfies $-\Delta \widetilde{w} = \widetilde{w}^p$ in \mathbb{R}^n_+ , $\widetilde{w} = 0$ on $\partial \mathbb{R}^n_+$ and $\widetilde{w} > 0$ in \mathbb{R}^n_+ , which contradicts Theorem 1.3 in [27].

Next we use Lemma 3.2 to obtain a priori estimates for the L^{∞} norm of solutions to subcritical superlinear elliptic problems (in particular of solutions to the singular problem that arises when $\varepsilon = 0$).

Lemma 3.3. Assume the hypothesis of Theorem 1.1. Then there exists $\lambda^* > 0$ such that $\lambda \leq \lambda^*$ whenever the problem

$$\begin{cases} -\Delta u = a \left(u + \varepsilon \right)^{-\alpha} + f \left(\lambda, \cdot, u \right) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \\ u > 0 & \text{in } \Omega. \end{cases}$$
(3.6)

has a weak solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ for some $\varepsilon \in [0, 1]$.

Proof. By Lemmas 2.7 and 2.12 we have $u \ge cd_{\Omega}$ in Ω , with c independent of λ , ε , and of the particular solution u. Let η_0 , q, and b, be as in H4). Note that $\lambda \le \max \{\eta_0, \lambda_1(b(cd_{\Omega})^{q-1})\}$. Indeed, if $\lambda \ge \eta_0$, by H4), $f(\lambda, \cdot, u) \ge \lambda bu^q \ge \lambda b(cd_{\Omega})^{q-1}u$ in Ω , and so, in weak sense, $-\Delta u = \lambda b(cd_{\Omega})^{q-1}u + \rho$ in Ω , with $\rho := a(u+\varepsilon)^{-\alpha} + f(\lambda, \cdot, u) - \lambda b(cd_{\Omega})^{q-1}u$. Observe that $0 \le \rho \in L^{\infty}_{loc}(\Omega)$, and that $\rho \ne 0$ (because $a(u+\varepsilon)^{-\alpha} \ne 0$). Then, by Remark 2.2 iv), $\lambda \le \lambda_1(b(cd_{\Omega})^{q-1})$. Thus $\lambda \le \lambda^* := \max\{\eta_0, \lambda_1(b(cd_{\Omega})^{q-1})\}$.

Lemma 3.4. Assume the hypothesis of Theorem 1.1. Then, for any $\lambda_0 > 0$ there exists $c_{\lambda_0} > 0$ such that $||u||_{\infty} < c_{\lambda_0}$ whenever $\lambda \ge \lambda_0$ and $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution, for some $\varepsilon \in [0, 1]$, of problem (3.6).

Proof. To prove the lemma we proceed by contradiction. Suppose that there exist sequences $\{\lambda_j\}_{j\in\mathbb{N}} \subset [\lambda_0,\infty)$, $\{\varepsilon_j\}_{j\in\mathbb{N}} \subset [0,1]$, $\{u_j\}_{j\in\mathbb{N}} \subset H_0^1(\Omega) \cap L^{\infty}(\Omega)$ such that, for all $j\in\mathbb{N}$,

$$\begin{cases} -\Delta u_j = a \left(u_j + \varepsilon_j \right)^{-\alpha} + f \left(\lambda_j, \cdot, u_j \right) & \text{in } \Omega, \\ u_j = 0 & \text{on } \partial \Omega, \\ u_j > 0 & \text{in } \Omega, \end{cases}$$
(3.7)

and $\lim_{j\to\infty} ||u_j||_{\infty} = \infty$. Let $\lambda^* > 0$ be as given by Lemma 3.3. Thus $\lambda_j \leq \lambda^*$ for all j. Then $\{\lambda_j\}_{j\in\mathbb{N}}$ is bounded and so, taking a subsequence if necessary, we can assume that $\lim_{j\to\infty} \lambda_j = \lambda$ for some $\lambda \in [\lambda_0, \lambda^*]$. Since $u_j \in L^{\infty}(\Omega)$ we have $f(\lambda_j, \cdot, u_j) \in L^{\infty}(\Omega)$, and, since $u_j = S_{\varepsilon_j}(f(\lambda_j, \cdot, u_j))$, we have $u_j \in C(\overline{\Omega})$.

Let ψ_1 and ψ_2 be nonnegative functions in $C_c^{\infty}(\mathbb{R})$ such that $\psi_1 \equiv 1$ on $\left[-\infty, \frac{1}{2}\right]$, supp $(\psi_1) \subset (-\infty, 2)$, $\psi_2 \equiv 1$ on $[2, \infty)$, supp $(\psi_2) \subset (\frac{1}{2}, \infty)$, and $\psi_1 + \psi_2 \equiv 1$ on \mathbb{R} . Let $w_j \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ be the solution, provided by Lemma 2.6 when $\varepsilon_j > 0$, and by Lemma 2.12 when $\varepsilon_j = 0$ (applied with $\varepsilon = \varepsilon_j$ and with *a* replaced by $a(\psi_1 \circ u_j)$) to the problem

$$\begin{cases} -\Delta w_j = a \left(\psi_1 \circ u_j \right) \left(w_j + \varepsilon_j \right)^{-\alpha} & \text{in } \Omega, \\ w_j = 0 & \text{on } \partial \Omega, \\ w_j > 0 & \text{in } \Omega. \end{cases}$$
(3.8)

From Lemma 2.10, applied with $\varepsilon = \varepsilon_j$, and with *a* replaced by $a(\psi_1 \circ u_j)$, we have that $w_j \in C(\overline{\Omega})$. Notice that, by Lemma 2.14 i), $w_j \leq \widetilde{w}$ in Ω , where $\widetilde{w} \in H_0^1(\Omega)$ is the weak solution, given by Lemma 2.12 (applied with *a* replaced by $a(\psi_1 \circ u_j)$), to the problem

$$\begin{cases} -\Delta \widetilde{w} = a \left(\psi_1 \circ u_j \right) \widetilde{w}^{-\alpha} & \text{in } \Omega, \\ \widetilde{w} = 0 & \text{on } \partial \Omega, \\ \widetilde{w} > 0 & \text{in } \Omega. \end{cases}$$
(3.9)

By Lemma 2.10, $\widetilde{w} \in C(\overline{\Omega})$, then $\{w_j\}_{j\in\mathbb{N}}$ is bounded in $L^{\infty}(\Omega)$. Also, in weak sense, $-\Delta u_j = a(u_j + \varepsilon_j)^{-\alpha} + f(\lambda_j, \cdot, u_j) \ge a(\psi_1 \circ u_j)(u_j + \varepsilon_j)^{-\alpha}$ in Ω , $u_j = 0$ on $\partial\Omega$, and so, in weak sense,

$$-\Delta (u_j - w_j) \ge a (\psi_1 \circ u_j) \left((u_j + \varepsilon_j)^{-\alpha} - (w_j + \varepsilon_j)^{-\alpha} \right) \quad \text{in } \Omega,$$

$$u_j - w_j = 0 \quad \text{on } \partial\Omega.$$
(3.10)

Using $(u_j - w_j)^-$ as test function in (3.10) we get $-\int_{\Omega} |\nabla((u_j - w_j)^-)| \ge 0$, and then $u_j \ge w_j$ in Ω .

We claim that $a(\psi_1 \circ u_j)(u_j + \varepsilon_j)^{-\alpha} \varphi \in L^1(\Omega)$ for any $\varphi \in H^1_0(\Omega)$, and that there exists a nonnegative weak solution $z_j \in H^1_0(\Omega) \cap C(\overline{\Omega})$ to the problem

$$\begin{cases} -\Delta z_j = a \left(\psi_1 \circ u_j \right) \left(u_j + \varepsilon_j \right)^{-\alpha} & \text{in } \Omega, \\ z_j = 0 & \text{on } \partial \Omega. \end{cases}$$
(3.11)

To prove this, first observe that, for all $j \in \mathbb{N}$,

$$\left(u_{j}+\varepsilon_{j}\right)^{-\alpha}d_{\Omega}\in L^{2}\left(\Omega\right).$$
(3.12)

Indeed, (3.12) clearly holds when $\varepsilon_j > 0$. If $\varepsilon_j = 0$ and $0 < \alpha \le 1$ then, by Lemma 2.7 there exists a positive constant c, independent of j, such that $(u_j + \varepsilon_j)^{-\alpha} d_{\Omega} = u_j^{-\alpha} d_{\Omega} \le c d_{\Omega}^B 1 - \alpha \in L^2(\Omega)$. If $\varepsilon_j = 0$ and $1 < \alpha < 3$ then, by Lemma 2.11, we have $(u_j + \varepsilon_j)^{-\alpha} d_{\Omega} = u_j^{-\alpha} d_{\Omega} \le c d_{\Omega}^{1-\frac{2\alpha}{1+\alpha}}$ for some positive constant c independent of j, and, since $1 < \alpha < 3$, we have $1 - \frac{2\alpha}{1+\alpha} > -1$, and so $d_{\Omega}^{1-\frac{2\alpha}{1+\alpha}} \in L^2(\Omega)$. Therefore (3.12) holds for all j. We next prove that, for $\varphi \in H_0^1(\Omega)$ and for all j, $a(\psi_1 \circ u_j)(u_j + \varepsilon_j)^{-\alpha} \varphi \in L^1(\Omega)$ and the Hardy inequality, we have, for some positive constant c,

$$\begin{split} \int_{\Omega} \left| a \left(\psi_1 \circ u_j \right) \left(u_j + \varepsilon_j \right)^{-\alpha} \varphi \right| &\leq \|a\|_{\infty} \int_{\Omega} \left(u_j + \varepsilon_j \right)^{-\alpha} d_{\Omega} \left| \frac{\varphi}{d_{\Omega}} \right| \\ &\leq c \left\| \left(u_j + \varepsilon_j \right)^{-\alpha} d_{\Omega} \right\|_2 \|\nabla \varphi\|_2. \end{split}$$

Then, by the Riesz theorem, there exists a weak solution $z_j \in H_0^1(\Omega)$ to (3.11), and, by the weak maximum principle, $z_j \ge 0$ a.e. in Ω . Since $u_j \ge w_j$ in Ω , from (3.8) and (3.11) we have

$$\begin{cases} -\Delta \left(z_j - w_j \right) \le 0 & \text{in } \Omega \\ z_j - w_j = 0 & \text{on } \partial \Omega, \end{cases}$$
(3.13)

and so $z_j \leq w_j$ in Ω . Also, $z_j \geq 0$, and $w_j \leq \widetilde{w}$ in Ω . Thus $\sup_{j \in \mathbb{N}} ||z_j||_{\infty} \leq ||\widetilde{w}||_{\infty} < \infty$. Now, $u_j \geq cd_{\Omega}$ in Ω for some positive constant c independent of j, and then, for any domain Ω' such that $\overline{\Omega'} \subset \Omega$, $a(\psi_1 \circ u_j)(u_j + \varepsilon_j)^{-\alpha} \in L^{\infty}(\Omega')$. Using that $z_j \in L^{\infty}(\Omega')$, and the inner elliptic estimates, we conclude that $z_j \in C(\Omega)$. Since $0 \leq z_j \leq w_j$ and $w_j \in C(\overline{\Omega})$, then z_j is continuous on $\partial\Omega$ and so $z_j \in C(\overline{\Omega})$. Now,

$$\begin{cases} -\Delta (u_j - z_j) = \theta_j + f (\lambda_j, \cdot, u_j - z_j + z_j) (\psi_2 \circ u_j) & \text{in } \Omega, \\ u_j - z_j = 0 & \text{on } \partial \Omega, \end{cases}$$
(3.14)

with $\theta_i \in L^{\infty}(\Omega)$ defined by

$$\theta_j(x) := a(x) \psi_2(u_j(x)) (u_j(x) + \varepsilon_j)^{-\alpha} + f(\lambda_j, x, u_j(x)) \psi_1(u_j(x)).$$

Let $\widetilde{u}_j := u_j - z_j$. Since $u_j \ge w_j \ge z_j$ in Ω , we have $\widetilde{u}_j \ge 0$ in Ω . For $j \in \mathbb{N}$ let $g_j : \overline{\Omega} \times [0, \infty) \to \mathbb{R}$ be defined by $g_j(x,s) := f(\lambda_j, x, s + z_j(x)) \psi_2(s + z_j(x))$. Thus \widetilde{u}_j is a weak solution in $H_0^1(\Omega) \cap L^\infty(\Omega)$ of the problem

$$\begin{cases} -\Delta \widetilde{u}_{j} = \theta_{j} + g_{j} \left(\cdot, \widetilde{u}_{j}\right) & \text{in } \Omega, \\ \widetilde{u}_{j} = 0 & \text{on } \partial \Omega, \\ \widetilde{u}_{j} \ge 0 & \text{in } \Omega. \end{cases}$$
(3.15)

Note that $\theta_j + g_j(\cdot, \tilde{u}_j)$ is nonnegative and belongs to $L^1(\Omega)$. We claim that, for *j* large enough,

$$\theta_j + g_j\left(\cdot, \widetilde{u}_j\right) \not\equiv 0 \quad \text{in } \Omega.$$
(3.16)

To prove our claim we proceed by contradiction. Taking a subsequence if necessary, we can assume that $\theta_j + g_j(\cdot, \tilde{u}_j) = 0$ in Ω for all j. Then, for all j, (3.15) gives $\tilde{u}_j = 0$ in Ω , and so $u_j = z_j$. Also,

$$\theta_{j} + g_{j}(\cdot, \widetilde{u}_{j}) = a(\psi_{2} \circ u_{j})(u_{j} + \varepsilon_{j})^{-\alpha} + f(\lambda_{j}, \cdot, u_{j})(\psi_{1} \circ u_{j}) + f(\lambda_{j}, \cdot, u_{j})(\psi_{2} \circ u_{j})$$
$$= a(\psi_{2} \circ u_{j})(u_{j} + \varepsilon_{j})^{-\alpha} + f(\lambda_{j}, \cdot, u_{j}),$$

therefore $\theta_j + g_j(\cdot, \widetilde{u}_j) = 0$ implies $f(\lambda_j, \cdot, u_j) = 0$ in Ω . Let $P_j \in \Omega$ be such that $u_j(P_j) = ||u_j||_{\infty}$. Then $f(\lambda_j, P_j, u_j(P_j)) = 0$ for any j. Taking a further subsequence we can assume that $\lim_{j\to\infty} P_j = P$ for some $P \in \overline{\Omega}$. Also $\lim_{t\to\infty} \lambda_j = \lambda \ge \lambda_0$, and $\lim_{t\to\infty} u_j(P_j) = \infty$. Then, from the uniform convergence in *H5*), we get $\lim_{j\to\infty} u_j(P_j)^{-p} f(\lambda_j, P_j, u_j(P_j)) = h(\lambda, P) > 0$, which contradicts that $f(\lambda_j, \cdot, u_j) = 0$ for all j. Thus (3.16) holds.

From (3.16), (3.15), and the Hopf maximum principle in Remark 2.1 ii), we conclude that $\tilde{u}_j > 0$ in Ω .

Finally, observe that, since supp $(\psi_1) \subset (-\infty, 2)$ and $0 \leq \psi_1 \leq 1$, then the support of $\psi_1 \circ u_j$ is included in $\{x \in \Omega : u_j(x) \leq 2\}$. Thus, for all j, $\|\theta_j\|_{\infty} \leq \|a\|_{\infty} + \sup_{[0,\lambda^*] \times \overline{\Omega} \times [0,2]} f$. Also, noting that

$$g_{j}(x,s) = f(\lambda_{j}, \cdot, s + z_{j}(x)) \psi_{2}(s + z_{j}(x)),$$

that $z_j \in C(\overline{\Omega})$, and that f and ψ_2 are continuos, we conclude that $g \in C(\overline{\Omega} \times [0, \infty))$. Since $\psi_2 \equiv 1$ on $[2, \infty)$, taking into account that $\lambda_j \leq \lambda^*$, and the uniform convergence in *H5*), we get $\lim_{s\to\infty} s^{-p}g_j(x,s) = h(\lambda, x)$ uniformly on j and $x \in \overline{\Omega}$. Then the families $\Theta := \{\theta_j\}_{j\in\mathbb{N}}$, and $\mathcal{G} := \{g_j\}_{j\in\mathbb{N}}$ satisfy the assumptions of Lemma 3.2, and so $\{\widetilde{u}_j\}_{j\in\mathbb{N}}$ is bounded in $L^{\infty}(\Omega)$. Since $\sup_{j\in\mathbb{N}} ||z_j||_{\infty} < \infty$, and $u_j = \widetilde{u}_j + z_j$, we conclude that $\sup_{j\in\mathbb{N}} ||u_j||_{\infty} < \infty$, contradiction.

Proofs of the main results 4

We assume for the whole section that H1)–H5) of Theorem 1.1 hold. Let

$$P := \left\{ \zeta \in C\left(\overline{\Omega}\right) : \zeta \ge 0 \text{ in } \Omega \right\},\tag{4.1}$$

and for $\varepsilon \geq 0$, let $T_{\varepsilon} : [0, \infty) \times P \to C(\overline{\Omega})$ be defined by

$$T_{\varepsilon}(\lambda,\zeta) := S_{\varepsilon}(f(\lambda,\cdot,\zeta+S_{\varepsilon}(0))) - S_{\varepsilon}(0).$$
(4.2)

Since $0 \leq f \in C([0,\infty) \times \overline{\Omega} \times [0,\infty))$ and, since by Lemma 2.10, $S_{\varepsilon}(0) \in C(\overline{\Omega})$ then, for $\zeta \in P$ we have $0 \leq f(\lambda, \cdot, \zeta + S_{\varepsilon}(0)) \in L^{\infty}(\Omega)$, therefore the definition of $T_{\varepsilon}(\lambda, \zeta)$ makes sense. Moreover, since $f \ge 0$, Lemma 2.14 i) gives $T_{\varepsilon}(\lambda, \zeta) \in P$.

Remark 4.1. Observe that, for $\varepsilon \ge 0$, $\zeta \in P$, and $\lambda \ge 0$, we have $T_{\varepsilon}(\lambda, \zeta) = \zeta$ if and only if $S_{\varepsilon}(f(\lambda, \cdot, \zeta + S_{\varepsilon}(0))) = \zeta + S_{\varepsilon}(0)$; i.e., if and only if $w := \zeta + S_{\varepsilon}(0)$ is a weak solution of (3.6).

Lemma 4.2. For any $\varepsilon \ge 0$, $T_{\varepsilon} : [0, \infty) \times P \to C(\overline{\Omega})$ is a continuous and compact map.

Proof. The map $(\lambda, \zeta) \to f(\lambda, \cdot, \zeta + S_{\varepsilon}(0))$ is continuous from $[0, \infty) \times C(\overline{\Omega})$ into $C(\overline{\Omega})$, therefore the continuity of T_{ε} follows from Lemma 2.14. The compactness of T_{ε} is also given by Lemma 2.14, by observing that if $\{(\lambda_j, \zeta_j)\}_{j \in \mathbb{N}}$ is a bounded sequence in $[0, \infty) \times C(\overline{\Omega})$, then $\{f(\lambda_j, \cdot, \zeta_j + S(0))\}_{i \in \mathbb{N}}$ is bounded in $C(\overline{\Omega})$.

Lemma 4.3. For any $\varepsilon \ge 0$ the following statements hold:

- *i*) $T_{\varepsilon}(0,0) = 0$.
- *ii)* If $0 \leq \zeta \in C(\overline{\Omega})$ and if $T_{\varepsilon}(0,\zeta) = \zeta$, then $\zeta = 0$.
- iii) There exists $\rho > 0$ such that, if $u \in \{\zeta \in C(\overline{\Omega}) : \zeta \ge 0 \text{ and } \|\zeta\|_{\infty} = \rho\}$ and $\sigma \in (1, \infty)$, then $T_{\varepsilon}(0,u) \neq \sigma u.$

Proof. i) is immediate from the definition of T_{ε} . If $0 \leq \zeta \in C(\overline{\Omega})$ and $T_{\varepsilon}(0,\zeta) = \zeta$ then, as observed in Remark 4.1, $w := \zeta + S_{\varepsilon}(0)$ is a solution of $-\Delta w = a (w + \varepsilon)^{-\alpha}$ in Ω , w = 0 on $\partial \Omega$; and, by Lemmas 2.6 and 2.12, the unique solution to this problem is $S_{\varepsilon}(0)$. Thus $\zeta = 0$, and so ii) holds. Finally, iii) follows from the fact that $T_{\varepsilon}(0, u) = 0$ for all nonnegative $u \in C(\overline{\Omega})$.

Let us recall the following result from [1].

Remark 4.4 ([1, Theorem 1.17]). Let *E* be an ordered Banach space, let $P := \{\zeta \in E : \zeta \ge 0\}$) be its positive cone, and let $T: [0, \infty) \times P \to P$ be a continuous and compact map. Suppose that T(0,0) = 0, and that zero is the only fixed point of $T(0, \cdot)$. Suppose, in addition, that there exists a positive number ρ such that $T(0, \zeta) \neq \sigma \zeta$ for all $\zeta \in S_{\rho}^{+} := \{\zeta \in P : \|\zeta\|_{E} = \rho\}$ and all $\sigma \geq 1$. Then the set $\Sigma := \{(\lambda, \zeta) \in [0, \infty) \times P : T(\lambda, \zeta) = \zeta\}$ includes an unbounded subcontinuum subset (i.e. an unbounded closed and connected subset) that contains (0,0).

For $\varepsilon \geq 0$, let Σ_{ε} be defined by

$$\Sigma_{\varepsilon} := \{ (\lambda, \zeta) \in [0, \infty) \times P : T_{\varepsilon} (\lambda, \zeta) = \zeta \}.$$
(4.3)

Lemma 4.5. For any $\varepsilon \ge 0$, Σ_{ε} includes an unbounded closed connected subset $C_{\Sigma_{\varepsilon}}$ that contains (0,0).

Proof. Follows from Remark 4.4 and Lemmas 4.2 and 4.3.

Lemma 4.6. Let $\varepsilon \ge 0$, and let $C_{\Sigma_{\varepsilon}}$ be the set given by Lemma 4.5. Then:

i) there exists $\Lambda^{\#} \in (0, \infty)$ such that $\pi_1(\Sigma_{\varepsilon}) \subset [0, \Lambda^{\#}]$;

ii) there exists $\Lambda_{\varepsilon} \in (0, \infty)$ such that $[0, \Lambda_{\varepsilon}) \subset \pi_1(C_{\Sigma_{\varepsilon}}) \subset [0, \Lambda_{\varepsilon}]$;

iii) $[0, \Lambda_0) \subset \pi_1(\Sigma_{\varepsilon})$ *if* $\varepsilon > 0$.

Proof. Let $\varepsilon \ge 0$ and $(\lambda, \zeta) \in \Sigma_{\varepsilon}$. Let λ^* be as given by Lemma 3.3. Then $\lambda \le \lambda^*$, and so i) holds with $\Lambda^{\#} = \lambda^*$.

To prove ii) observe that, from i), $\pi_1(C_{\Sigma_{\varepsilon}})$ is a bounded and connected subset of \mathbb{R} . If $(0,\zeta) \in C_{\Sigma_{\varepsilon}}$ then, by Lemma 4.3 ii), $\zeta = 0$. Since, by Corollary 3.5, $C_{\Sigma_{\varepsilon}}$ is unbounded, we get that $\pi_1(C_{\Sigma_{\varepsilon}}) \neq \{0\}$. Also, $(0,0) \in C_{\Sigma_{\varepsilon}}$, and so $0 \in \pi_1(C_{\Sigma_{\varepsilon}})$. Since $\pi_1(C_{\Sigma_{\varepsilon}}) \neq \{0\}$ and $\pi_1(C_{\Sigma_{\varepsilon}})$ is a bounded and connected subset of \mathbb{R} , ii) follows.

To see iii), consider $\lambda \in [0, \Lambda_0)$. By ii) there exists a weak solution $\overline{u} \in H_0^1(\Omega) \cap C(\overline{\Omega})$ to the problem $-\Delta \overline{u} = a\overline{u}^{-\alpha} + f(\lambda, \overline{u})$ in $\Omega, \overline{u} = 0$ on $\partial \Omega, \overline{u} > 0$ in Ω . Then $-\Delta \overline{u} \geq 0$ $a(\overline{u}+\varepsilon)^{-\alpha}+f(\lambda,\overline{u})$ in Ω and, since $\overline{u}=S_0(f(\lambda,\overline{u}))$, by Lemma 2.6 there exists a positive constant *c* such that $\overline{u} \ge cd_{\Omega}$ in Ω . For $\delta \in (0,1)$ to be determined later, let *z* be the weak solution (given e.g., by Lemma 2.6 applied with a replaced by δa) to the problem $-\Delta z =$ $\delta a (z+1)^{-\alpha}$ in Ω , z = 0 on $\partial \Omega$, z > 0 in Ω . Thus $-\Delta z \leq \delta a$ in Ω , and so there exists a positive constant c', independent of δ , such that $z \leq c' \delta d_{\Omega}$ in Ω . Then $-\Delta z = \delta a (z+1)^{-\alpha} \geq c' \delta d_{\Omega}$ $\delta a (c' \delta d_{\Omega} + 1)^{-\alpha} \geq \delta a (c' \operatorname{diam}(\Omega) + 1)^{-\alpha}$ in Ω , and so $z \geq \delta (c' \operatorname{diam}(\Omega) + 1)^{-\alpha} (-\Delta)^{-1} (a)$. Then there exists a positive constant c'' independent of δ such $z \ge c'' \delta d_{\Omega}$ in Ω . Also, $-\Delta z =$ $\delta a (z+1)^{-\alpha} \leq a (z+\varepsilon)^{-\alpha} \leq a (z+\varepsilon)^{-\alpha} + f (\lambda, \cdot, \delta z)$ in Ω . Now we take small enough such $c'\delta \leq c$. Then $z \leq c'\delta d_{\Omega} \leq cd_{\Omega} \leq \overline{u}$. Thus [18, Theorem 4.9] gives a weak solution u to the problem $-\Delta u = a (u + \varepsilon)^{-\alpha} + f (\lambda, \cdot, u)$ in Ω , u = 0 on $\partial \Omega$, u > 0 in Ω , which satisfies $z \leq \omega$ $u \leq \overline{u}$. Then $u = S_{\varepsilon}(f(\lambda, \cdot, u))$, and so, by Lemma 2.8, $u \in C(\overline{\Omega})$. Since $-\Delta u \geq a(u+\varepsilon)^{-\alpha}$ in Ω , u = 0 on $\partial \Omega$, u > 0 in Ω , and since $v := S_{\varepsilon}(0)$ satisfies $-\Delta v = a (v + \varepsilon)^{-\alpha}$ in Ω , v = 0on $\partial\Omega$, v > 0 in Ω , the comparison principle in Remark 2.4 gives $u \ge v$ in Ω . Then $u \ge S_{\varepsilon}(0)$ in Ω . Thus $\zeta := u - S_{\varepsilon}(0) \in P$ and, by Remark 4.1, $(\lambda, \zeta) \in \Sigma_{\varepsilon}$. \square

Lemma 4.7. Let Λ_0 be as given by Lemma 4.6 ii). Then, for any $\sigma > \|S_0(0)\|_{\infty}$, there exists $\lambda_{\sigma} \in (0, \Lambda_0)$ such that $\|\zeta\|_{\infty} \neq \sigma$ whenever $0 \leq \lambda \leq \lambda_{\sigma}$, $\varepsilon \in [0, 1]$, and $(\lambda, \zeta) \in \Sigma_{\varepsilon}$.

Proof. To prove the lemma we proceed by contradiction. Assume that such a λ_{σ} does not exist. Then, for j large enough, there exist $\lambda_j \in [0,1]$, $\varepsilon_j \in [0,1]$, and a function $\zeta_j \in P$, such that $\lim_{j\to\infty} \lambda_j = 0$, $(\lambda_j, \zeta_j) \in \Sigma_{\varepsilon_j}$ and $\|\zeta_j\|_{\infty} = \sigma$. Taking a subsequence if necessary, we can assume that $\lim_{j\to\infty} \varepsilon_j = \overline{\varepsilon}$ for some $\overline{\varepsilon} \in [0,1]$. Let $w_j := \zeta_j + S_{\varepsilon_j}(0)$. Then $w_j \in C(\overline{\Omega})$, and $\|w_j\|_{\infty} \leq \|\zeta_j\|_{\infty} + \|S_{\varepsilon_j}(0)\|_{\infty} \leq \sigma + \|S_0(0)\|_{\infty} := M$, and so $\|f(\lambda_j, \cdot, w_j)\|_{\infty} \leq \max_{[0,1]\times\overline{\Omega}\times[0,M]} f$. Thus $\{f(\lambda_j, \cdot, w_j)\}_{j\in\mathbb{N}}$ is bounded in $L^{\infty}(\Omega)$. Also, by Remark 4.1, w_j is a weak solution of $-\Delta w_j = a(w_j + \varepsilon_j)^{-\alpha} + f(\lambda_j, \cdot, w_j)$ in Ω , $w_j = 0$ on $\partial\Omega$, and so $w_j = S_{\varepsilon_j}(f(\lambda_j, \cdot, w_j))$. Thus, by Lemma 2.13, $\{w_j\}_{j\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$. Then there exists $w \in H_0^1(\Omega)$, and a subsequence $\{w_{j_k}\}_{k\in\mathbb{N}}$, such that $\{w_{j_k}\}_{k\in\mathbb{N}}$ converges to w strongly in $L^2(\Omega, \mathbb{R}^n)$. Taking a subsequence if necessary, we can assume that $\{w_{j_k}\}_{k\in\mathbb{N}}$ converges to $f(0, \cdot, w)$ in Ω . Then, by Lemma 2.14 iii), $\{S_{\varepsilon_{j_k}}(f(\lambda_{j_k}, \cdot, w_{j_k})\}_{k\in\mathbb{N}}$ converges to $S_{\overline{\varepsilon}}(f(0, \cdot, w))$ in $C(\overline{\Omega})$, i.e., $\{w_{j_k}\}_{k\in\mathbb{N}}$ converges to

 $S_{\overline{\varepsilon}}(0)$ in $C(\overline{\Omega})$. Then $w = S_{\overline{\varepsilon}}(0)$, and so $||w||_{\infty} = \lim_{k \to \infty} ||w_{j_k}||_{\infty} \ge \lim_{k \to \infty} ||\zeta_{j_k}||_{\infty} = \sigma >$ $||S_0(0)||_{\infty}$; which contradicts that $w = S_{\widetilde{\varepsilon}}(0) \le S_0(0)$.

Lemma 4.8. Let $\lambda_0 > 0$, let $\{\lambda_j\}_{j \in \mathbb{N}}$ be a sequence in $[\lambda_0, \infty)$, and let $\{\varepsilon_j\}_{j \in \mathbb{N}}$ be a sequence in [0,1]. For $j \in \mathbb{N}$, let $w_j \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ be a weak solution of

$$\begin{cases} -\Delta w_j = a \left(w_j + \varepsilon_j \right)^{-\alpha} + f \left(\lambda_j, \cdot, w_j \right) & \text{in } \Omega, \\ w_j = 0 & \text{on } \partial \Omega, \\ w_j > 0 & \text{in } \Omega. \end{cases}$$

Then:

- *i*) $\{w_j\}_{i\in\mathbb{N}}$ *is bounded in* $H^1_0(\Omega)$ *;*
- *ii) if* $\{w_{j_k}\}_{k \in \mathbb{N}}$ *is a subsequence of* $\{w_j\}_{j \in \mathbb{N}}$ *that converges weakly in* $H_0^1(\Omega)$ *to some* $w \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, and *if, in addition,* $\lim_{k\to\infty} \lambda_{j_k} = \lambda$ and $\lim_{k\to\infty} \varepsilon_{j_k} = \varepsilon$ for some $\varepsilon \in [0, 1]$ and $\lambda \in [\lambda_0, \infty)$, then w is a weak solution to (3.6) and there exists a positive constant c such that $w \geq cd_{\Omega}$ in Ω .

Proof. Let c_{λ_0} be as given by Lemma 3.4. Then $||w_j||_{\infty} \leq c_{\lambda_0}$, which implies $||f(\lambda_j, \cdot, w_j)||_{\infty} \leq \sup_{[0,\Lambda^{\#}] \times \Omega \times [0,c_{\lambda_0}]} f$, with $\Lambda^{\#}$ given by Lemma 4.6 i). Since $w_j = S_{\varepsilon_j}(f(\lambda_j, \cdot, w_j))$, Lemma 2.13 gives that $\{w_j\}_{j \in \mathbb{N}}$ is bounded in $H_0^1(\Omega)$.

Now suppose that $\{w_{j_k}\}_{k\in\mathbb{N}}$ is a subsequence such that, for some $w \in H_0^1(\Omega)$, $\{w_{j_k}\}_{k\in\mathbb{N}}$ converges to w strongly in $L^2(\Omega)$ and $\{\nabla w_{j_k}\}_{k\in\mathbb{N}}$ converges to ∇w weakly in $L^2(\Omega, \mathbb{R}^n)$. Suppose also that $\lim_{k\to\infty} \lambda_{j_k} = \lambda$ and $\lim_{k\to\infty} \varepsilon_{j_k} = \varepsilon$. Taking a further subsequence if necessary, we can assume that $\{w_{j_k}\}_{k\in\mathbb{N}}$ converges to w a.e. in Ω . Now, $w_{j_k} = S_{\varepsilon_{j_k}}(f(\lambda_{j_k}, \cdot, w_{j_k}))$ and then, by Lemma 2.7, $w_{j_k} \ge cd_\Omega$ in Ω for some positive constant independent of k. Thus $w \ge cd_\Omega$ in Ω . Note that $\{f(\lambda_{j_k}, \cdot, w_{j_k})\}_{k\in\mathbb{N}}$ is a bounded sequence in $L^{\infty}(\Omega)$ that converges pointwise to $f(\lambda, \cdot, w)$. Then, by Lemma 2.14 iv), $\{S_{\varepsilon_{j_k}}(f(\lambda_{j_k}, \cdot, w_{j_k}))\}_{k\in\mathbb{N}}$ converges to $S_{\varepsilon}(f(\lambda, \cdot, w))$ in $C(\overline{\Omega})$, i.e., $\{w_{j_k}\}_{k\in\mathbb{N}}$ converges to $S_{\varepsilon}(f(\lambda, \cdot, w))$ in $C(\overline{\Omega})$. Thus $w = S_{\varepsilon}(f(\lambda, \cdot, w))$, i.e., w solves (3.6). Finally, Lemma 2.7 says that, for some positive constant $c, w \ge cd_\Omega$ in Ω .

Proof of Theorem 1.1. Let $\Lambda := \sup \{\lambda \ge 0 : (\lambda, \zeta) \in \Sigma_0 \text{ for some } \zeta \in P\}$, and let Λ_0 be given by Lemma 4.6 ii). Thus $\Lambda_0 > 0$ and, for any $\lambda \in [0, \Lambda_0)$, there exists $\zeta \in P$ such that $(\lambda, \zeta) \in \Sigma_0$; and the function $w_{\zeta} := \zeta + S_0(0)$ is a positive weak solution of (1.1) that belongs to $H_0^1(\Omega) \cap L^{\infty}(\Omega)$. Moreover, $w_{\zeta} \in C(\overline{\Omega})$ and, for some positive constant $c, w_{\zeta} \ge cd_{\Omega}$ in Ω . Also, $\Lambda \ge \Lambda_0 > 0$ and clearly, if (1.1) has a solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, then $\lambda \le \Lambda$. Consider a sequence $\{(\lambda_j, \zeta_j)\}_{j\in\mathbb{N}} \subset \Sigma_0$ such that $\lim_{j\to\infty} \lambda_j = \Lambda$, and a sequence $\{\varepsilon_j\}_{j\in\mathbb{N}} \subset (0,1]$ such that $\lim_{j\to\infty} \varepsilon_j = 0$. Let $w_j := \zeta_j + S_0(0)$. Then $w_j \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and w_j is a solution of (1.1) for $\lambda = \lambda_j$. Thus w_j is a supersolution to the following nonsingular problem

$$\begin{cases} -\Delta z = a \left(z + \varepsilon_j \right)^{-\alpha} + f \left(\lambda_j, \cdot, z \right) & \text{in } \Omega, \\ z = 0 & \text{on } \partial \Omega, \\ z > 0 & \text{in } \Omega. \end{cases}$$
(4.4)

Clearly $v_j := S_{\varepsilon_j}(0)$ is a subsolution of (4.4) and, by Lemma 2.3, $v_{\varepsilon_j} \le w_j$ in Ω . Thus, by [18, Theorem 4.9], there exists a weak solution $u_j \in H_0^1(\Omega)$ of (4.4) such that $v_j \le u_j \le w_j$

in Ω . Since $0 \le u_j \le w_j$ we have also $u_j \in L^{\infty}(\Omega)$. Then, by Lemma 4.8 i), $\{u_j\}_{j\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$. Thus there exists a subsequence $\{u_{j_k}\}_{k\in\mathbb{N}}$ and $w \in H_0^1(\Omega)$, such that $\{u_{j_k}\}_{k\in\mathbb{N}}$ converges weakly in $H_0^1(\Omega)$ and a.e. in Ω to $w \in H_0^1(\Omega)$. Also, $\lambda_j \ge \frac{1}{2}\Lambda$ for j large enough, and so, for such j, Lemma 3.4 gives $||u_j||_{\infty} \le \tilde{c}_{\frac{1}{2}\Lambda}$. Then $||w||_{\infty} \le \tilde{c}_{\frac{1}{2}\Lambda}$ and so, $w \in$ $H_0^1(\Omega) \cap L^{\infty}(\Omega)$. Now, by Lemma 4.8 ii), w is a weak solution of $-\Delta w = aw^{-\alpha} + f(\Lambda, \cdot, w)$ in $\Omega, w = 0$ on $\partial\Omega, w > 0$ in Ω , and, for some positive constant c, it satisfies $w \ge cd_{\Omega}$ in Ω .

Let $\{v_j\}_{j\in\mathbb{N}}$ and $\{\varepsilon_j\}_{j\in\mathbb{N}}$ be as above, and let $\lambda \in [0,\Lambda)$; then w is a supersolution of (4.4). Clearly v_j is a subsolution to (4.4). Also, by Lemma 2.14 i), $w = S_0(f(\Lambda, \cdot, w)) \geq S_{\varepsilon_j}(f(\Lambda, \cdot, w)) \geq S_{\varepsilon_j}(0) = v_j$ and so, by [18, Theorem 4.9], there exists a solution $\widetilde{u}_j \in H_0^1(\Omega)$ to problem (4.4) such that $v_j \leq \widetilde{u}_j \leq w$. Thus $\widetilde{u}_j \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, and by Lemma 3.4, $\|\widetilde{u}_j\|_{\infty} \leq \widetilde{c}_{\lambda}$ for all j. By Lemma 4.8 i), $\{\widetilde{u}_j\}_{j\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$. Thus there exists a subsequence $\{\widetilde{u}_{j_k}\}_{k\in\mathbb{N}}$, and $\widetilde{w} \in H_0^1(\Omega)$, such that $\{\widetilde{u}_{j_k}\}_{k\in\mathbb{N}}$ converges weakly in $H_0^1(\Omega)$, and a.e. in Ω , to $\widetilde{w} \in H_0^1(\Omega)$, which satisfies $\|\widetilde{w}\|_{\infty} \leq \widetilde{c}_{\lambda}$. Thus, by Lemma 4.8 ii), \widetilde{w} is a weak solution to the problem $-\Delta \widetilde{w} = a\widetilde{w}^{-\alpha} + f(\lambda, \cdot, \widetilde{w})$ in Ω , $\widetilde{w} = 0$ on $\partial\Omega$, $\widetilde{w} > 0$ in Ω . Finally, if $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution of (1.1) then, by Lemmas 2.7 and 2.11, $u \geq cd_{\Omega}$ in Ω if $0 < \alpha < 1$, and $u \geq cd_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω if $1 \leq \alpha < 3$; in both cases with c a positive constant independent of λ and u.

Lemma 4.9. Let $\sigma > \|S_0(0)\|_{\infty}$ and let λ_{σ} be as in Lemma 4.7. Then $\Lambda_{\varepsilon} > \lambda_{\sigma}$ for any $\varepsilon \in [0, 1]$.

Proof. By way of contradiction, suppose that $\Lambda_{\varepsilon} \leq \lambda_{\sigma}$ for some $\varepsilon \in [0,1]$. Then for each $(\lambda, \zeta) \in C_{\Sigma_{\varepsilon}}$ we have $\lambda \leq \lambda_{\sigma}$ and so, by Lemma 4.7, $\|\zeta\|_{\infty} \neq \sigma$. Also, $\lambda < \Lambda^{\#} + 1$, with $\Lambda^{\#}$ given by Lemma 4.6 i). Let

$$U_1 := \{ (\lambda, \zeta) \in [0, \Lambda^{\#} + 1) \times P : \|\zeta\|_{\infty} < \sigma \},$$

$$U_2 := \{ (\lambda, \zeta) \in [0, \Lambda^{\#} + 1) \times P : \|\zeta\|_{\infty} > \sigma \}.$$

Note that U_1 and U_2 are disjoint open subsets of $[0, \infty) \times P$, and that $C_{\Sigma_{\varepsilon}} \subset U_1 \cup U_2$. As $C_{\Sigma_{\varepsilon}}$ is unbounded, $C_{\Sigma_{\varepsilon}} \cap U_2$ is nonempty. Also $(0,0) \in C_{\Sigma_{\varepsilon}} \cap U_1$, therefore $C_{\Sigma_{\varepsilon}} \cap U_1$ is nonempty. Contradiction, since $C_{\Sigma_{\varepsilon}}$ is connected.

Lemma 4.10. For each $\lambda_0 > 0$ there exists $c_{\lambda_0} > 0$ such that $\|\zeta\|_{\infty} < c_{\lambda_0}$ whenever $\lambda \ge \lambda_0$ and $(\lambda, \zeta) \in \Sigma_0$.

Proof. $(\lambda, \zeta) \in \Sigma_0$ if and only if $u := \zeta + S_0(0)$ is a solution of (1.1). Since $\|\zeta\|_{\infty} \le \|u\|_{\infty} + \|S_0(0)\|_{\infty}$, the lemma follows from Lemma 3.4.

Lemma 4.11. Let $\sigma > ||S_0(0)||_{\infty}$, and let λ_{σ} be given by Lemma 4.7. Then, for each $\overline{\lambda} \in (0, \lambda_{\sigma})$, the set $\{(\lambda, \zeta) \in \Sigma_0 : 0 < \lambda < \overline{\lambda}\}$ is an unbounded subset of $[0, \infty) \times P$.

Proof. Suppose for the sake of contradiction, that for some $\overline{\lambda} \in (0, \lambda_{\sigma})$ there exists M > 0 such that $\|\zeta\|_{\infty} \leq M$ whenever $(\lambda, \zeta) \in \Sigma_0$ and $0 < \lambda < \overline{\lambda}$. Let $c_{\overline{\lambda}}$ be as given by Lemma 4.11. Then $C_{\Sigma_0} \subset [0, \Lambda^{\#}] \times \{\zeta \in P : \|\zeta\|_{\infty} \leq M + c_{\overline{\lambda}}\}$, which contradicts the fact that C_{Σ_0} is unbounded.

Proof of Theorem 1.2. Let $\sigma > ||S_0(0)||_{\infty}$, and let λ_{σ} be as given by Lemma 4.7. Let $\Lambda^* := \min\{\Lambda_0, \lambda_{\sigma}\}$ and, for each $\lambda \in (0, \Lambda_0)$, let c_{λ} be as given by Lemma 4.11. We claim that, for $0 < \lambda < \Lambda^*$, problem (1.1) has at least two weak solutions in *P*. To see this we proceed by contradiction. Suppose, by way of contradiction, that for some $\lambda^{\#} \in (0, \Lambda^*)$ problem

(1.1) has a unique solution $u_{\lambda^{\#}}$ in P (at least one solution exists because $\lambda^{\#} < \Lambda_0$). Now, $u_{\lambda^{\#}} = S_0 \left(f \left(\lambda^{\#}, \cdot, u_{\lambda^{\#}} \right) \right)$ and so, by Lemma 2.14 i), $u_{\lambda^{\#}} \ge S_0 (0)$. Let $\zeta_{\lambda^{\#}} := u_{\lambda^{\#}} - S_0 (0)$; clearly $\zeta_{\lambda^{\#}} \in P$ and, by Remark 4.1, $(\lambda^{\#}, \zeta_{\lambda^{\#}}) \in \Sigma_0$. Also, if $(\lambda^{\#}, \zeta) \in \Sigma_0$ for some $\zeta \in P$, then $\zeta = \zeta_{\lambda^{\#}}$. Now, by Lemma 4.7, $\|\zeta_{\lambda^{\#}}\|_{\infty} \neq \sigma$; Then either $\|\zeta_{\lambda^{\#}}\|_{\infty} < \sigma$ or $\|\zeta_{\lambda^{\#}}\|_{\infty} > \sigma$.

If $\|\zeta_{\lambda^{\#}}\|_{\infty} < \sigma$, consider the disjoint open sets V_1 and V_2 in \mathbb{R}^2 defined by

$$V_1 := \left\{ (\lambda, t) \in \mathbb{R}^2 : \lambda < \lambda^{\#} \text{ and } t > \sigma \right\}$$

and $V_2 := V_{21} \cup V_{22} \cup V_{23}$ where

$$V_{21} := \left\{ (\lambda, t) \in \mathbb{R}^2 : \lambda > \lambda^{\#} \text{ and } t < c_{\lambda^{\#}} + \sigma \right\},$$

$$V_{22} := \left\{ (\lambda^{\#}, t) \in \mathbb{R}^2 : t < \sigma \right\},$$

$$V_{23} := \left\{ (\lambda, t) \in \mathbb{R}^2 : \lambda < \lambda^{\#} \text{ and } t < \sigma \right\},$$

and let U_1 and U_2 be the two disjoint open sets in $[0, \infty) \times P$ defined, for i = 1, 2, by $U_i := \{(\lambda, \zeta) \in [0, \infty) \times P : (\lambda, \|\zeta\|_{\infty}) \in V_i\}$. Let $(\lambda, \zeta) \in C_{\Sigma_0}$. If $\lambda > \lambda^{\#}$ then, by Lemma 4.11, $\|\zeta\|_{\infty} \leq c_{\lambda^{\#}}$, and so $(\lambda, \|\zeta\|_{\infty}) \in V_{21}$. Then $(\lambda, \zeta) \in U_2$. If $\lambda = \lambda^{\#}$ then $\zeta = \zeta_{\lambda^{\#}}$, and so $\|\zeta\|_{\infty} = \|\zeta_{\lambda^{\#}}\|_{\infty} < \sigma$. Thus $(\lambda, \|\zeta\|_{\infty}) \in V_{22}$, which implies $(\lambda, \zeta) \in U_2$. If $\lambda < \lambda^{\#}$ then, by Lemma 4.7, $\|\zeta\|_{\infty} \neq \sigma$. If $\|\zeta\|_{\infty} < \sigma$ then $(\lambda, \|\zeta\|_{\infty}) \in V_{22}$, and so $(\lambda, \zeta) \in U_2$. If $\|\zeta\|_{\infty} > \sigma$ then $(\lambda, \|\zeta\|_{\infty}) \in V_1$, which gives $(\lambda, \zeta) \in U_1$. Then $C_{\Sigma_0} \subset U_1 \cup U_2$. Also, $(0, 0) \in C_{\Sigma_0} \cap U_2$, and so $C_{\Sigma_0} \cap U_2$ is nonempty. On the other hand, $C_{\Sigma_0} \cap U_2 \subset \{(\lambda, \zeta) : \lambda \in [0, \Lambda^{\#}]$ and $\|\zeta\| < c_{\lambda^{\#}} + \sigma\}$, which is bounded in $[0, \infty) \times P$. Since C_{Σ_0} is unbounded and $C_{\Sigma_0} \subset U_1 \cup U_2$, we conclude that also $C_{\Sigma_0} \cap U_1$ is nonempty, contradicting that C_{Σ_0} is a connected set.

When $\|\zeta_{\lambda^{\#}}\|_{\infty} > \sigma$ we consider the disjoint open sets \widetilde{V}_1 and \widetilde{V}_2 in \mathbb{R}^2 defined by $\widetilde{V}_1 := V_{23}$ and $\widetilde{V}_2 := V_{21} \cup \widetilde{V}_{22} \cup \widetilde{V}_{23}$, with V_{21} and V_{23} defined as above, and

$$\begin{split} \widetilde{V}_{22} &:= \left\{ \left(\lambda^{\#}, t\right) \in \mathbb{R}^2 : \sigma < t < c_{\lambda^{\#}} + \sigma \right\}, \\ \widetilde{V}_{23} &:= \left\{ \left(\lambda, t\right) \in \mathbb{R}^2 : \lambda < \lambda^{\#} \text{ and } t > \sigma \right\}. \end{split}$$

For i = 1, 2, let $\widetilde{U}_i := \{ (\lambda, \zeta) \in [0, \infty) \times P : (\lambda, \|\zeta\|_{\infty}) \in \widetilde{V}_i \}$. Thus \widetilde{U}_1 and \widetilde{U}_2 are open and disjoint sets in $[0, \infty) \times P$. Let $(\lambda, \zeta) \in C_{\Sigma_0}$. If $\lambda > \lambda^{\#}$ then, as before, $(\lambda, \|\zeta\|_{\infty}) \in V_{21}$, and so $(\lambda, \zeta) \in \widetilde{U}_2$. If $\lambda = \lambda^{\#}$ then $\zeta = \zeta_{\lambda^{\#}}$, and so $\|\zeta\|_{\infty} > \sigma$, also $\|\zeta\|_{\infty} \leq c_{\lambda^{\#}}$, and thus $(\lambda, \|\zeta\|_{\infty}) \in \widetilde{V}_{22}$, which implies $(\lambda, \zeta) \in \widetilde{U}_2$. If $\lambda < \lambda^{\#}$ then, either $\|\zeta\|_{\infty} < \sigma$, or $\|\zeta\|_{\infty} > \sigma$. If $\|\zeta\|_{\infty} < \sigma$ then $(\lambda, \|\zeta\|_{\infty}) \in V_{23}$, and so $(\lambda, \zeta) \in \widetilde{U}_1$. If $\|\zeta\|_{\infty} > \sigma$ then $(\lambda, \|\zeta\|_{\infty}) \in \widetilde{V}_{23}$ which gives $(\lambda, \zeta) \in \widetilde{U}_2$. Then $C_{\Sigma_0} \subset \widetilde{U}_1 \cup \widetilde{U}_2$. Also, $(0, 0) \in C_{\Sigma_0} \cap \widetilde{U}_1$, and so $C_{\Sigma_0} \cap \widetilde{U}_1$ is nonempty. On the other hand, $C_{\Sigma_0} \cap \widetilde{U}_1$ is bounded in $[0, \infty) \times P$, and then, since C_{Σ_0} is unbounded, $C_{\Sigma_0} \cap U_2$ is nonempty, contradicting that C_{Σ_0} is connected.

The assertion that $\lambda = 0$ is a bifurcation point from ∞ for (1.1), follows from the fact that, by Lemma 4.11, for any $j \in \mathbb{N}$, there exists $(\lambda_j, \zeta_j) \in \Sigma_0$ such that $\lambda_j < \frac{1}{i}$ and $\|\zeta_j\|_{\infty} \ge j$. \Box

Proof of Theorem 1.3. A direct inspection shows that, in each case, the corresponding function $f(\lambda, \cdot, s)$ satisfies the hypothesis of Theorems 1.1 and 1.2.

References

 H. AMANN, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18(1976), 620–709. MR0415432; https://doi.org/10.1137/1018114

- [2] C. ARANDA, T. GODOY, Existence and multiplicity of positive solutions for a singular problem associated to the *p*-Laplacian operator, *Electron. J. Differential Equations* 2004, No. 132, 1–15. MR2108903
- [3] B. BOUGHERARA, J. GIACOMONI, Existence of mild solutions for a singular parabolic equation and stabilization, *Adv. Nonlinear Anal.* 4(2015), No. 2, 123–134. MR3341461; https://doi.org/10.1515/anona-2015-0002
- [4] B. BOUGHERARA, J. GIACOMONI, J. HERNÁNDEZ, Existence and regularity of weak solutions for singular elliptic problems, in: *Proceedings of the 2014 Madrid Conference on Applied Mathematics in honor of Alfonso Casal, Electron. J. Differ. Equ. Conf.* 22, Texas State Univ., San Marcos, TX, 2015, pp. 18–30. MR3480326
- [5] H. BREZIS, Functional analysis, Sobolev spaces and partial differential equations, Springer-Verlag, New York, 2011. MR2759829; https://doi.org/10.1007/978-0-387-70914-7
- [6] H. BREZIS, X. CABRÉ, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(1998), No. 2, 223–262. MR1638143
- [7] A. CALLEGARI, A. NACHMAN, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38(1980), 275–281. MR0564014; https://doi. org/10.1137/0138024
- [8] T. CAZENAVE, An introduction to semilinear elliptic equations, Editora do IM-UFRJ, Rio de Janeiro, 2006.
- [9] F. CÎRSTEA, M. GHERGU, V. RĂDULESCU, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane–Emden–Fowler type, J. Math. Pures Appl. 84(2005), 493–508. MR2133126; https://doi.org/10.1016/j.matpur.2004.09.005
- [10] M. M. COCLITE, G. PALMIERI, On a singular nonlinear Dirichlet problem, Comm. Part. Differ. Equat. 14(1989), No. 10, 1315–1327. MR1022988; https://doi.org/10.1080/ 03605308908820656
- [11] D. S. COHEN, H. B. KELLER, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16(1967), 1361–1376. MR0213694
- [12] M. G. CRANDALL, P. H. RABINOWITZ, L. TARTAR, On a Dirichlet problem with a singular nonlinearity, *Comm. Part. Differ. Equations* 2(1977), 193–222. MR0427826; https://doi. org/10.1080/03605307708820029
- [13] J. DÁVILA, M. MONTENEGRO, Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math. 90(2003), 303–335. MR2001074; https://doi.org/10.1007/ BF02786560
- [14] M. A. DEL PINO, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. R. Soc. Edinburgh Sect. A 122(1992), 341–352. MR1200204; https://doi. org/10.1017/S0308210500021144
- [15] J. I. DÍAZ, J. HERNÁNDEZ, Positive and free boundary solutions to singular nonlinear elliptic problems with absorption; An overview and open problems, in: *Proceedings of the Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open*

Problems, Electron. J. Differ. Equ. Conf. 21, Texas State Univ., San Marcos, TX, 2014, pp. 31–44. MR3344562

- [16] J. DÍAZ, M. MOREL, L. OSWALD, An elliptic equation with singular nonlinearity, Comm. Part. Diff. Eq. 12(1987), 1333-1344. MR0912208; https://doi.org/10.1080/ 03605308708820531
- [17] D. G. DE FIGUEIREDO, Positive solutions of semilinear elliptic equations, in: D. G. de Figueiredo, C. S. Hönig (Eds.), *Differential equations*, Lecture Notes in Mathematics, Vol. 957, Springer, Berlin, Heidelberg, 1982, pp. 34–87. https://doi.org/10.1007/ BFb0066233
- [18] Y. Du, Order structure and topological methods in nonlinear partial differential equations. Vol. 1. Maximum principles and applications, World Scientific Publishing Co., Pte., Ltd., Singapore, 2006. MR2205529; https://doi.org/10.1142/9789812774446_0005
- [19] L. DUPAIGNE, M. GHERGU, V. RĂDULESCU, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87(2007), 563–581. MR2335087; https://doi. org/10.1016/j.matpur.2007.03.002
- [20] W. FULKS, J. S. MAYBEE, A singular nonlinear equation, Osaka Math. J. 12(1960), 1–19. MR0123095
- [21] G. GAO, B. YAN, Existence, boundary behavior and asymptotic behavior of solutions to singular elliptic boundary-value problems, *Electron. J. Differential Equations* 2016, No. 89, 1–13. MR3489979
- [22] M. GHERGU, V. LISKEVICH, Z. SOBOL, Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls, J. Anal. Math. 123(2014), 251–279. MR3233581; https://doi.org/10.1007/s11854-014-0020-y
- [23] M. GHERGU, V. D. RĂDULESCU, Singular elliptic problems: bifurcation and asymptotic analysis, Oxford Lecture Series in Mathematics and Its Applications, Vol. 37, Oxford University Press, 2008. MR2488149
- [24] M. GHERGU, V. D. RĂDULESCU, Multi-parameter bifurcation and asymptotics for the singular Lane–Emden–Fowler equation with a convection term, *Proc. Roy. Soc. Edinburgh Sect.* A 135(2005), No. 1, 61–84. MR2119841; https://doi.org/10.1017/S0308210500003760
- [25] M. GHERGU, V. D. RĂDULESCU, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195(2003), 520–536. MR2016822; https://doi.org/10.1016/ S0022-0396(03)00105-0
- [26] J. GIACOMONI, I. SCHINDLER, P. TAKÁČ, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (5) 6(2007), No. 1, 117–158. MR2341518; https://doi.org/10.2422/2036-2145. 2007.1.07
- [27] B. GIDAS, J. SPRUCK, A priori bounds for positive solutions of nonlinear elliptic equations, *Comm. Partial Differential Equations* 6(1981), No. 8, 883–901. MR0619749; https://doi. org/10.1080/03605308108820196

- [28] D. GILBARG, N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin Heidelberg New York, 2001. MR1814364; https://doi.org/10.1007/ 978-3-642-96379-7
- [29] T. GODOY, J. P. GOSSEZ, S. PACZKA, Antimaximum principle for elliptic problems with weight, *Electron. J. Differential Equations*. 1999, No. 22, 1–15. MR1689386
- [30] T. GODOY, J. P. GOSSEZ, S. PACZKA, A minimax formula for the principal eigenvalues of Dirichlet problems and its applications, in: *Proceedings of the 2006 International Conference in honor of Jacqueline Fleckinger, Electron. J. Diff. Equ. Conf.* **16**, Texas State Univ.–San Marcos, Dept. Math., San Marcos, TX, 2007, pp. 137–154. MR2503651
- [31] T. GODOY, A. GUERIN, Existence of nonnegative solutions for singular elliptic problems, *Electron. J. Differential Equations* **2016**, No. 191, 1–16. MR3547380
- [32] T. GODOY, A. GUERIN, Nonnegative solutions to some singular semilinear elliptic problems, J. Nonlinear Funct. Anal. 2017, Art. ID 11, 1–23. https://doi.org/10.23952/jnfa. 2017.11
- [33] T. GODOY, U. KAUFMANN, On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl. 428(2015), 1239–1251. MR3334977; https://doi.org/10.1016/ j.jmaa.2015.03.069
- [34] U. KAUFMANN, I. MEDRI, One-dimensional singular problems involving the *p*-Laplacian and nonlinearities indefinite in sign, *Adv. Nonlinear Anal.* 5(2015), 251–259. MR3530526; https://doi.org/10.1515/anona-2015-0116
- [35] A. C. LAZER, P. J. MCKENNA, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111(1991), 721–730. MR1037213; https://doi.org/10.1090/ S0002-9939-1991-1037213-9
- [36] B. B. MANNA, P. C. SRIKANTH, On the solutions of a singular elliptic equation concentrating on a circle, Adv. Nonlinear Anal. 3(2014), No. 3, 141–155. MR3259003; https: //doi.org/10.1515/anona-2013-0028
- [37] A. ORPEL, Positive evanescent solutions of singular elliptic problems in exterior domains, *Electron. J. Qual. Theory Differ. Equ.* 2016, No. 36, 1–12. MR3513972; https://doi.org/10. 14232/ejqtde.2016.1.36
- [38] V. D. RĂDULESCU, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, in: M. Chipot, (Ed.), *Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. IV*, North-Holland Elsevier Science, Amsterdam, 2007, pp. 483–591. MR2569336; https://doi.org/10.1016/ S1874-5733(07)80010-6
- [39] K. SAOUDI, P. AGARWAL, M. MURSALEEN, A multiplicity result for a singular problem with subcritical nonlinearities, J. Nonlinear Funct. Anal. 2017, Art. ID 33, 1–18. https: //doi.org/10.23952/jnfa.2017.33
- [40] J. SHI, M. YAO, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128(1998), 1389–1401. MR1663988; https://doi.org/10.1017/ S0308210500027384