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Abstract. This article concerns the oscillatory behavior of first-order non-linear differen-
tial equations with several variable deviating arguments and non-negative coefficients.
We study both delayed and advanced equations, and obtain sufficient conditions that
guarantee the oscillation of all solutions. Our assumptions let us transform differential
equalities into inequalities for which we use known techniques, and improve results in
the literature. We also provide an example that illustrates our results.
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1 Introduction

In this article we consider the non-linear differential equation with several variable deviating
arguments of either delay

x′(t) +
m

∑
i=1

fi(t, x(τi(t))) = 0, t ≥ t0 (1.1)

or advanced type

x′(t)−
m

∑
i=1

gi(t, x(σi(t))) = 0, t ≥ t0. (1.2)

Here fi, gi : [t0, ∞)×R→ R and τi, σi : [t0, ∞) → R are continuous functions for i = 1, . . . , m.
In addition to (1.1) we consider the initial condition

x(t) = ϕ(t), t ≤ t0, (1.3)

where ϕ : (−∞, t0]→ R is a bounded Borel measurable function.
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By a solution to (1.1) and (1.3) we mean an absolutely continuous function on [t0, ∞) sat-
isfying (1.1) for almost all t ≥ t0 and (1.3) for all t ≤ t0. By a solution of (1.2) we mean an
absolutely continuous function on [t0, ∞) satisfying (1.2) for almost all t ≥ t0.

A solution x(t) of (1.1) (or (1.2)) is oscillatory if it has arbitrary large zeros. If there exists
an eventually positive or an eventually negative solution, the equation is non-oscillatory. An
equation is oscillatory if all its solutions are oscillatory.

In the previous decades, oscillatory behavior and stability of first-order differential equa-
tions with deviating arguments have been extensively studied, see for example [1–3], [7–17],
[19–23] and references therein. Most of these papers concern the special case where fi(t, x) =
pi(t)x(τi(t)) and gi(t, x) = qi(t)x(σi(t)). For the general oscillation theory of differential equa-
tions the reader is referred to the monographs [1, 6, 18].

1.1 Linear differential equations

In this case we consider fi(t, x) = pi(t)x(τi(t)) and gi(t, x) = qi(t)x(σi(t)).
In 1978 Ladde [17] and in 1982 Ladas and Stavroulakis [16] proved that if

lim inf
t→∞

∫ t

τ(t)

m

∑
i=1

pi(s)ds >
1
e

, (1.4)

where τ(t) = max1≤i≤m{τi(t)}, then all solutions of (1.1) are oscillatory; while if

lim inf
t→∞

∫ σ(t)

t

m

∑
i=1

qi(s)ds >
1
e

, (1.5)

where σ(t) = min1≤i≤m{σi(t)}, then all solutions of (1.2) are oscillatory. See also [18, Theo-
rems 2.7.1 and 2.7.5].

In 1984, Hunt et al. [9] proved that if t− τi(t) ≤ τ0, 1 ≤ i ≤ m, and

lim inf
t→∞

m

∑
i=1

pi(t) (t− τi(t)) >
1
e

, (1.6)

then all solutions of (1.1) are oscillatory.
In 1990, Zhou [23] proved that if σi(t)− t ≤ σ0 for 1 ≤ i ≤ m, and

lim inf
t→∞

m

∑
i=1

qi(t) (σi(t)− t) >
1
e

, (1.7)

then all solutions of (1.2) are oscillatory. See also [6, Corollary 2.6.12].
Assume that τi(t), 1 ≤ i ≤ m are not necessarily monotone, and set

hi(t) = sup
t0≤s≤t

τi(s), t ≥ t0 and h(t) = max
1≤i≤m

hi(t), t ≥ t0 . (1.8)

Clearly, hi(t), h(t) are nondecreasing and τi(t) ≤ hi(t) ≤ h(t) < t for all t ≥ t0.
In 2016, Braverman, Chatzarakis and Stavroulakis [3] proved that if for some r ∈N,

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(ζ)ar(h(t), τi(ζ))dζ > 1, (1.9)

or

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(ζ)ar(h(t), τi(ζ))dζ > 1− 1− a−
√

1− 2a− a2

2
, (1.10)
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or

lim inf
t→∞

∫ t

h(t)

m

∑
i=1

pi(ζ)ar(h(t), τi(ζ))dζ >
1
e

, (1.11)

where a = lim inft→∞
∫ t

τ(t) ∑m
i=1 pi(s)ds, then all solutions of (1.1) are oscillatory. Here τi(t) < t,

limt→∞ τi(t) = ∞, for i = 1, 2, . . . , m and t ≥ t0, and

a1(t, s) = exp
{ ∫ t

s

m

∑
i=1

pi(ζ)dζ

}
ar+1(t, s) := exp

{ ∫ t

s

m

∑
i=1

pi(ζ)ar(ζ, τi(ζ))dζ

}
.

(1.12)

Assume that σi(t), 1 ≤ i ≤ m are not necessarily monotone, and set

ρi(t) = inf
s≥t

σi(s), t ≥ t0 and ρ(t) = min
1≤i≤m

ρi(t), t ≥ t0. (1.13)

In the same paper [3], the authors proved that if for some r ∈N,

lim sup
t→∞

∫ ρ(t)

t

m

∑
i=1

qi(ζ)br(ρ(t), σi(ζ)) dζ > 1, (1.14)

or

lim sup
t→∞

∫ ρ(t)

t

m

∑
i=1

qi(ζ)br(ρ(t), σi(ζ)) dζ > 1− 1− b−
√

1− 2b− b2

2
, (1.15)

or

lim inf
t→∞

∫ ρ(t)

t

m

∑
i=1

qi(ζ)br(ρ(t), σi(ζ)) dζ >
1
e

, (1.16)

where b = lim inft→∞
∫ σ(t)

t ∑m
i=1 qi(s)ds, then all solutions of (1.2) are oscillatory. Here t < σi(t)

for i = 1, 2, . . . , m and t ≥ t0, and

b1(t, s) = exp
{ ∫ s

t

m

∑
i=1

qi(ζ)dζ

}
br+1(t, s) := exp

{ ∫ s

t

m

∑
i=1

qi(ζ)br(t, σi(ζ))dζ

}
.

(1.17)

Akca, Chatzarakis and Stavroulakis [2, Theorem 2] proved oscillation for (1.1) if

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(ζ)ar(h(ζ), τi(ζ))dζ >
1 + ln λ0

λ0
, (1.18)

where λ0 is the smaller root of the transcendental equation

eaλ = λ, and a = lim inf
t→∞

∫ t

τ(t)

m

∑
i=1

pi(s)ds.

Using hypotheses (H1)–(H4) below, we transform differential equalities into inequalities,
and then follow some ideas from [4,5] to study (1.1), (1.2). We derive new sufficient conditions
for the oscillation of all solutions. These conditions involve lim sup and lim inf, and essentially
improve all the previous results. Also, we give examples that illustrate the significance of our
results.
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2 Basic lemmas

2.1 Delay differential equations

We study (1.1) under the hypotheses:

(H1) τi(t) < t and limt→∞ τi(t) = ∞, for i = 1, 2, . . . , m, and t ≥ t0;

(H2) x fi(t, x) ≥ 0 and there exists a continuous non-negative function pi such that

| fi(t, x)| ≥ pi(t)|x| ∀x ∈ R, t ≥ t0 .

The proofs of our main results are essentially based on the following lemmas.

Lemma 2.1. Assume that (H1) and (H2) hold and h(t) is defined by (1.8).

(i) If x(t) is an eventually positive solution of (1.1), then there exists t1 ≥ t0 such that x(t) > 0,
x(τi(t)) > 0 and x(t) is non-increasing for t ≥ t1. Furthermore

− x′(t) ≥ x(h(t))
m

∑
i=1

pi(t). (2.1)

(ii) If y(t) is an eventually negative solution of (1.1), then there exists t1 ≥ t0 such that y(t) < 0,
y(τi(t)) < 0 and y(t) is nondecreasing for t ≥ t1. Furthermore

y′(t) ≤ y(h(t))
m

∑
i=1

pi(t). (2.2)

Proof. Since x(t) is an eventually positive solution of (1.1) and limt→∞ τi(t) = ∞, clearly there
exists t1 ≥ t0 such that x(t) > 0, x(τi(t)) > 0. By (1.1) we have

−x′(t) =
m

∑
i=1

fi(t, x(τi(t)))

which means that x(t) is non-increasing for t ≥ t1. Furthermore, in view of (H2), we have

− x′(t) ≥
m

∑
i=1

pi(t)x(τi(t)) ≥ x(h(t))
m

∑
i=1

pi(t). (2.3)

The proof of part (i) is complete.
Since y(t) is an eventually negative solution of (1.1) and limt→∞ τi(t) = ∞, clearly there

exists t1 ≥ t0 such that y(t) < 0, y(τi(t)) < 0. By (1.1) we have

y′(t) = −
m

∑
i=1

fi(t, y(τi(t)))

which means that y(t) is nondecreasing for t ≥ t1. Furthermore, in view of (H2), we have

y′(t) ≤
m

∑
i=1

pi(t)y(τi(t)) ≤ y(h(t))
m

∑
i=1

pi(t). (2.4)

The proof of part (ii) is complete, and so is the proof of the lemma.
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To state the next lemma we define recursively the sequence:

Pj(t) = P0(t)
[

1 +
∫ t

τi(t)

m

∑
k=1

pk(s) exp
( ∫ t

τk(s)
Pj−1(u)du

)
ds
]

, j ≥ 1, (2.5)

where P0(t) = ∑m
i=1 pi(t).

Lemma 2.2. Assume that (H1) and (H2) hold, x is a positive solution of (1.1), and Pj is defined by
(2.5). Then for every j ≥ 0 we have

x′(t) + Pj(t)x(t) ≤ 0

and by Grönwall’s inequality,

x(s) ≥ x(t) exp
(∫ t

s
Pj(u)du

)
, 0 ≤ s ≤ t. (2.6)

Proof. In view of part (i) of Lemma 2.1, Equation (1.1) gives

x′(t) + P0(t)x (t) ≤ 0. (2.7)

Applying Grönwall’s inequality, we obtain

x(s) ≥ x(t) exp
( ∫ t

s
P0(u)du

)
, 0 ≤ s ≤ t. (2.8)

Taking into account the fact that (H1) and (H2) hold, by integrating (1.1) from τi(t) to t, we
have

x(t)− x(τi(t)) +
∫ t

τi(t)

m

∑
k=1

pk(s)x (τk(s)) ds ≤ 0. (2.9)

Since τk(s) < t, (2.8) guarantees that

x (τk(s)) ≥ x(t) exp
(∫ t

τk(s)
P0(u)du

)
. (2.10)

Combining (2.9) and (2.10) we have

x(t)− x(τi(t)) + x(t)
∫ t

τi(t)

m

∑
k=1

pk(s) exp
(∫ t

τk(s)
P0(u)du

)
ds ≤ 0.

Multiplying the above inequality by pi(t) and adding, we obtain

−
m

∑
i=1

pi(t)x(τi(t)) +
m

∑
i=1

pi(t)

[
1 +

∫ t

τi(t)

m

∑
k=1

pk(s) exp
(∫ t

τk(s)
P0(u)du

)
ds

]
x(t) ≤ 0.

By part (i) of Lemma 2.1, the above inequality takes the form

x′(t) + P0(t)

[
1 +

∫ t

τi(t)

m

∑
k=1

pk(s) exp
(∫ t

τk(s)
P0(u)du

)
ds

]
x(t) ≤ 0,

i.e.,
x′(t) + P1(t)x(t) ≤ 0,
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where

P1(t) = P0(t)

[
1 +

∫ t

τi(t)

m

∑
k=1

pk(s) exp
(∫ t

τk(s)
P0(u)du

)
ds

]
.

Repeating the above argument leads to a new estimate

x′(t) + P2(t)x(t) ≤ 0,

where

P2(t) = P0(t)

[
1 +

∫ t

τi(t)

m

∑
k=1

pk(s) exp
(∫ t

τk(s)
P1(u)du

)
ds

]
.

By induction, we obtain
x′(t) + Pj(t)x(t) ≤ 0,

where

Pj(t) = P0(t)

[
1 +

∫ t

τi(t)

m

∑
k=1

pk(s) exp
(∫ t

τk(s)
Pj−1(u)du

)
ds

]
, j ≥ 1.

The proof is complete.

Lemma 2.3. For the real-valued function f : [0, ∞)→ R defined as

f (λ) = eαλ − λ

the following statements hold:

(i) If 0 < α < 1/e then the equation f (λ) = 0 has exactly two positive roots.

(ii) If α = 1/e then the equation f (λ) = 0 has exactly one root, λ0 = e.

(iii) If α > 1/e then the equation f (λ) = 0 has no roots.

Proof. (i) Observe that the function f (λ) = eαλ − λ attains its unique minimum at λ =

− ln(α)/α which equals fmin = (1 + ln α)/α < 0, since 0 < α < 1/e. In addition, f (0) > 0,
f ′(λ) < 0 for all λ ∈ (0, 1/e), and f ′λ) > 0 for all λ > 1/e. Therefore, the equation f (λ) = 0
has exactly two positive roots.

(ii) Observe that the function f (λ) = eλ/e − λ attains its unique minimum at λ = e which
equals fmin = 0. In addition, f (0) > 0, f ′(λ) < 0 for all λ ∈ (0, e), and f ′(λ) > 0 for all λ > e.
Therefore, the equation f (λ) = 0 has exactly one positive root.

(iii) For α > 1/e, the unique minimum fmin = (1 + ln α)/α > 0, therefore the equation
f (λ) = 0 has no real roots.

The proof of the lemma is complete.

The next lemma provides a lower estimate for the ratio x(h(t))/x(t) in terms of the smaller
root of λ = eαλ; see [15] and [6, Lemma 2.1.2].

Lemma 2.4. Assume that (H1) and (H2) hold, h(t) is defined by (1.8), x is a positive solution of (1.1)
and

0 < α := lim inf
t→∞

∫ t

τ(t)

m

∑
i=1

pi(s)ds ≤ 1
e

. (2.11)

Then

lim inf
t→∞

x(h(t))
x(t)

≥ λ0, (2.12)

where λ0 is the smaller root of the transcendental equation λ = eαλ.
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The next lemma provides a lower estimate for the ratio x(t)/x(h(t)) in terms of the smaller
root of d2 − (1− α)d + α2/2 = 0; see [6, Lemma 2.1.3].

Lemma 2.5. Assume that (H1) and (H2) hold, h(t) is defined by (1.8), x is a positive solution of (1.1)
and α is defined by (2.11). Then

lim inf
t→∞

x(t)
x(h(t))

≥ 1− α−
√

1− 2α− α2

2
. (2.13)

2.2 Advanced differential equations

We study (1.2) under the hypotheses:

(H3) t ≤ σi(t) for i = 1, 2, . . . , m, and t ≥ t0;

(H4) xgi(t, x) ≥ 0 and there exists a continuous non-negative function qi such that

|gi(t, x)| ≥ qi(t)|x| ∀x ∈ R, t ≥ t0 .

Similar oscillation lemmas for the (dual) advanced differential equation (1.2) can be derived
easily. The proofs of these lemmas are omitted, since they are quite similar to the delay
equation.

3 Main results

3.1 Delay differential equations

We derive new sufficient oscillation conditions, involving lim sup and lim inf, which essen-
tially improve well-known results in the literature.

Theorem 3.1. Assume that (H1) and (H2) hold. If for some j ≥ 0,

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ h(t)

τi(s)
Pj(u)du

)
ds > 1, (3.1)

where h(t) is defined by (1.8) and Pj by (2.5), then all solutions of (1.1) are oscillatory.

Proof. Assume, for the sake of contradiction, that (1.1) has a non-oscillatory solution x. First
we consider eventually positive solutions. Note that the conditions of Lemmas 2.1 and 2.2 are
satisfied; thus we have

x′(t) +
m

∑
i=1

pi(t)x (τi(t)) ≤ 0, (3.2)

x (τi(s)) ≥ x(h(t)) exp
(∫ h(t)

τi(s)
Pj(u)du

)
. (3.3)

The rest of the proof is similar to the proof of [4, Theorem 1.1]; so we omit it here.

Theorem 3.2. Assume that (H1) and (H2) hold and α is defined by (2.11). If for some j ≥ 0

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ t

τi(s)
Pj(u)du

)
ds >

2
1− α−

√
1− 2α− α2

, (3.4)

where h(t) is defined by (1.8) and Pj by (2.5), then all solutions of (1.1) are oscillatory.
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Proof. As in the proof of Lemma 2.2, we have

x(s) ≥ x(t) exp
(∫ t

s
Pj(u)du

)
, 0 ≤ s ≤ t. (3.5)

Integrating (3.2) from h(t) to t, we have

x(t)− x(h(t)) +
∫ t

h(t)

m

∑
i=1

pi(s)x(τi(s))ds ≤ 0,

which in view of (3.5) gives

x(t)− x(h(t)) +
∫ t

h(t)

m

∑
i=1

pi(s)x(t) exp
(∫ t

τi(s)
Pj(u)du

)
ds ≤ 0;

equivalently

x(t)− x(h(t)) + x(h(t))
∫ t

h(t)

m

∑
i=1

pi(s)
x(t)

x(h(t))
exp

(∫ t

τi(s)
Pj(u)du

)
ds ≤ 0.

The strict inequality is valid if we omit x(t) > 0 in the left-hand side:

−x(h(t)) + x(h(t))
∫ t

h(t)

m

∑
i=1

pi(s)
x(t)

x(h(t))
exp

(∫ t

τi(s)
Pj(u)du

)
ds ≤ 0,

or

x(h(t))

[
x(t)

x(h(t))

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ t

τi(s)
Pj(u)du

)
ds− 1

]
< 0.

Thus ∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ t

τi(s)
Pj(u)du

)
ds <

x(h(t))
x(t)

and therefore

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ t

τi(s)
Pj(u)du

)
ds ≤ lim sup

t→∞

x(h(t))
x(t)

.

From the above inequality and the fact that x(h(t))/x(t) is bounded above by 1 and below by
the positive bound in Lemma 2.5, we have

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ t

τi(s)
Pj(u)du

)
ds ≤ 2

1− a−
√

1− 2a− a2
,

which contradicts (3.4). The proof is complete.

Theorem 3.3. Assume that (H1) and (H2) hold and α is defined by (2.11). If for some j ≥ 0

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ h(s)

τi(s)
Pj(u)du

)
ds >

1 + ln λ0

λ0
− 1− α−

√
1− 2α− α2

2
, (3.6)

where h(t) is defined by (1.8), Pj by (2.5) and λ0 is the smaller root of the transcendental equation
λ = eαλ, then all solutions of (1.1) are oscillatory.
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Proof. Assume, for the sake of contradiction, that (1.1) has a non-oscillatory solution x. First
we consider eventually positive solutions. Note that the conditions of Lemmas 2.1 and 2.2 are
satisfied. Clearly (3.5) is satisfied.

By Lemma 2.4, (2.12) implies: for each ε > 0 there exists a tε such that

x(h(t))
x(t)

> λ0 − ε for all t ≥ tε . (3.7)

The rest of the proof is as in [4, Theorem 2].

Theorem 3.4. Assume that (H1) and (H2) hold. If for some j ≥ 0,

lim inf
t→∞

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ h(s)

τi(s)
Pj(u)du

)
ds >

1
e

, (3.8)

where Pj is defined by (2.5) and h(t) by (1.8), then all solutions of (1.1) are oscillatory.

The proof of the above lemma is similar to the proof of [5, Theorem 3.2] and is omitted
here.

3.2 Advanced differential equations

Similar oscillation theorems for the (dual) advanced differential equation (1.2) can be derived
easily. The proofs of these theorems are omitted, since they are quite similar to the ones for
delay equations.

Set Q0(t) = ∑m
i=1 qi(t) and

Qj(t) = Q0(t)

[
1 +

∫ σi(t)

t

m

∑
k=1

qk(s) exp
(∫ σk(s)

t
Qj−1(u)du

)
ds

]
, j ≥ 1. (3.9)

Theorem 3.5. Assume that (H3) and (H4) hold. If for some j ≥ 0

lim sup
t→∞

∫ ρ(t)

t

m

∑
i=1

qi(s) exp
(∫ σi(s)

ρ(t)
Qj(u)du

)
ds > 1, (3.10)

where ρ(t) is defined by (1.13) and Qj by (3.9), then all solutions of (1.2) are oscillatory.

Theorem 3.6. Assume that (H3) and (H4) hold and

0 < b := lim inf
t→∞

∫ σ(t)

t

m

∑
i=1

qi(s)ds ≤ 1
e

. (3.11)

If for some j ≥ 0

lim sup
t→∞

∫ ρ(t)

t

m

∑
i=1

qi(s) exp
(∫ σi(s)

t
Qj(u)du

)
ds >

2
1− b−

√
1− 2b− b2

, (3.12)

where ρ(t) is defined by (1.13) and Qj by (3.9), then all solutions of (1.2) are oscillatory.

Theorem 3.7. Assume that (H3) and (H4) hold and b is defined by (3.11). If for some j ≥ 0

lim sup
t→∞

∫ ρ(t)

t

m

∑
i=1

qi(s) exp
(∫ σi(s)

ρ(s)
Qj(u)du

)
ds >

1 + ln λ0

λ0
− 1− b−

√
1− 2b− b2

2
, (3.13)

where ρ(t) is defined by (1.13), Qj by (3.9) and λ0 is the smaller root of the transcendental equation
λ = eαλ, then all solutions of (1.2) are oscillatory.
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Theorem 3.8. Assume that (H3) and (H4) hold. If for some j ≥ 0,

lim inf
t→∞

∫ ρ(t)

t

m

∑
i=1

qi(s) exp
(∫ σi(s)

ρ(s)
Qj(u)du

)
ds >

1
e

, (3.14)

where ρ(t) is defined by (1.13) and Qj by (3.9), then all solutions of (1.2) are oscillatory.

4 Example

Consider the non-linear delay differential equation

x′(t) +
1
3t

(1.1x(τ1(t)) + 0.1 sin (x(τ1(t)))) +
2
3t

x(τ2(t)) = 0, t ≥ 1. (4.1)

Here t0 = 1, q1(t) = 1/(3t) and q2(t) = 2/(3t). Using the constant a = e1/e, we define
recursively a sequence {tk}:

t1 = t0 + 1, t2 =
a + 1

2
t1, t3 = at1, t4 = (2a− 1)t1,

t5 = t4 + 1, t6 =
a + 1

2
t5, t7 = at5, t8 = (2a− 1)t5, . . .

The delayed arguments are defined on [t0, t4] as (see Figure 4.1 (a))

τ1(t) =


t/a, if t ∈ [t0, t1],

t1/a− 1
a2 (t− t1), if t ∈ [t1, t2],

t/a2, if t ∈ [t2, t3],

(t1/a) + 2(t− t3)/a, if t ∈ [t3, t4];

τ2(t) = τ1(t)− 0.1 .

Similar definition are used on the intervals [t4, t8], [t8, t12], . . .

-

6

"
"
"PPP!!

!!
�
�
�
�
�

t0 t1 t2 t3 t4

y = t y = t/a

y = t/a2

τ(t)

-

6

"
"
"
((((((

�
�
�
�
�

t0 t1 t2 t3 t4

y = t y = t/a

y = t/a2h(t)

Figure 4.1: Graphs of τ1(t) and h1(t)

By (1.8), we see that

h1(t) := sup
s≤t

τ1(s) =


ta, if t ∈ [t0, t1],

t1/a if t ∈ [t1, t3],

(t1/a) + 2(t− t3)/a, if t ∈ [t3, t4];

h2(t) = h1(t)− 0.1
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and consequently

h(t) = max
1≤i≤2

{hi(t)} = h1(t), τ(t) = max
1≤i≤2

{τi(t)} = τ1(t) .

(Note that t/a2 ≤ τ(t) ≤ h(t) ≤ t/a < t). It is easy to see that

α = lim inf
t→∞

∫ t

τ(t)

m

∑
i=1

pi(s)ds = lim
t→∞

∫ t

t/a

1
s

ds = ln a =
1
e

and λ0 = e (see Lemma 2.3). Thus

lim sup
t→∞

∫ t

h(t)

m

∑
i=1

pi(s) exp
(∫ h(s)

τi(s)
Pj(u)du

)
ds

≥ lim sup
t→∞

∫ t

h(t)
P0(s)ds = lim sup

t→∞

∫ at1

t1/a

1
s

ds = ln a2 =
2
e

' 0.7358 >
1 + ln λ0

λ0
− 1− a−

√
1− 2a− a2

2
' 0.598;

that is, condition (3.6) of Theorem 3.3 is satisfied, and therefore all solutions of (4.1) are
oscillatory. However, condition (1.4) is not satisfied.

We remark that similar examples can be constructed to illustrate the other theorems above.
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