Location of solutions for quasi-linear elliptic equations with general gradient dependence

Dumitru Motreanu ${ }^{\boxtimes 1}$ and Elisabetta Tornatore ${ }^{2}$
${ }^{1}$ University of Perpignan, Department of Mathematics, Perpignan, 66860, France
${ }^{2}$ Università degli Studi di Palermo, Dipartimento di Matematica e Informatica, Palermo, 90123, Italy

Received 25 September 2017, appeared 10 December 2017
Communicated by Gabriele Bonanno

Abstract

Existence and location of solutions to a Dirichlet problem driven by (p, q) Laplacian and containing a (convection) term fully depending on the solution and its gradient are established through the method of subsolution-supersolution. Here we substantially improve the growth condition used in preceding works. The abstract theorem is applied to get a new result for existence of positive solutions with a priori estimates.

Keywords: quasi-linear elliptic equations, gradient dependence, (p, q)-Laplacian, subsolution-supersolution, positive solution.
2010 Mathematics Subject Classification: 35J92, 35J25.

1 Introduction

The aim of this paper is to study the following nonlinear elliptic boundary value problem

$$
\begin{cases}-\Delta_{p} u-\mu \Delta_{q} u=f(x, u, \nabla u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

by means of the method of subsolution-supersolution on a bounded domain $\Omega \subset \mathbb{R}^{N}$. For regularity reasons we assume that the boundary $\partial \Omega$ is of class C^{2}. In order to simplify the presentation we suppose that $N \geq 3$. The lower dimensional cases $N=1,2$ are simpler and can be treated by slightly modified arguments.

In the statement of problem $\left(P_{\mu}\right)$, there are given real numbers $\mu \geq 0$ and $1<q<p$. The leading differential operator in $\left(P_{\mu}\right)$ is described by the p-Laplacian and q-Laplacian, namely $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ and $\Delta_{q} u=\operatorname{div}\left(|\nabla u|^{q-2} \nabla u\right)$. Hence if $\mu=0$, problem $\left(P_{\mu}\right)$ is governed by the p-Laplacian Δ_{p}, whereas if $\mu=1$, it is driven by the (p, q)-Laplacian $\Delta_{p}+\Delta_{q}$, which is an essentially different type of nonlinear operator.

The right-hand side of the elliptic equation in $\left(P_{\mu}\right)$ is expressed through a Carathéodory function $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$, i.e., $f(\cdot, s, \xi)$ is measurable for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$ and $f(x, \cdot, \cdot)$

[^0]is continuous for a.e. $x \in \Omega$. We emphasize that the term $f(x, u, \nabla u)$ (often called convection term) depends not only on the solution u, but also on its gradient ∇u. This fact produces serious difficulties of treatment mainly because the convection term generally prevents to have a variational structure for problem $\left(P_{\mu}\right)$, so the variational methods are not applicable.

Existence results for problem $\left(P_{\mu}\right)$ or for systems of equations of this form have been obtained in [1,4-7,10-12]. Location of solutions through the method of subsolution-supersolution in the case of systems involving p-Laplacian operators has been investigated in [3]. Here, in the case of an equation possibly involving the (p, q)-Laplacian, we focus on the location of solutions within ordered intervals determined by pairs of subsolution-supersolution of problem $\left(P_{\mu}\right)$ under a much more general growth condition on the right-hand side $f(x, u, \nabla u)$ (see hypothesis (H) below). We also provide a new result guaranteeing the existence of positive solutions to $\left(P_{\mu}\right)$.

The functional space associated to problem $\left(P_{\mu}\right)$ is the Sobolev space $W_{0}^{1, p}(\Omega)$ endowed with the norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{\frac{1}{p}}
$$

Its dual space is $W^{-1, p^{\prime}}(\Omega)$, with $p^{\prime}=p /(p-1)$, and the corresponding duality pairing is denoted $\langle\cdot, \cdot\rangle$.

A solution of problem $\left(P_{\mu}\right)$ is understood in the weak sense, that is any function $u \in$ $W_{0}^{1, p}(\Omega)$ such that

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x+\mu \int_{\Omega}|\nabla u|^{q-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x
$$

for all $v \in W_{0}^{1, p}(\Omega)$.
Our study of problem $\left(P_{\mu}\right)$ is based on the method of subsolution-supersolution. We refer to $[2,9]$ for details related to this method. We recall that a function $\bar{u} \in W^{1, p}(\Omega)$ is a supersolution for problem $\left(P_{\mu}\right)$ if $\bar{u} \geq 0$ on $\partial \Omega$ and

$$
\int_{\Omega}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}+\mu|\nabla \bar{u}|^{q-2} \nabla \bar{u}\right) \nabla v d x \geq \int_{\Omega} f(x, \bar{u}, \nabla \bar{u}) v d x
$$

for all $v \in W_{0}^{1, p}(\Omega), v \geq 0$ a.e. in Ω. A function $\underline{u} \in W^{1, p}(\Omega)$ is a subsolution for problem $\left(P_{\mu}\right)$ if $\underline{u} \leq 0$ on $\partial \Omega$ and

$$
\int_{\Omega}\left(|\nabla \underline{u}|^{p-2} \nabla \underline{u}+\mu|\nabla \underline{u}|^{q-2} \nabla \underline{u}\right) \nabla v d x \leq \int_{\Omega} f(x, \underline{u}, \nabla \underline{u}) v d x
$$

for all $v \in W_{0}^{1, p}(\Omega), v \geq 0$ a.e. in Ω.
In the sequel we suppose that $N>p$ (if $N \leq p$ the treatment is easier). Then the critical Sobolev exponent is $p^{*}=\frac{N p}{N-p}$.

Given a subsolution $\underline{u} \in W^{1, p}(\Omega)$ and a supersolution $\bar{u} \in W^{1, p}(\Omega)$ for problem $\left(P_{\mu}\right)$ with $\underline{u} \leq \bar{u}$ a.e. in Ω, we assume that $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies the growth condition:
(H) There exist a function $\sigma \in L^{\gamma^{\prime}}(\Omega)$ for $\gamma^{\prime}=\frac{\gamma}{\gamma-1}$ with $\gamma \in\left(1, p^{*}\right)$ and constants $a>0$ and $\beta \in\left[0, \frac{p}{\left(p^{*}\right)^{\prime}}\right)$ such that

$$
|f(x, s, \xi)| \leq \sigma(x)+a|\xi|^{\beta} \quad \text { for a.e. } x \in \Omega \text {, all } s \in[\underline{u}(x), \bar{u}(x)], \xi \in \mathbb{R}^{N} .
$$

Notice that, under assumption (H), the integrals in the definitions of the subsolution \underline{u} and the supersolution \bar{u} exist.

Our main goal is to obtain a solution $u \in W_{0}^{1, p}(\Omega)$ of problem $\left(P_{\mu}\right)$ with the location property $\underline{u} \leq u \leq \bar{u}$ a.e. in Ω. This is done through an auxiliary truncated problem termed ($T_{\lambda, \mu}$) depending on a positive parameter λ (for any fixed $\mu \geq 0$). It is shown in Theorem 2.1 that whenever $\lambda>0$ is sufficiently large, problem $\left(T_{\lambda, \mu}\right)$ is solvable. The next principal step is performed in Theorem 3.1, where it is proven by adequate comparison that every solution $u \in$ $W_{0}^{1, p}(\Omega)$ of problem $\left(T_{\lambda, u}\right)$ is within the ordered interval $[\underline{u}, \bar{u}]$ determined by the subsolutionsupersolution, that is $\underline{u} \leq u \leq \bar{u}$ a.e. in Ω. Then the expression of the equation in ($T_{\lambda, u}$) enables us to conclude that u is actually a solution of the original problem $\left(P_{\mu}\right)$ verifying the location property $\underline{u} \leq u \leq \bar{u}$ a.e. in Ω. We emphasize that Theorem 2.1 improves all the growth conditions for the convection term $f(x, u, \nabla u)$ considered in the preceding works. Finally, in Theorem 4.1, the procedure to construct solutions located in ordered intervals $[\underline{u}, \bar{u}]$ is conducted to guarantee the existence of a positive solution to problem $\left(P_{\mu}\right)$. It is also worth mentioning that this result provides a priori estimates for the obtained solution.

2 Auxiliary truncated problem

This section is devoted to the study of an auxiliary problem related to problem $\left(P_{\mu}\right)$. We start with some notation. The Euclidean norm on \mathbb{R}^{N} is denoted by $|\cdot|$ and the Lebesgue measure on \mathbb{R}^{N} by $|\cdot|_{N}$. For every $r \in \mathbb{R}$, we set $r^{+}=\max \{r, 0\}, r^{-}=\max \{-r, 0\}$, and if $r>1$, $r^{\prime}=\frac{r}{r-1}$.

Let \underline{u} and \bar{u} be a subsolution and a supersolution for problem $\left(P_{\mu}\right)$, respectively, with $\underline{u} \leq \bar{u}$ a.e. in Ω such that hypothesis (H) is satisfied. We consider the truncation operator $T: W_{0}^{1, p}(\Omega) \rightarrow W_{0}^{1, p}(\Omega)$ defined by

$$
\operatorname{Tu}(x)= \begin{cases}\bar{u}(x), & u(x)>\bar{u}(x), \tag{2.1}\\ u(x), & \underline{u}(x) \leq u(x) \leq \bar{u}(x), \\ \underline{u}(x), & u(x)<\underline{u}(x),\end{cases}
$$

which is known to be continuous and bounded.
By means of the constant β in hypothesis (H) we introduce the cut-off function $\pi: \Omega \times$ $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\pi(x, s)= \begin{cases}(s-\bar{u}(x))^{\frac{\beta}{p-\beta}}, & s>\bar{u}(x), \tag{2.2}\\ 0, & \underline{u}(x) \leq s \leq \bar{u}(x), \\ -(\underline{u}(x)-s)^{\frac{\beta}{p-\beta}}, & s<\underline{u}(x) .\end{cases}
$$

We observe that π satisfies the growth condition

$$
\begin{equation*}
|\pi(x, s)| \leq c|s|^{\frac{\beta}{p-\beta}}+\varrho(x) \quad \text { for a.e. } x \in \Omega \text {, all } s \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

with a constant $c>0$ and a function $\varrho \in L^{\frac{p}{\beta}}(\Omega)$. Here it is used that $\underline{u}, \bar{u} \in W^{1, p}(\Omega) \subset$ $L^{p^{*}}(\Omega)$ and $\beta<\frac{p}{\left(p^{*}\right)^{\prime}}$. By (2.3), the fact that $\beta<\frac{p}{\left(p^{*}\right)^{\prime}}$ and Rellich-Kondrachov compactness embedding theorem, it follows that the Nemytskij operator $\Pi: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ given
by $\Pi(u)=\pi(\cdot, u(\cdot))$ is completely continuous. Moreover, (2.2) leads to

$$
\begin{equation*}
\int_{\Omega} \pi(x, u(x)) u(x) d x \geq r_{1}\|u\|_{L^{\frac{p}{p-\beta}}(\Omega)}^{\frac{p}{p-\beta}}-r_{2} \text { for all } u \in W_{0}^{1, p}(\Omega) \tag{2.4}
\end{equation*}
$$

with positive constants r_{1} and r_{2}.
Next we consider the Nemytskij operator $N:[\underline{u}, \bar{u}] \rightarrow W^{-1, p^{\prime}}(\Omega)$ determined by the function f in $\left(P_{\mu}\right)$, that is

$$
N(u)(x)=f(x, u(x), \nabla u(x))
$$

which is well defined by virtue of hypothesis (H).
With the data above, for any $\lambda>0$ let the auxiliary truncated problem associated to $\left(P_{\mu}\right)$ be formulated as follows

$$
-\Delta_{p} u-\mu \Delta_{q} u+\lambda \Pi(u)=N(T u)
$$

For problem $\left(T_{\lambda, \mu}\right)$ we have the following result.
Theorem 2.1. Let \underline{u} and \bar{u} be a subsolution and a supersolution of problem $\left(P_{\mu}\right)$, respectively, with $\underline{u} \leq \bar{u}$ a.e. in Ω such that hypothesis (H) is fulfilled. Then there exists $\lambda_{0}>0$ such that whenever $\lambda \geq \lambda_{0}$ there is a solution $u \in W_{0}^{1, p}(\Omega)$ of the auxiliary problem $\left(T_{\lambda, \mu}\right)$.

Proof. For every $\lambda>0$ we introduce the nonlinear operator $A_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ defined by

$$
\begin{equation*}
A_{\lambda} u=-\Delta_{p} u-\mu \Delta_{q} u+\lambda \Pi(u)-N(T u) \tag{2.5}
\end{equation*}
$$

Due to (2.3) and (H), the operator A_{λ} is bounded.
We claim that A_{λ} in (2.5) is a pseudomonotone operator. In order to show this, let a sequence $\left\{u_{n}\right\} \subset W_{0}^{1, p}(\Omega)$ satisfy

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { in } W_{0}^{1, p}(\Omega) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle A_{\lambda} u_{n}, u_{n}-u\right\rangle \leq 0 \tag{2.7}
\end{equation*}
$$

Recalling from (H) that $\sigma \in L^{\gamma^{\prime}}(\Omega)$ with $\gamma<p^{*}$, by Hölder's inequality, (2.6) and the RellichKondrachov compact embedding theorem we get

$$
\begin{equation*}
\int_{\Omega} \sigma\left|u_{n}-u\right| d x \leq\|\sigma\|_{L^{\gamma^{\prime}}(\Omega)}\left\|u_{n}-u\right\|_{L^{\gamma}(\Omega)} \rightarrow 0 \quad \text { as } n \rightarrow+\infty \tag{2.8}
\end{equation*}
$$

Let us show that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(T u_{n}\right)\right|^{\beta}\left|u_{n}-u\right| d x \rightarrow 0 \quad \text { as } n \rightarrow+\infty \tag{2.9}
\end{equation*}
$$

The definition of the truncation operator $T: W_{0}^{1, p}(\Omega) \rightarrow W_{0}^{1, p}(\Omega)$ in (2.1) yields

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(T u_{n}\right)\right|^{\beta}\left|u_{n}-u\right| d x= & \int_{\left\{u_{n}<\underline{u}\right\}}|\nabla \underline{u}|^{\beta}\left|u_{n}-u\right| d x \\
& +\int_{\left\{\underline{u} \leq u_{n} \leq \bar{u}\right\}}\left|\nabla u_{n}\right|^{\beta}\left|u_{n}-u\right| d x+\int_{\left\{u_{n}>\bar{u}\right\}}|\nabla \bar{u}|^{\beta}\left|u_{n}-u\right| d x .
\end{aligned}
$$

Using Hölder's inequality, (2.6) and the Rellich-Kondrachov compact embedding theorem, as well as the inequality $\frac{p}{p-\beta}<p^{*}$, enables us to find that

$$
\int_{\left\{u_{n}<\underline{u}\right\}}|\nabla \underline{u}|^{\beta}\left|u_{n}-u\right| d x \leq\|\nabla \underline{u}\|_{L^{p}(\Omega)}^{\beta}\left\|u_{n}-u\right\|_{L^{\frac{p}{p-\beta}}(\Omega)} \rightarrow 0
$$

$$
\begin{gathered}
\int_{\left\{\underline{u} \leq u_{n} \leq \bar{u}\right\}}\left|\nabla u_{n}\right|^{\beta}\left|u_{n}-u\right| d x \leq\left\|\nabla u_{n}\right\|_{L^{p}(\Omega)}^{\beta}\left\|u_{n}-u\right\|_{L^{\frac{p}{p-\beta}(\Omega)}} \rightarrow 0 \\
\int_{\left\{u_{n}>\bar{u}\right\}}|\nabla \bar{u}|^{\beta}\left|u_{n}-u\right| d x \leq\|\nabla \bar{u}\|_{L^{p}(\Omega)}^{\beta}\left\|u_{n}-u\right\|_{L^{\frac{p}{p-\beta}}(\Omega)} \rightarrow 0
\end{gathered}
$$

Therefore (2.9) holds true.
Taking into account (2.8), (2.9), hypothesis (H) and the fact that $\underline{u} \leq T u_{n} \leq \bar{u}$ a.e. in Ω for every n, it turns out that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(x, T u_{n}, \nabla\left(T u_{n}\right)\right)\left(u_{n}-u\right) d x=0 \tag{2.10}
\end{equation*}
$$

Using (2.3), (2.6) and the inequality $\frac{p}{p-\beta}<p^{*}$, the same type of arguments yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \pi\left(x, u_{n}\right)\left(u_{n}-u\right) d x=0 \tag{2.11}
\end{equation*}
$$

Due to (2.10) and (2.11), inequality (2.7) becomes

$$
\limsup _{n \rightarrow \infty}\left\langle-\Delta_{p} u_{n}-\mu \Delta_{q} u_{n}, u_{n}-u\right\rangle \leq 0
$$

Through the $(S)_{+}$-property of the operator $-\Delta_{p}-\mu \Delta_{q}$ (see [9, pp. 39-40]) and (2.6), we obtain the strong convergence $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$, thus

$$
\begin{equation*}
-\Delta_{p} u_{n}-\mu \Delta_{q} u_{n} \rightarrow-\Delta_{p} u-\mu \Delta_{q} u . \tag{2.12}
\end{equation*}
$$

Taking into account (2.12) and that $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$, we get

$$
A_{\lambda} u_{n} \rightharpoonup A_{\lambda} u, \quad\left\langle A_{\lambda} u_{n}, u_{n}\right\rangle \rightarrow\left\langle A_{\lambda} u, u\right\rangle
$$

which ensures that the operator A_{λ} is pseudomonotone.
Now we prove that the operator $A_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is coercive meaning that

$$
\lim _{\|u\| \rightarrow+\infty} \frac{\left\langle A_{\lambda} u, u\right\rangle}{\|u\|}=+\infty
$$

The expression of A_{λ} in (2.5) allows us to find

$$
\begin{equation*}
\left\langle A_{\lambda} u, u\right\rangle \geq\|\nabla u\|_{L^{p}(\Omega)}^{p}+\lambda \int_{\Omega} \pi(x, u) u d x-\int_{\Omega} f(x, T u, \nabla(T u)) u d x \tag{2.13}
\end{equation*}
$$

Notice that by virtue of (2.1), it holds $\underline{u} \leq T u \leq \bar{u}$ a.e. in Ω for every $u \in W_{0}^{1, p}(\Omega)$, so we can use hypothesis (H) with $s=(T u)(x)$ for a.e. $x \in \Omega$. Then, combining with Young's inequality and Sobolev embedding theorem, we infer for each $\varepsilon>0$ that

$$
\begin{align*}
& \left|\int_{\Omega} f(x, T u, \nabla(T u)) u d x\right| \\
& \quad \leq \int_{\Omega}\left(\sigma|u|+a|\nabla(T u)|^{\beta}|u|\right) d x \\
& \quad \leq\|\sigma\|_{L^{\gamma^{\prime}}(\Omega)}\|u\|_{L^{\gamma}(\Omega)}+\varepsilon\|\nabla u\|_{L^{p}(\Omega)}^{p}+c_{1}(\varepsilon)\|u\|_{\substack{\frac{p}{p-\beta}(\Omega)}}^{\frac{p}{p-\beta}}+c_{2}\|u\|_{L^{\frac{p}{p-\beta}}(\Omega)} \tag{2.14}\\
& \quad \leq \varepsilon\|u\|^{p}+c_{1}(\varepsilon)\|u\|_{L^{\frac{p}{p-\beta}}(\Omega)}^{\frac{p}{p-\beta}}+d\|u\|,
\end{align*}
$$

with positive constants $c_{1}(\varepsilon)$ (depending on ε), c_{2}, d.
Inserting (2.4) and (2.14) in (2.13), it turns out that

$$
\begin{equation*}
\left\langle A_{\lambda} u, u\right\rangle \geq(1-\varepsilon)\|u\|^{p}+\left(\lambda r_{1}-c_{1}(\varepsilon)\right)\|u\|_{L^{\frac{p}{p-\beta}}(\Omega)}^{\frac{p}{p-\beta}}-d\|u\|-\lambda r_{2} . \tag{2.15}
\end{equation*}
$$

Choose $\varepsilon \in(0,1)$ and $\lambda>\frac{c_{1}(\varepsilon)}{r_{1}}$. Then (2.15) implies that the operator A_{λ} is coercive.
Since the operator $A: W_{0}^{1, p}\left(\Omega \rightarrow W^{-1, p^{\prime}}(\Omega)\right.$ is bounded, pseudomonotone and coercive, it is surjective (see [2, p. 40]). Therefore we can find $u \in W_{0}^{1, p}(\Omega)$ that solves equation $\left(T_{\lambda, \mu}\right)$, which completes the proof.

3 Main result

We state our main abstract result on problem $\left(P_{\mu}\right)$.
Theorem 3.1. Let \underline{u} and \bar{u} be a subsolution and a supersolution of problem $\left(P_{\mu}\right)$, respectively, with $\underline{u} \leq$ \bar{u} a.e. in Ω such that hypothesis (H) is fulfilled. Then problem $\left(P_{\mu}\right)$ possesses a solution $u \in W_{0}^{1, p}(\Omega)$ satisfying the location property $\underline{u} \leq u \leq \bar{u}$ a.e. in Ω.

Proof. Theorem 2.1 guarantees the existence of a solution of the truncated auxiliary problem ($T_{\lambda, \mu}$) provided $\lambda>0$ is sufficiently large. Fix such a constant λ and let $u \in W_{0}^{1, p}(\Omega)$ be a solution of $\left(T_{\lambda, \mu}\right)$.

We prove that $u \leq \bar{u}$ a.e. in Ω. Acting with $(u-\bar{u})^{+} \in W_{0}^{1, p}(\Omega)$ as a test function in the definition of the supersolution \bar{u} of $\left(P_{\mu}\right)$ and in the definition of the solution u for the auxiliary truncated problem $\left(T_{\lambda, \mu}\right)$ results in

$$
\begin{equation*}
\left\langle-\Delta_{p} \bar{u}-\mu \Delta_{q} \bar{u},(u-\bar{u})^{+}\right\rangle \geq \int_{\Omega} f(x, \bar{u}, \nabla \bar{u})(u-\bar{u})^{+} d x \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle-\Delta_{p} u-\mu \Delta_{q} u,(u-\bar{u})^{+}\right\rangle+\lambda \int_{\Omega} \Pi(u)(u-\bar{u})^{+} d x=\int_{\Omega} f(x, T u, \nabla(T u))(u-\bar{u})^{+} d x . \tag{3.2}
\end{equation*}
$$

From (3.1), (3.2) and (2.1) we derive

$$
\begin{align*}
& \int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right) \nabla(u-\bar{u})^{+} d x \\
&+\mu \int_{\Omega}\left(|\nabla u|^{q-2} \nabla u-|\nabla \bar{u}|^{q-2} \nabla \bar{u}\right) \nabla(u-\bar{u})^{+} d x+\lambda \int_{\Omega} \pi(x, u)(u-\bar{u})^{+} d x \tag{3.3}\\
& \leq \int_{\Omega}(f(x, T u, \nabla(T u))-f(x, \bar{u}, \nabla \bar{u}))(u-\bar{u})^{+} d x \\
&= \int_{\{u>\bar{u}\}}(f(x, T u, \nabla(T u))-f(x, \bar{u}, \nabla \bar{u}))(u-\bar{u}) d x=0 .
\end{align*}
$$

Since

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right) \nabla(u-\bar{u})^{+} d x \\
& \quad=\int_{\{u>\bar{u}\}}\left(|\nabla u|^{p-2} \nabla u-|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right)(\nabla u-\nabla \bar{u}) d x \geq 0
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla u|^{q-2} \nabla u-|\nabla \bar{u}|^{q-2} \nabla \bar{u}\right) \nabla(u-\bar{u})^{+} d x \\
& \quad=\int_{\{u>\bar{u}\}}\left(|\nabla u|^{q-2} \nabla u-|\nabla \bar{u}|^{q-2} \nabla \bar{u}\right)(\nabla u-\nabla \bar{u}) d x \geq 0,
\end{aligned}
$$

we are able to derive from (2.2) and (3.3) that

$$
\int_{\{u>\bar{u}\}}(u-\bar{u})^{\frac{p}{p-\beta}} d x=\int_{\Omega} \pi(x, u)(u-\bar{u})^{+} d x \leq 0 .
$$

It follows that $u \leq \bar{u}$ a.e in Ω.
In an analogous way, by suitable comparison we can show that $\underline{u} \leq u$ a.e in Ω. Consequently, the solution u of the auxiliary truncated problem $\left(T_{\lambda, \mu}\right)$ satisfies $T u=u$ and $\Pi(u)=0$ (see (2.1) and (2.2)), so it becomes a solution of the original problem $\left(P_{\mu}\right)$, which completes the proof.

4 Existence of positive solutions

In this section we focus on the existence of positive solutions to problem $\left(P_{\mu}\right)$. The idea is to construct a subsolution $\underline{u} \in W^{1, p}(\Omega)$ and a supersolution $\bar{u} \in W^{1, p}(\Omega)$ with $0<\underline{u} \leq \bar{u}$ a.e. in Ω for which Theorem 3.1 can be applied. In this respect, inspired by [6,8], we suppose the following assumptions on the right-hand side f of $\left(P_{\mu}\right)$:
(H1) There exist constants $a_{0}>0, b>0, \delta>0$ and $r>0$, with $r<p-1$ if $\mu=0$ and $r<q-1$ if $\mu>0$, such that

$$
\begin{equation*}
\left(\frac{a_{0}}{b}\right)^{\frac{1}{p-r-1}}<\delta \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x, s, \xi) \geq a_{0} s^{r}-b s^{p-1} \quad \text { for a.e. } x \in \Omega \text {, all } 0<s<\delta, \xi \in \mathbb{R}^{N} \text {. } \tag{4.2}
\end{equation*}
$$

(H2) There exists a constant $s_{0}>\delta$, with $\delta>0$ in (H1), such that

$$
\begin{equation*}
f\left(x, s_{0}, 0\right) \leq 0 \quad \text { for a.e. } x \in \Omega \text {. } \tag{4.3}
\end{equation*}
$$

Our result on the existence of positive solutions for problem $\left(P_{\mu}\right)$ is as follows.
Theorem 4.1. Assume (H1), (H2) and that

$$
|f(x, s, \xi)| \leq \sigma(x)+a|\xi|^{\beta} \quad \text { for a.e. } x \in \Omega \text {, all } s \in\left[0, s_{0}\right], \xi \in \mathbb{R}^{N},
$$

with a function $\sigma \in L^{\gamma^{\prime}}(\Omega)$ for $\gamma \in\left[1, p^{*}\right)$ and constants $a>0$ and $\beta \in\left[0, \frac{p}{\left.\left(p^{*}\right)^{\prime}\right)}\right)$. Then, for every $\mu \geq 0$, problem $\left(P_{\mu}\right)$ possesses a positive smooth solution $u \in C_{0}^{1}(\bar{\Omega})$ satisfying the a priori estimate $u(x) \leq s_{0}$ for all $x \in \Omega\left(s_{0}\right.$ is the constant in (H2)).

Proof. With the notation in hypothesis (H1), consider the following auxiliary problem

$$
\begin{cases}-\Delta_{p} u-\mu \Delta_{q} u+b|u|^{p-2} u=a_{0}\left(u^{+}\right)^{r} & \text { in } \Omega, \tag{4.4}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

We are going to show that there exists a solution $\underline{u} \in C_{0}^{1}(\bar{\Omega})$ of problem (4.4) satisfying $\underline{u}>0$ in Ω and

$$
\begin{equation*}
b\|\underline{u}\|_{L^{\infty}(\Omega)}^{p-r-1} \leq a_{0} . \tag{4.5}
\end{equation*}
$$

To this end, we consider the Euler functional associated to (4.5), that is the C^{1}-function I : $W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
I(u)=\frac{1}{p} \int_{\Omega}\left(|\nabla u|^{p}+b|u|^{p}\right) d x+\frac{\mu}{q} \int_{\Omega}|\nabla u|^{q} d x-\frac{a_{0}}{r+1} \int_{\Omega}\left(u^{+}\right)^{r+1} d x
$$

whenever $u \in W_{0}^{1, p}(\Omega)$. From the assumption on r in hypothesis $(H 1)$ and Sobolev embedding theorem, it is easy to prove that I is coercive. Since I is also sequentially weakly lower semicontinuous, there exists $\underline{u} \in W_{0}^{1, p}(\Omega)$ such that

$$
I(\underline{u})=\inf _{u \in W_{0}^{1, p}(\Omega)} I(u) .
$$

On the basis of the conditions $r<p-1$ if $\mu=0$ and $r<q-1$ if $\mu>0$ (see hypothesis $(H 1)$), it is seen that for any positive function $v \in W_{0}^{1, p}(\Omega)$ and with a sufficiently small $t>0$, there holds $I(t v)<0$, so $\inf _{u \in W_{0}^{1, p}(\Omega)} I(u)<0$. This enables us to deduce that \underline{u} is a nontrivial solution of (4.4). Testing equation (4.4) with $-\underline{u}^{-}$yields $\underline{u} \geq 0$. By the nonlinear regularity theory and strong maximum principle we obtain that $\underline{u} \in C_{0}^{1}(\bar{\Omega})$ and $\underline{u}>0$ in Ω.

According to the latter properties, we can utilize $\underline{u}^{\alpha+1}$, with any $\alpha>0$, as a test function in (4.4). Through Hölder's inequality and because $r+1<p$, this leads to

$$
b\|\underline{u}\|_{L^{p+\alpha}(\Omega)}^{p+\alpha} \leq a_{0} \int_{\Omega} \underline{u}^{r+\alpha+1} d x \leq a_{0}\|\underline{u}\|_{L^{p+\alpha}(\Omega)}^{r+\alpha+1}|\Omega|_{N}^{(p-r-1) /(p+\alpha)}
$$

Letting $\alpha \rightarrow+\infty$ in the inequality

$$
b\|\underline{u}\|_{L^{p+\alpha}(\Omega)}^{p-r-1} \leq a_{0}|\Omega|_{N}^{(p-r-1) /(p+\alpha)}
$$

we arrive at (4.5).
We claim that \underline{u} is a subsolution for problem $\left(P_{\mu}\right)$. Specifically, due to (4.1) and (4.5), we can insert $s=\underline{u}(x)$ and $\xi=\nabla \underline{u}(x)$ in (4.2), which in conjunction with (4.4) for $u=\underline{u}$ reads as

$$
\begin{aligned}
\int_{\Omega}\left(|\nabla \underline{u}|^{p-2} \nabla \underline{u}+\mu|\nabla \underline{u}|^{q-2} \nabla \underline{u} \nabla v\right) \nabla v d x & =\int_{\Omega}\left(a_{0} \underline{u}^{r}-b \underline{u}^{p-1}\right) v d x \\
& \leq \int_{\Omega} f(x, \underline{u}, \nabla \underline{u}) v d x
\end{aligned}
$$

whenever $v \in W_{0}^{1, p}(\Omega), v \geq 0$ a.e. in Ω. Thereby the claim is proven.
Now we notice that hypothesis (H2) guarantees that $\bar{u}=s_{0}$ is a supersolution of problem $\left(P_{\mu}\right)$. Indeed, in view of (4.3), we obtain

$$
\begin{aligned}
\int_{\Omega}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}+\mu|\nabla \bar{u}|^{q-2} \nabla \bar{u}\right) \nabla v d x=0 & \geq \int_{\Omega} f\left(x, s_{0}, 0\right) v d x \\
& =\int_{\Omega} f(x, \bar{u}, \nabla \bar{u}) v d x
\end{aligned}
$$

for all $v \in W_{0}^{1, p}(\Omega), v \geq 0$ a.e. in Ω. We point out from assumption $(H 2)$ that $s_{0}>\delta$, which in conjunction with (4.1) and (4.5), entails that $\underline{u}<\bar{u}$ in Ω.

We also note that hypothesis (H) holds true for the constructed subsolution-supersolution (\underline{u}, \bar{u}) of problem $\left(P_{\mu}\right)$. Therefore Theorem 3.1 applies ensuring the existence of a solution $u \in W_{0}^{1, p}(\Omega)$ to problem $\left(P_{\mu}\right)$, which satisfies the enclosure property $\underline{u} \leq u \leq \bar{u}$ a.e. in Ω. Taking into account that $\underline{u}>0$, we conclude that the solution u is positive. Moreover, the regularity up to the boundary invoked for problem $\left(P_{\mu}\right)$ renders $u \in C_{0}^{1}(\bar{\Omega})$, whereas the inequality $u \leq \bar{u}$ implies the estimate $u(x) \leq s_{0}$ for all $x \in \Omega$. This completes the proof.

Remark 4.2. Proceeding symmetrically, a counterpart of Theorem 4.1 for negative solutions can be established.

We illustrate the applicability of Theorem 4.1 by a simple example.
Example 4.3. Let $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be defined by

$$
f(x, s, \xi)=|s|^{r}-|s|^{p-1}+\left(2^{\frac{p-r}{p-r-1}}-s\right)|\xi|^{\beta} \text { for all }(x, s, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^{N}
$$

where the constants r, p, β are as in conditions (H) and (H1). For simplicity, we have dropped the dependence with respect to $x \in \Omega$. Hypothesis $(H 1)$ is verified by taking for instance $a_{0}=b=1$ and $\delta=2^{\frac{p-r}{p-r-1}}$ (see (4.1) and (4.2)). Hypothesis (H2) is fulfilled for every $s_{0}>$ $\delta=2^{\frac{p-r}{p-r-1}}$. It is also clear that the growth condition for f on $\Omega \times\left[0, s_{0}\right] \times \mathbb{R}^{N}$ required in the statement of Theorem 4.1 is satisfied, too. Consequently, Theorem 4.1 applies to problem (P_{μ}) with the chosen function $f(x, s, \xi)$ giving rise to a positive solution belonging to $C_{0}^{1}(\bar{\Omega})$.

Acknowledgements

The authors were partially supported by INdAM - GNAMPA Project 2015.

References

[1] D. Averna, D. Motreanu E. Tornatore, Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett. 61(2016), 102-107. MR3518455; https://doi.org/10.1016/j.aml.2016.05.009
[2] S. Carl, V. K. Le, D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles and applications, Springer Monographs in Mathematics, Springer, New York, 2007. MR2267795; https://doi.org/10.1007/978-0-387-46252-3
[3] S. Carl, D. Motreanu, Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions, Monatsh. Math. 182(2017), No. 4, 801-821. MR3624945; https://doi.org/10.1007/s00605-015-0874-9
[4] D. De Figueiredo, M. Girardi, M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations 17(2004), No. 1-2, 119-126. MR2035498
[5] F. Faraci, D. Motreanu, D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations 54(2015), No. 1, 525-538. MR3385168; https://doi.org/10.1007/s00526-014-0793-y
[6] L. F. O. Faria, O. H. Miyagaki, D. Motreanu, Comparison and positive solutions for problems with (p, q)-Laplacian and a convection term, Proc. Edinb. Math. Soc. (2) 57(2014), No. 3, 687-698. MR3251754; https://doi.org/10.1017/S0013091513000576
[7] L. F. O. Faria, O. H. Miyagaki, D. Motreanu, M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal. 96(2014), 154-166. MR3143809; https://doi.org/10.1016/j.na.2013.11.006
[8] L. F. O. Faria, O. H. Miyagaki, M. Tanaka, Existence of a positive solution for problems with (p, q)-Laplacian and convection term in \mathbb{R}^{N}, Boundary Value Problems 2016, 2016:158, 20 pp. MR3542817; https://doi.org/10.1186/s13661-016-0665-9
[9] D. Motreanu, V. V. Motreanu N. Papageorgiou, Topological and variational methods with applications to nonlinear boundary value problems, Springer, New York, 2014. MR3136201; https://doi.org/10.1007/978-1-4614-9323-5
[10] D. Motreanu, C. Vetro, F. Vetro, A parametric Dirichlet problem for systems of quasilinear elliptic equations with gradient dependence, Numer. Funct. Anal. Optim. 37(2016), No. 12, 1551-1561. MR3579020; https://doi.org/10.1080/01630563.2016.1219866
[11] D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations 199(2004), No. 1, 96-114. MR2041513; https://doi. org/10.1016/j.jde.2003.10.021
[12] M. Tanaka, Existence of a positive solution for quasilinear elliptic equations with a nonlinearity including the gradient, Boundary Value Problems 2013, 2013:173, 11 pp. MR3092831; https://doi.org/10.1186/1687-2770-2013-173

[^0]: ${ }^{\boxtimes}$ Corresponding author.
 Emails: motreanu@univ-perp.fr (D. Montreanu), elisa.tornatore@unipa.it (E. Tornatore).

