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1 Introduction

Consider the following second-order boundary value problem{
ü(t) = ∇F(t, u(t)) a.e. t ∈ [0, T], (1.1a)

u(0)− u(T) = u̇(0)− u̇(T) = 0, (1.1b)

where u(t) = (u1(t), u2(t), . . . , uN(t))T, ∇F(t, x) is the gradient of F : [0, T]×RN → R with
respect to x and F satisfies the following assumption:

(A) F(t, x) is measurable in t for every x ∈ RN and continuously differentiable in x for a.e.
t ∈ [0, T], and there exist a ∈ C(R+, R+) and b ∈ L1(0, T; R+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0, T].
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In particular, when N = 1, (1.1) is reduced to the following scalar problem{
ü(t) = Fx(t, u(t)) a.e. t ∈ [0, T], (1.2a)

u(0)− u(T) = u̇(0)− u̇(T) = 0. (1.2b)

Different convexity hypotheses on the potential are employed to study the existence of
solutions of the problems (1.1) and (1.2), such as, convexity [11], subconvexity [14,22,26], µ(t)-
convexity and k(t)-concavity [20, 25, 26]. In particular, Mawhin and Willem [11] obtained, by
using the variational methods, the sufficient and necessary conditions on the solvability of the
above two problems as follows.

Theorem A ([11, Theorem 1.8]). Assume that F satisfies condition (A) and F(t, ·) is strictly convex
for a.e. t ∈ [0, T]. Then the following conditions are equivalent:

(α) Problem (1.1) is solvable.

(β) There exists x ∈ RN such that ∫ T

0
∇F(t, x)dt = 0.

(γ)
∫ T

0 F(t, x)dt→ +∞ as |x| → ∞.

Theorem B ([11, Theorem 1.9]). If Fx(t, ·) is nondecreasing for a.e. t ∈ [0, T], then the problem (1.2)
has at least one solution if and only if there exists some a ∈ R satisfying∫ T

0
Fx(t, a)dt = 0.

By Theorem A, the problem (1.1) does not possess any solutions provided the equations∫ T
0 ∇F(t, x)dt = 0 are not solvable in RN . For instance, the following boundary value problem

possesses no solution:{
ü(t) = ∇(2t(exp(u1(t)) + exp(u2(t)))) a.e. t ∈ [0, 1],

u(0)− u(1) = u̇(0)− u̇(1) = 0,
(1.3)

where u(t) = (u1(t), u2(t))T. When the second order BVPs (1.1) and (1.2) have no solution,
the present paper concerns about generating solutions by impulses.

More precisely, in this paper we will consider the necessary and sufficient conditions for
the existence of solutions generated by impulses of the above two BVPs, that is, solutions of
the problem (1.1) generated by

∆(u̇i(t1)) = Ii(ui(t1)), i = 1, 2, . . . , N (1.4)

and solutions of the problem (1.2) generated by

∆(u̇(t1)) = I(u(t1)), (1.5)

where 0 < t1 < T is the instant where the impulse occurs, ∆(u̇i(t1)) = u̇i(t+1 )− u̇i(t−1 ) with
u̇i(t±1 ) = limt→t±1

u̇i(t), the impulsive functions I, Ii ∈ C1(R, R) for each i = 1, 2, . . . , N. Here, a
solution of the problem (1.1) (resp. (1.2)) with the impulsive condition (1.4) (resp. (1.5)) is said
to be generated by impulses if the problem (1.1) (resp. (1.2)) does not possess any solution.
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Impulsive effects arise from the real world and are used to describe sudden, discontinuous
jumps. Due to their significance, a number of papers [2, 10, 15] have provided the qualitative
properties of such equations. Some efforts have been made in studying the existence of solu-
tions of impulsive problems via variational methods, see, for instance, [1,3,4,6–8,12,13,16,17,
21]. In these results, the nonlinear term plays a more important role than the impulsive terms
do in guaranteeing the existence of solutions. While, by strengthening the role of impulses,
some sufficient conditions for the existence of solutions generated by impulses are established.
In 2011, Zhang and Li [24] established sufficient conditions for the following system to pos-
sess at least one non-zero periodic solution and at least one non-zero homoclinic solution and
these solutions are generated by impulses when f ≡ 0.{

q̈ + Vq(t, q) = f (t), for t ∈ (sk−1, sk),

∆q̇(sk) = gk(q(sk)).

After that, Han and Zhang [5] considered the following asymptotically linear or sublinear
Hamiltonian systems with impulsive conditions.{

q̈(t) = f (t, q(t)), for t ∈ (sk−1, sk),

∆q̇(sk) = gk(q(sk)).
(1.6)

And sufficient conditions for the existence of periodic and homoclinic solutions generated by
impulses are derived. In 2013, Sun, Chu and Chen [19] established sufficient conditions for the
existence of a positive periodic solution generated by impulses for the following second-order
singular differential equations with impulsive conditions.u′′(t)− 1

uα(t)
= e(t),

∆u′(tj) = Ij(u(tj)).

In 2014, Zhang, Wu and Dai [23] obtained sufficient conditions to guarantee the system (1.6)
has infinitely many non-zero periodic solutions generated by impulses. In 2015, by using
Ricceri’s Variational Principle, Heidarkhani, Ferrara and Salari [8] investigated sufficient con-
ditions for the existence of infinitely many periodic solutions generated by impulses for the
following perturbed second-order impulsive differential equations.

ü(t) + Vu(t, u(t)) = 0, t ∈ (tj−1, tj),

∆u̇(tj) = λ f j(u(tj)) + µgj(u(tj)),

u(0)− u(T) = u̇(0)− u̇(T) = 0.

On the other hand, some attempts have been made on the necessary and sufficient con-
ditions for the existence of solutions (not generated by impulses) for impulsive boundary
value problems. By the method of upper and lower solutions, Hou and Yan [9] established
some necessary and sufficient conditions for the existence of solutions for singular impulsive
boundary value problems on the half-line; Using the variational method, Sun and Chu [18]
recently established a necessary and sufficient condition for the existence of periodic solutions
for a impulsive singular differential equation.

However, to the best of our knowledge, relatively little attention is paid to the necessary
and sufficient conditions for the existence of solutions generated by impulses. As a result, the
goal of this paper is to fill the gap in this area. Result of this paper for the problem (1.1) is
presented as follows.
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Theorem 1.1. Assume that F satisfies the assumption (A), F(t, ·) is strictly convex for a.e. t ∈ [0, T]
and the equations

∫ T
0 ∇F(t, x)dt = 0 have no solution in RN . If I′i > 0 for each i = 1, 2, . . . , N, then

the following properties are equivalent:

(α1) The problem (1.1) has at least one non-constant solution generated by impulses (1.4) in H1
T.

(β1) There exists x ∈ RN such that

∫ T

0
∇F(t, x)dt +

(
I1(x1), I2(x2), . . . , IN(xN)

)T
= 0.

(γ1)
∫ T

0 F(t, x)dt + ∑N
i=1
∫ xi

0 Ii(s)ds→ +∞ as |x| → ∞.

When N = 1, Theorem 1.1 is also valid for the problem (1.2). However, for the scalar
problem, the convexity of F(t, ·) implies that Fx(t, ·) is nondecreasing in R, so the strictness of
convexity of F(t, ·) may be dropped, and a better result is obtained.

Theorem 1.2. Assume that F satisfies the assumption (A) where N = 1, F(t, ·) is convex for a.e.
t ∈ [0, T] and the equation

∫ T
0 Fx(t, x)dt = 0 has no solution in R. If I′ ≥ 0, then problem (1.2) has

at least one non-constant solution generated by impulse (1.5) in H1
T if and only if there exists x ∈ R

such that ∫ T

0
Fx(t, x)dt + I(x) = 0. (1.7)

In the following, an example is given to illustrate Theorem 1.1.

Example 1.3. It has been shown above that the boundary value problem (1.3) is not solvable.
However, after adding the following impulses

∆(u̇1(0.5)) = u1(0.5) and ∆(u̇2(0.5)) = 2u2(0.5), (1.8)

the problem (1.3) has at least one non-constant solution generated by impulses (1.8) in H1
T.

Indeed, I1(x1) = x1, I2(x2) = 2x2 and it is clear that the following equations are solvable.

0 =
∫ 1

0
∇F(t, x)dt +

(
I1(x1), I2(x2))

)T
=

{
exp(x1) + x1,

exp(x2) + 2x2.

This proves the assertion by Theorem 1.1.

2 Preliminaries

Let C∞
T be the space of indefinitely differentiable T-periodic functions from R to RN .

H1
T ≡

{
u : [0, T]→ RN

∣∣∣∣ u is absolutely continuous,
u(0) = u(T) and u̇ ∈ L2(0, T; RN)

}
is a Hilbert space with the inner product

〈u, v〉 =
∫ T

0
(u̇(t), v̇(t))dt +

∫ T

0
(u(t), v(t))dt, ∀u, v ∈ H1

T,
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where (·, ·) denotes the inner product in RN , and the corresponding norm is

‖u‖ =
(
‖u̇‖2

L2 + ‖u‖2
L2

) 1
2 .

Let ũ(t) ≡ u(t)− u, where u = (1/T)
∫ T

0 u(t)dt.
Consider the functional Φ : H1

T → R defined by

Φ(u) =
1
2

∫ T

0
|u̇(t)|2dt +

∫ T

0
F(t, u(t))dt +

N

∑
i=1

∫ ui(t1)

0
Ii(s)ds.

The assumption (A) and all Ii ∈ C1(R, R) imply that Φ ∈ C1(H1
T, R) and

(Φ′(u), v) =
∫ T

0
(u̇(t), v̇(t))dt +

∫ T

0
(∇F(t, u(t)), v(t)) dt +

N

∑
i=1

Ii(ui(t1))vi(t1).

Thus, if u ∈ H1
T is a critical point of Φ, then u is a solution of the problem (1.1)–(1.4). In fact,

for any v ∈ H1
T, we have

∫ T

0
(u̇(t), v̇(t))dt +

∫ T

0
(∇F(t, u(t)), v(t)) dt +

N

∑
i=1

Ii(ui(t1))vi(t1) = 0. (2.1)

Then for any v ∈ H1
T satisfying v(t1) = 0, we get

∫ T

0
(u̇(t), v̇(t))dt = −

∫ T

0
(∇F(t, u(t)), v(t)) dt.

Since the behavior of a function on a set of measure zero does not affect its integral and
C∞

T ⊂ H1
T, we have

∫ T

0
(u̇(t), v̇(t))dt = −

∫ T

0
(∇F(t, u(t)), v(t)) dt, for any v ∈ C∞

T .

So ü exists and (1.1a) holds. Moreover, the existence of weak derivative of u and u̇ implies
that (1.1b) holds. It follows from (1.1b) that

∫ T

0
(ü(t), v(t)) dt =

∫ t1

0
(ü(t), v(t)) dt +

∫ T

t1

(ü(t), v(t)) dt

= (u̇(t), v(t))
∣∣∣t−1
0
+ (u̇(t), v(t))

∣∣∣T
t+1
−
∫ T

0
(u̇(t), v̇(t))dt

= −
N

∑
i=1

∆(u̇i(t1))vi(t1)−
∫ T

0
(u̇(t), v̇(t))dt,

which combining with (1.1a) and (2.1) yields

N

∑
i=1

(
∆(u̇i(t1))− Ii(ui(t1))

)
vi(t1) = 0, for any v ∈ H1

T,

which implies (1.4) holds.
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For the reader’s convenience, we now recall some facts.

Lemma 2.1 ([11, Proposition 1.4]). Let G ∈ C1(Rn, R) be a convex function. Then, for all x, y ∈ Rn

we have

G(x) ≥ G(y) + (∇G(y), x− y) .

Lemma 2.2 ([11, Proposition 1.5]). Let G ∈ C1(Rn, R) be a strictly convex function. The following
properties are equivalent

(α) There exists x ∈ RN such that ∇G(x) = 0.

(β) G(x)→ +∞ when |x| → ∞.

Lemma 2.3 ([11, Theorem 1.1]). If ϕ is weakly lower semi-continuous on a reflexive Banach space X
and has a bounded minimizing sequence, then ϕ has a minimum on X.

3 Main result

In this section, the main results of this paper are proved.

Lemma 3.1. Assume that F satisfies the assumption (A) and F(t, ·) is convex for a.e. t ∈ [0, T]. If
I′i ≥ 0 for each i = 1, 2, . . . , N and

H(x) ≡
∫ T

0
F(t, x)dt +

N

∑
i=1

∫ xi

0
Ii(s)ds→ +∞ as |x| → ∞, (3.1)

then the problem (1.1)–(1.4) has at least one solution which minimizes Φ on H1
T.

Proof. Let {un} be a weakly convergence sequence to u0 in H1
T, then {un} converges uniformly

to u0 on [0, T]. Then there exists a constant C1 > 0 such that ‖un‖∞ ≤ C1 for n = 0, 1, 2, . . . , so
the continuity of Ii implies that∣∣∣∣∣ N

∑
i=1

∫ ui
n(t1)

0
Ii(s)ds−

N

∑
i=1

∫ ui
0(t1)

0
Ii(s)ds

∣∣∣∣∣
≤

N

∑
i=1

∣∣∣∣∣
∫ ui

n(t1)

ui
0(t1)

Ii(s)ds

∣∣∣∣∣ ≤ NC2‖un − u0‖∞ → 0 as n→ ∞,

where C2 = maxi∈{1,2,...,N},|s|≤C1
|Ii(s)|. Therefore ∑N

i=1
∫ ui(t1)

0 Ii(s)ds is weakly continuous on

H1
T. What is more,

∫ T
0 |u̇(t)|

2dt is a convex continuous function and
∫ T

0 F(t, u(t))dt is weakly
continuous on H1

T. Thus Φ is weakly lower semi-continuous on H1
T. Lemma 2.3 shows that

it remains to prove that Φ is coercive. In view of (3.1), H(x) has a minimum at some point
x ∈ RN for which

∇H(x) =
∫ T

0
∇F(t, x)dt +

(
I1(x1), I2(x2), . . . , IN(xN)

)T
= 0.
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Thus ∫ T

0
(∇F(t, x), u(t)− x) dt +

N

∑
i=1

Ii(xi)(ui(t1)− xi)

=
∫ T

0
(∇F(t, x), u(t)− u) dt +

N

∑
i=1

Ii(xi)(ui(t1)− ui)

+
∫ T

0
(∇F(t, x), u− x) dt +

N

∑
i=1

Ii(xi)(ui − xi)

=
∫ T

0
(∇F(t, x), ũ(t)) dt +

N

∑
i=1

Ii(xi)ũi(t1). (3.2)

Since F(t, ·) and
∫ z

0 Ii(s)ds are convex, Lemma 2.1 and (3.2) imply that

∫ T

0
F(t, u(t))dt +

N

∑
i=1

∫ ui(t1)

0
Ii(s)ds

≥
∫ T

0
F(t, x)dt +

N

∑
i=1

∫ xi

0
Ii(s)ds +

∫ T

0
(∇F(t, x), u(t)− x) dt +

N

∑
i=1

Ii(xi)(ui(t1)− xi)

≥
∫ T

0
F(t, x)dt +

N

∑
i=1

∫ xi

0
Ii(s)ds +

∫ T

0
(∇F(t, x), ũ(t)) dt +

N

∑
i=1

Ii(xi)ũi(t1)

≥ −
∫ T

0
|∇F(t, x)|dt‖ũ‖∞ −

(
N

∑
i=1

I2
i (xi)

) 1
2

‖ũ‖∞ + C3

≥ − C4‖u̇‖L2 + C3,

where C3 =
∫ T

0 F(t, x)dt + ∑N
i=1
∫ xi

0 Ii(s)ds and

C4 =
∫ T

0
|∇F(t, x)|dt

√
T
12

+

(
N

∑
i=1

I2
i (xi)

) 1
2
√

T
12

.

Thus
Φ(u) ≥ 1

2
‖u̇‖2

L2 − C4‖u̇‖L2 + C3. (3.3)

On the other hand, it follows from the assumption (A) and the convexity of F(t, ·) and∫ z
0 Ii(s)ds that

Φ(u) ≥ 1
2
‖u̇‖2

L2 + 2
∫ T

0
F
(

t,
u
2

)
dt + 2

N

∑
i=1

∫ ui
2

0
Ii(s)ds

−
∫ T

0
F(t,−ũ(t))dt−

N

∑
i=1

∫ −ũi(t1)

0
Ii(s)ds

≥ 1
2
‖u̇‖2

L2 + 2H
(

u
2

)
−
∫ T

0
a(|ũ(t)|)b(t)dt−

N

∑
i=1

∫ −ũi(t1)

0
Ii(s)ds. (3.4)

By Sobolev’s inequality, we have

| − ũi(t)| ≤ |ũ(t)| ≤ ‖ũ‖∞ ≤
√

T
12
‖u̇‖L2 for all t ∈ [0, T].
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As ‖u‖ → ∞ if and only if (|u|2 +
∫ T

0 |u̇(t)|
2dt)1/2 → ∞, the above inequality, (3.3), (3.4) and

(3.1) imply that Φ is coercive.

Based on the above lemma, the impulsive differential system (1.1)–(1.4) and the impulsive
differential equation (1.2)–(1.5) will be considered respectively.

3.1 Impulsive differential systems

Theorem 3.2. Assume that F satisfies the assumption (A). If F(t, ·) is strictly convex for a.e. t ∈ [0, T]
and I ′i > 0 for each i = 1, 2, . . . , N. Then the following properties are equivalent:

(α2) The problem (1.1)–(1.4) is solvable.

(β1) There exists x ∈ RN such that∫ T

0
∇F(t, x)dt +

(
I1(x1), I2(x2), . . . , IN(xN)

)T
= 0.

(γ1)
∫ T

0 F(t, x)dt + ∑N
i=1
∫ xi

0 Ii(s)ds→ +∞ as |x| → ∞.

Proof. If u0 is a solution of the problem (1.1)–(1.4), integrating both sides of (1.1a) over [0, T]
and using the boundary condition (1.1b) and the impulsive condition (1.4), we have∫ T

0
∇F(t, u0(t))dt =

∫ t1

0
ü0(t)dt +

∫ T

t1

ü0(t)dt

= u̇0(t−1 )− u̇0(0) + u̇0(T)− u̇0(t+1 )

= −
(

I1(u1
0(t1)), I2(u2

0(t1)), . . . , IN(uN
0 (t1))

)T
. (3.5)

Define the strictly convex function H̃ : RN → R by

H̃(x) ≡
∫ T

0
F(t, x + ũ0(t))dt +

N

∑
i=1

∫ xi+ũi
0(t1)

0
Ii(s)ds.

Since ∇H̃(u0) = 0 by (3.5), Lemma 2.2 implies that H̃(x) → +∞ as |x| → ∞. It follows from
the convexity of F(t, ·) and I′i > 0 that

H̃(x) ≤ 1
2

[∫ T

0
F(t, 2x)dt +

N

∑
i=1

∫ 2xi

0
Ii(s)ds

]
+

1
2

[∫ T

0
F(t, 2ũ0(t))dt +

N

∑
i=1

∫ 2ũi
0(t1)

0
Ii(s)ds

]

=
1
2

H(2x) + C5,

where C5 =
[ ∫ T

0 F(t, 2ũ0(t))dt + ∑N
i=1
∫ 2ũi

0(t1)
0 Ii(s)ds

]
/2. So H(x) → +∞ as |x| → ∞. Thus it

follows from Lemma 2.2 that there exists x ∈ RN such that ∇H(x) = 0 and (α2) implies (β1).
By Lemma 2.2 applied to the function H, (β1) implies (γ1).
It follows from Lemma 3.1 that (γ1) implies (α2).

Proof of Theorem 1.1. Since the equations
∫ T

0 ∇F(t, x)dt = 0 have no solution in RN , it follows
from Theorem A that the problem (1.1) has no solution. So (α2) implies that the problem
(1.1) has at least one solution generated by impulses (1.4). What is more, the solution is not a
constant. In fact, suppose that the solution u(t) = C, a.e. t ∈ [0, T], then by (1.1a), this implies
∇F(t, C) = 0, a.e. t ∈ [0, T], then

∫ T
0 ∇F(t, C)dt = 0, which is a contradiction, thus (α1) holds.

This proves the assertion by Theorem 3.2.
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3.2 Impulsive differential equations

We begin with the following lemma on impulsive linear boundary value problem.

Lemma 3.3. Let f : [0, T]→ R and x ∈ R. The scalar problem
ü(t) = f (t) a.e. t ∈ [0, T], (3.6a)

u(0)− u(T) = u̇(0)− u̇(T) = 0, (3.6b)

∆(u̇(t1)) = I(x), (3.6c)

is solvable if and only if ∫ T

0
f (t)dt + I(x) = 0. (3.7)

Proof. If u0(t) is a solution of (3.6), then integrating (3.6a) over [0, T] and using the boundary
conditions and the impulsive condition, we have∫ T

0
f (t)dt =

∫ t1

0
ü0(t)dt +

∫ T

t1

ü0(t)dt

= u̇0(t−1 )− u̇0(0) + u̇0(T)− u̇0(t+1 )

= −∆(u̇0(t1)),

which implies (3.7) holds. For the sufficiency, if (3.7) holds, it could be verified that (3.6) has
the following solution.

u(t) =


∫ t

0

∫ s
0 f (ξ)dξds− C1t− I(x)t + C2, 0 ≤ t ≤ t1,∫ t

0

∫ s
0 f (ξ)dξds− C1t + C2, t1 < t ≤ T,

where C1 =
∫ T

0

∫ s
0 f (ξ)dξds/T, C2 = x−

∫ t1
0

∫ s
0 f (ξ)dξds + C1t1 + I(x)t1.

Theorem 3.4. Assume that F satisfies the assumption (A) where N = 1. If F(t, ·) is convex for a.e.
t ∈ [0, T] and I′ ≥ 0. Then the problem (1.2)–(1.5) is solvable if and only if there exists x ∈ R such
that (1.7) holds.

Proof. If u0(t) is a solution of the problem (1.2)–(1.5), similarly as (3.5) we have∫ T

0
Fx(t, u0(t))dt + I(u0(t1)) = 0.

Since F(t, ·) is convex, we see that Fx(t, ·) is nondecreasing. What is more, I′ ≥ 0. Thus, if
m ≤ u0(t) ≤ M for t ∈ [0, T], we have∫ T

0
Fx(t, m)dt + I(m) ≤ 0 ≤

∫ T

0
Fx(t, M)dt + I(M).

And (1.7) is derived follows from the intermediate value theorem.
For the sufficiency, consider first the following problem

ẅ(t) = Fx(t, x) a.e. t ∈ [0, T],

w(0)− w(T) = ẇ(0)− ẇ(T) = 0,

∆(ẇ(t1)) = I(x).

(3.8)
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By (1.7), Lemma 3.3 implies that the problem (3.8) has a solution w∗(t).
The subsequent discussions on the problem (1.2)–(1.5) will be divided into three cases.

Case I.
∫ T

0 Fx(t, x)dt + I(x) = 0 for all x ≥ x.
In this case, condition (1.7) implies∫ T

0
Fx(t, x)− Fx(t, x)dt + I(x)− I(x) = 0 for all x ≥ x.

What is more, Fx(t, ·) and I are nondecreasing functions, so we have∫ T

0
Fx(t, x)− Fx(t, x)dt = 0 for all x ≥ x (3.9)

and
I(x) = I(x) for all x ≥ x. (3.10)

Thus, we obtain, by (3.9) and the monotonicity of Fx(t, ·),

Fx(t, x) = Fx(t, x) for a.e. t ∈ [0, T] and all x ≥ x. (3.11)

Let η ∈ R sufficiently large so that

u∗(t) ≡ w∗(t) + η > x, t ∈ [0, T],

then u∗(0)− u∗(T) = u̇∗(0)− u̇∗(T) = 0 and u∗(t) is a solution of the problem (1.2)–(1.5). In
fact, in view of (3.11), we have

ü∗(t) = ẅ∗(t) = Fx(t, x) = Fx(t, u∗(t)) for a.e. t ∈ [0, T].

And it follows from (3.10) that

∆(u̇∗(t1)) = ∆(ẇ∗(t1)) = I(x) = I(u∗(t1)).

Case II.
∫ T

0 Fx(t, x)dt + I(x) = 0 for all x ≤ x.
The proof of Case II is similar to that of Case I and will be omitted.

Case III. There exist x1 < x < x2 such that∫ T

0
Fx(t, x1)dt + I(x1) < 0 <

∫ T

0
Fx(t, x2)dt + I(x2).

Since Ĥ(x) ≡
∫ T

0 F(t, x)dt +
∫ x

0 I(s)ds is convex, it follows that, by Lemma 2.1,

Ĥ(x)− Ĥ(xi) ≥
[∫ T

0
Fx(t, xi)dt + I(xi)

]
(x− xi),

for each i = 1, 2. So ∫ T

0
F(t, x)dt +

∫ x

0
I(s)ds→ +∞ as |x| → ∞.

Thus the solvability of the problem (1.2)–(1.5) follows from Lemma 3.1.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, it follows from Theorem 3.4 and
Theorem B that Theorem 1.2 holds.
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