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Abstract. In this paper, the authors present some new results on the oscillatory and
asymptotic behavior of solutions of the perturbed nonlinear third order functional dif-
ferential equation(

b(t)
(
a(t)(x′(t))α

)′)′
+ p(t) f (x(τ(t))) = h(t, x(t), x(τ(t)), x′(t)).

In addition to other conditions, the authors assume that u f (u) > 0 for u 6= 0 and f is
increasing. Examples to illustrate the results are included.
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1 Introduction

We consider the third order nonlinear functional differential equation with a perturbation
term (

b(t)
(
a(t)(x′(t))α

)′)′
+ p(t) f (x(τ(t))) = h(t, x(t), x(τ(t)), x′(t)), (1.1)

where α ≥ 1 is the ratio of odd positive integers, and we assume:

(H1) a, b, p, τ ∈ C ([t0, ∞)) are positive;

(H2) f : R→ R and h : [t0, ∞)×R×R×R→ R are continuous, u f (u) > 0 for u 6= 0, and f
is nondecreasing;

(H3) f (uv) ≥ f (u) f (v) for uv > 0;

(H4) τ(t) ≤ t and limt→∞ τ(t) = ∞.
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By a solution of (1.1) we mean a function x(t) whose quasi-derivatives a(t)(x′(t))α and
(a(t)(x′(t))α)′ are continuous on [Tx, ∞), Tx ≥ t0, and which satisfies Eq. (1.1) on [Tx, ∞). We
consider only those solutions x(t) of (1.1) that satisfy sup {|x(t)| : t ≥ T} > 0 for all T ≥ Tx.
A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros, and nonoscillatory
otherwise. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

In two very nice papers Baculíková and Džurina studied the oscillatory and asymptotic
behavior of solutions of some third order nonlinear delay differential equations. In [1], they
considered the equation

(b(t)(x′′(t))α)′ + p(t) f (x(τ(t))) = 0

under the same covering assumptions as those above and assumed that∫ ∞

t0

1

b(s)
1
α

ds = ∞.

In [2], they considered the equation(
b(t)

(
a(t)(x′(t))

)′)′
+ p(t) f (x(τ(t)))− q(t)h(x(σ(t))) = 0

under conditions (H1)–(H4), ∫ ∞

t0

1
b(s)

ds = ∞,
∫ ∞

t0

1
a(s)

ds = ∞, (1.2)

and ∫ ∞

t0

1
a(t)

∞∫
t

1
b(s)

∫ ∞

s
q(u)duds < ∞. (1.3)

They employed a new technique to obtain some interesting results on the oscillatory and
asymptotic behavior of solutions (see [2, Theorem 2.1]). They obtained another oscillation
result (see [2, Theorem 2.6]) by replacing condition (1.3) with

∫ ∞

t0

1
a(t)

∫ t

t0

1
b(s)

∫ s

t0

q(u)dudsdt < ∞. (1.4)

Notice that condition (1.3) implies that q is small in that we must have∫ ∞

t0

q(u)du < ∞ and
∫ ∞

t0

1
b(s)

∫ ∞

s
q(u)duds < ∞.

Condition (1.4) requires q to be small is some sense relative to b and a.
Our goal here is to establish oscillation results for equation (1.1) without imposing a

“smallness” condition on the perturbation term. We also present some results on the bound-
edness and oscillatory behavior of a special case of (1.1), namely,(

b(t)
(
a(t)(x′(t))α

)′)′
+ p(t)xβ(t) = e(t) + q(t)xγ(t), (1.5)

where β and γ are the ratios of odd positive integers with β > γ and e : [t0, ∞) → R is a
continuous function. As was done in [1, 2], we will use a comparison approach.
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2 Oscillation of equation (1.1)

We assume that there exists a positive continuous function q : [t0, ∞)→ R+ such that

(H5) |h(t, u, v, w)| ≤ q(t) f (v) for all (t, u, v, w) ∈ [t0, ∞)×R×R×R.

For any t1 ≥ t0, we set

I(t; t1) =
∫ τ(t)

t1

(
1

a(u)

∫ u

t1

1
b(s)

ds
)1/α

du. (2.1)

We also assume that there are functions ξ, η ∈ C1[t0, ∞) satisfying

τ(t) ≤ ξ(t) ≤ η(t) ≤ t for all large t, (2.2)

and set

I∗(t) =
(∫ ξ(t)

τ(t)

1
a1/α(s)

ds
)(∫ η(t)

ξ(t)

1
b(s)

ds
)1/α

, (2.3)

and
Q(t) = p(t)− q(t). (2.4)

In some of our results we will also ask that∫ ∞

t0

1
b(s)

ds = ∞ and
∫ ∞

t0

1
a1/α(s)

ds = ∞. (2.5)

Our first oscillation result is contained in the following theorem.

Theorem 2.1. Let Q(t) > 0 for large t, conditions (H1)–(H5), (2.2), and (2.5) hold, and assume that
all solutions of the first order delay differential equations

y′(t) + Q(t) f (I(t)) f (y1/α(τ(t))) = 0 (2.6)

and

z′(t) + Q(t) f (I∗(t)) f (z1/α(η(t))) = 0 (2.7)

are oscillatory. Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of generality we
may assume that x(t) and x(τ(t)) are positive and condition (2.2) holds for t ≥ t1 for some
t1 ≥ t0. If x(t) is eventually negative, a similar proof holds. From our assumptions and
equation (1.1), we see that(

b(t)
(
a(t)(x′(t))α

)′)′ ≤ −Q(t) f (x(τ(t))) < 0, (2.8)

for all t ≥ t1.
It is easy to see that we need to consider the following two cases:

(I) a(t)(x′(t))α > 0 and b(t) (a(t)(x′(t))α)′ > 0, or

(II) a(t)(x′(t))α < 0 and b(t) (a(t)(x′(t))α)′ > 0
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for t ≥ t2 for some t2 ≥ t1. We will first examine Case (I). For t ≥ t2, we see that

a(t)(x′(t))α ≥
∫ t

t2

1
b(s)

b(s)
(
a(s)(x′(s))α

)′ ds ≥
(∫ t

t2

1
b(s)

ds
)

b(t)
(
a(t)(x′(t))α

)′ ,
or

x′(t) ≥
(

1
a(t)

∫ t

t2

1
b(s)

ds
)1/α (

b(t)
(
a(t)(x′(t))α

)′)1/α
.

Integrating this inequality from t2 to τ(t) ≥ t2, we have

x(τ(t)) ≥
(∫ τ(t)

t2

(
1

a(u)

∫ u

t2

1
b(s)

ds
)1/α

du

)(
b(t)

(
a(t)(x′(t))α

)′)1/α

= I(t; t2)y1/α(t), (2.9)

where y(t) = b(t) (a(t)(x′(t))α)′. Using (2.9) in (2.8) and applying (H3), we obtain

y′(t) + Q(t) f (I(t)) f (y1/α(τ(t))) ≤ 0 for t ≥ t2.

It follows from [11, Corollary 1] that the corresponding differential equation (2.6) also has a
positive solution. This contradiction completes the proof for Case (I).

For Case (II), it is easy to see that

−a(ξ(t))(x′(ξ(t)))α ≥
(∫ η(t)

ξ(t)

1
b(s)

ds
)

b(η(t))
(
a(η(t))(x′(η(t)))α

)′
=

(∫ η(t)

ξ(t)

1
b(s)

ds
)

z(η(t)), (2.10)

for t ≥ t2, where z(t) = b(t) (a(t)(x′(t))α)′.

Now x′ =
[

a(x′)α

a

]1/α
= 1

a1/α [a(x′)α]1/α so integrating for v ≥ u ≥ t2, we have

x(v)− x(u) =
∫ v

u

1
a1/α(s)

[
a(s)(x′(s))α

]1/α ds,

or

x(u)− x(v) =
∫ v

u

1
a1/α(s)

[
−a(s)(x′(s))α

]1/α ds ≥
∫ v

u

1
a1/α(s)

ds
[
−a(v)(x′(v))α

]1/α ds.

Hence,

x(u) ≥
(∫ v

u

1
a1/α(s)

ds
) (
−
(
a(v)(x′(v))α

))1/α .

Setting u = τ(t) and v = ξ(t) in the above inequality, we obtain

x(τ(t)) ≥
(∫ ξ(t)

τ(t)

1
a1/α(s)

ds
) (
−
(
a(ξ(t))(x′(ξ(t)))α

))1/α . (2.11)

From (2.10) and (2.11) we see that

x(τ(t)) ≥
(∫ ξ(t)

τ(t)

1
a1/α(s)

ds
)(∫ η(t)

ξ(t)

1
b(s)

ds
)1/α

z1/α(η(t)) =: I∗(t)z1/α(η(t)). (2.12)

Using (2.12) in equation (2.8), we have

z′(t) + Q(t) f (I∗(t)) f (z1/α(η(t))) ≤ 0.

It folows from [11, Corollary 1] that the corresponding differential equation (2.7) also has a
positive solution, which is a contradiction. This completes the proof of the theorem.
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The next two corollaries follow immediately from known oscillation criteria for first order
delay differential equations; fo example, see [9, Theorem 2].

Corollary 2.2. Let f (x) = xα, Q(t) > 0 for all large t, and conditions (H1), (H4), (2.2), and (2.5)
hold. If

lim inf
t→∞

∫ t

τ(t)
Q(s)Iα(s)ds >

1
e

and lim inf
t→∞

∫ t

η(t)
Q(s) (I∗(s))α ds >

1
e

, (2.13)

then equation (1.1) is oscillatory.

Corollary 2.3. Let f (x) = xβ, β/α ∈ (0, 1), Q(t) > 0 for all large t, and conditions (H1), (H4),
(2.2), and (2.5) hold. If

lim sup
t→∞

∫ t

τ(t)
Q(s)Iβ(s)ds > 0 and lim sup

t→∞

∫ t

η(t)
Q(s) (I∗(s))β ds > 0, (2.14)

then equation (1.1) is oscillatory.

The following example illustrates the above results.

Example 2.4. Consider the equation

(
t
(
t3(x′(t))3)′)′ + p(t)x3(λ1t) = q(t)

x3(λ1t)x′(t)
(1 + x2(λ1t))(1 + |x′(t)|) , t ≥ 1. (2.15)

Here a(t) = t3, b(t) = t, τ(t) = λ1t, ξ(t) = λ2t and η(t) = λ3t, where 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ 1,
h(t, x(t), x(τ(t)), x′(t)) = q(t) x3(τ(t))x′(t)

(1+x2(τ(t)))(1+|x′(t)|) , f (x) = x3, and α = 3. Let p(t) and q(t) be
positive continuous functions with Q(t) = p(t)− q(t) positive for all large t. Now,

I(t; 1) =
∫ λ1t

1

(
1
u3

∫ u

1

1
s

ds
)1/3

du =
3
4
(ln λ1t)4/3

and

I∗(t) =
(∫ λ2t

λ1t

1
s

ds
)(∫ λ3t

λ2t

1
s

ds
)1/3

=

(
ln

λ2

λ1

)(
ln

λ3

λ2

)1/3

.

If both of the equations
y′(t) + Q(t)I3(t)y(λ1t) = 0

and
z′(t) + Q(t) (I∗(t))3 z(λ3t) = 0

are oscillatory, then equation (2.15) is oscillatory.

Instead of condition (2.2), we assume that there exists a function ρ(t) ∈ C1([t0, ∞)) satisfy-
ing

ρ′(t) > 0, ρ(t) > t, ω(t) = ρ(ρ(τ(t))) < t, (2.16)

and we set

I∗∗(t) =
∫ ρ(τ(t))

τ(t)

(
1

a(u)

∫ ρ(u)

u

1
b(s)

ds
)1/α

du. (2.17)

We can then obtain the following theorem.
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Theorem 2.5. Let Q(t) > 0 for large t, conditions (H1)–(H5), (2.5), and (2.16) hold. If all solutions
of equations (2.6) and

z′(t) + Q(t) f (I∗∗(t)) f (z1/α(ω(t))) = 0 (2.18)

are oscillatory, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) such that x(t) and x(τ(t)) are
positive and condition (2.16) holds for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof
of Theorem 2.1 we again obtain (2.8). The proof for Case (I) holding is similar to that of
Theorem 2.1 and hence is omitted.

If Case (II) holds, it is easy to see that

−a(t)(x′(t))α ≥
∫ ρ(t)

t

1
b(s)

(
b(s)

(
a(s)(x′(s))α

)′) ds

≥
(∫ ρ(t)

t

1
b(s)

ds
)(

b(ρ(t))
(
a(ρ(t))(x′(ρ(t)))α

)′)
=

(∫ ρ(t)

t

1
b(s)

ds
)

z(ρ(t)), (2.19)

where z(t) = b(t) (a(t)(x′(t))α)′. Dividing by a(t) and integrating from τ(t) to ρ(τ(t)), we
obtain

x(τ(t)) ≥
∫ ρ(τ(t))

τ(t)

(
z(ρ(u))

a(u)

)1/α (∫ ρ(u)

u

1
b(s)

ds
)1/α

du

≥ I∗∗(t)z1/α(ω(t))), (2.20)

for all large t. Using (2.20) in (2.8) and proceeding as in the proof of Case (II) in Theorem 2.1,
we arrive at the desired contradiction. This completes the proof of the theorem.

To illustrate this result we have the following example.

Example 2.6. Consider Example 2.4 with ρ(t) = θt and θ > 1. Now ω(t) = θ2λ1t and

I∗∗(t) =
∫ θλ1t

λ1t

(
1
u3

∫ θu

u

1
s

ds
)1/3

du =
∫ θλ1t

λ1t

1
u

(
ln

θu
u

)1/3

du = (ln θ)4/3 .

If θ2λ1t ≤ 1 and the equations

y′(t) + Q(t)I3(t)y(λ1t) = 0

and
z′(t) + Q(t) (ln θ)4 z(ω(t)) = 0

are oscillatory, then equation (2.15) is oscillatory by Theorem 2.5.

3 Boundedness and oscillation of equation (1.5)

In order to obtain our results in this section, we need the following lemma.
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Lemma 3.1 (Young’s inequality). Let X and Y be nonnegative, n > 1, and 1/n + 1/m = 1. Then

XY ≤ 1
n

Xn +
1
m

Ym, (3.1)

and equality holds if and only if Y = Xn−1.

Theorem 3.2. In addition to condition (H1), assume that∫ ∞

t0

1
b(s)

ds < ∞,
∫ ∞

t0

1
a1/α(s)

ds < ∞,
∫ ∞

t0

1
b(u)

∫ u

t0

q
β

β−γ (s)p
γ

γ−β (s)dsdu < ∞, (3.2)

and ∫ ∞

t0

1
b(u)

∫ u

t0

|e(s)| dsdu < ∞. (3.3)

Then every nonoscillatory solution of equation (1.5) is bounded.

Proof. Let x(t) be a nonoscillatory solution of equation (1.5) such that x(t) > 0 for t ≥ t1 for
some t1 ≥ t0. Applying (3.1) to [q(s)xγ(s)− p(s)xβ(s)] with

n =
β

γ
> 1, X(s) = xγ(s), Y =

γ

β

(
q(s)
p(s)

)
, and m =

β

β− γ
,

we obtain

q(s)xγ(s)− p(s)xβ(s) =
β

γ
p(s)

[
xγ(s)

γ

β

q(s)
p(s)

− γ

β
(xγ(s))β/γ

]
=

β

γ
p(s)

[
XY− 1

n
Xn
]

≤ β

γ
p(s)

(
1
m

Ym
)

=

(
β− γ

γ

) [
γ

β
q(s)

] β
β−γ

(p(s))
γ

γ−β . (3.4)

From equation (1.5) we then have

(
b(t)

(
a(t)(x′(t))α

)′)′ ≤ |e(t)|+(β− γ

γ

) [
γ

β
q(t)

] β
β−γ

(p(t))
γ

γ−β = |e(t)|+ cq
β

β−γ (t)p
γ

γ−β (t),

where c =
(

β−γ
γ

) (
γ
β

) β
β−γ

. Integrating this inequality from t1 to t gives

(
a(t)(x′(t))α

)′ ≤ c1

b(t)
+

1
b(t)

∫ t

t1

|e(s)| ds +
c

b(t)

∫ t

t1

q
β

β−γ (s)p
γ

γ−β (s)ds,

where c1 = b(t1) (a(t1)(x′(t1))
α)′. Another integration yields

a(t)(x′(t))α ≤ c2 + c1

t∫
t1

1
b(s)

ds + c
∫ t

t1

1
b(u)

u∫
t1

q
β

β−γ (s)p
γ

γ−β (s)dsdu

+
∫ t

t1

1
b(u)

∫ u

t1

|e(s)| dsdu,
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where c2 = a(t1)(x′(t1))
α. From condition (3.2) and (3.3), there exists a constant C such that

x′(t) ≤
(

C
a(t)

)1/α

.

Integrating this inequality from t1 to t and using condition (3.2), we arrive at the desired
conclusion.

The following result is concerned with the oscillation of equation (1.5).

Theorem 3.3. If

∫ ∞

t0

1

a
1
α (s)

ds < ∞,
∫ ∞

t0

[
1

a(u)

∫ u

t0

1
b(s)

ds
] 1

α

du < ∞, (3.5)

∫ ∞

t0

[
1

a(v)

∫ v

t0

1
b(u)

∫ u

t0

q
β

β−γ (s)p
γ

γ−β (s)dsdu
] 1

α

dv < ∞, (3.6)

lim inf
t→∞

t∫
t0

[
1

a(v)

∫ v

t0

1
b(u)

∫ u

t0

e(s)dsdu
] 1

α

dv = −∞, (3.7)

and

lim sup
t→∞

t∫
t0

[
1

a(v)

∫ v

t0

1
b(u)

∫ u

t0

e(s)dsdu
] 1

α

dv = +∞, (3.8)

then equation (1.5) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.5), say x(t) > 0 for t ≥ t1 ≥ t0.
Proceeding as in the proof of Theorem 3.2, we obtain

(
b(t)

(
a(t)(x′(t))α

)′)′ ≤ e(t) +
(

β− γ

γ

) [
γ

β
q(t)

] β
β−γ

(p(t))
γ

γ−β

= e(t) + cq
β

β−γ (t)p
γ

γ−β (t),

where c =
(

β−γ
γ

) (
γ
β

) β
β−γ

. Integrating this inequality from t1 to t, we obtain

(
a(t)(x′(t))α

)′ ≤ c1

b(t)
+

1
b(t)

∫ t

t1

e(s)ds +
c

b(t)

∫ t

t1

q
β

β−γ (s)p
γ

γ−β (s)ds,

where c1 = b(t1) (a(t1)(x′(t1))
α)′. Integrating one more time, we have

a(t)(x′(t))α ≤ c2 + c1

∫ t

t1

1
b(s)

ds + c
∫ t

t1

1
b(u)

∫ u

t1

q
β

β−γ (s)p
γ

γ−β (s)dsdu +
∫ t

t1

1
b(u)

∫ u

t1

e(s)dsdu,

where c2 = a(t1)(x′(t1))
α.

Dividing by a(t) gives

x′(t) ≤
{

c2

a(t)
+

c1

a(t)

∫ t

t1

1
b(s)

ds +
c

a(t)

∫ t

t1

1
b(u)

∫ u

t1

q
β

β−γ (s)p
γ

γ−β (s)dsdu

+
1

a(t)

∫ t

t1

1
b(u)

∫ u

t1

e(s)dsdu
} 1

α

.
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Using the fact that (u + v)γ ≤ uγ + vγ for u, v ≥ 0 and 0 < γ < 1, and integrating again, we
have

x(t) ≤ x(t1) +
∫ t

t1

[
c2

a(s)

] 1
α

ds +
∫ t

t1

[
c1

a(u)

∫ u

t1

1
b(s)

ds
] 1

α

du

+
∫ t

t1

[ c
a(v)

∫ v

t1

1
b(u)

u∫
t1

q
β

β−γ (s)p
γ

γ−β (s)dsdu
] 1

α
dv +

∫ t

t1

[ 1
a(v)

∫ v

t1

1
b(u)

u∫
t1

e(s)dsdu
] 1

α
dv,

Taking lim inf of both sides of the above inequality as t → ∞ and applying conditions
(3.5)–(3.7), we obtain a contradiction to x(t) being a positive solution. The proof in case x(t)
is eventually negative is similar.

The following examples illustrate the above results.

Example 3.4. Consider the equation(
t6 (t6(x′(t))3)′)′ + 1

t4 x5(t) =
1
t6 x3(t), t ≥ 1. (3.9)

All conditions of Theorem 3.2 are satisfied with e(t) = 0 and so every nonoscillatory solution
of (3.9) is bounded. One such solution is x(t) = 1/t.

Example 3.5. Consider the equation(
t3
(

t4(x′(t))3
)′)′

+
1
t4 x5(t) =

1
t6 x3(t) + t6 sin t. (3.10)

It is easy to check that all the hypotheses of Theorem 3.3 are satisfied and hence all solutions
of (3.10) are oscillatory.

Concluding Remarks. With suitable care, the nonlinearity (x′)α in equation (1.1) can be
replaced with |x′|α sgn(x′). There do not appear to be any criteria to ensure the nonoscillation
of all solutions of equation (1.1). This would be an interesting topic to explore.

References

[1] B. Baculíková, J. Džurina, Oscillation of third-order nonlinear differential equa-
tions, Appl. Math. Lett. 24(2011), 466–470. https://doi.org/10.1016/j.aml.2010.10.

043; MR2749728

[2] J. Džurina, B. Baculíková, Oscillation of trinomial differential equations with positive
and negative terms, Electron. J. Qual. Theory Differ. Equ. 2014, No. 43, 1–8. https://doi.
org/10.14232/ejqtde.2014.1.43; MR3250034

[3] T. Candan, R. S. Dahiya, Oscillation of third-order functional differential equations with
delay, in: Proceedings of the Fifth Mississippi State Conference on Differential Equations and
Computational Simulations (Mississippi State, MS, 2001), Electron. J. Differ. Equ. Conf. Vol. 10,
Southwest Texas State Univ., San Marcos, TX, 2003, pp. 79–88. MR198309

[4] S. R. Grace, R. P. Agarwal, R. Pavani, E. Thandapani, On the oscillation of certain third
order nonlinear functional differential equations, Appl. Math. Comput. 202(2008), 102–112.
https://doi.org/10.1016/j.amc.2008.01.025; MR2437140

https://doi.org/10.1016/j.aml.2010.10.043
https://doi.org/10.1016/j.aml.2010.10.043
https://www.ams.org/mathscinet-getitem?mr=2749728
https://doi.org/10.14232/ejqtde.2014.1.43
https://doi.org/10.14232/ejqtde.2014.1.43
https://www.ams.org/mathscinet-getitem?mr=3250034
https://www.ams.org/mathscinet-getitem?mr=198309
https://doi.org/10.1016/j.amc.2008.01.025
https://www.ams.org/mathscinet-getitem?mr=2437140


10 S. R. Grace and J. R. Graef

[5] J. R. Graef, S. M. Rankin, P. W. Spikes, Oscillation theorems for perturbed nonlinear
differential equations, J. Math. Anal. Appl. 65(1978), 375–390. https://doi.org/10.1016/
0022-247X(78)90189-0; MR506315

[6] J. R. Graef, S. M. Rankin, P. W. Spikes, Oscillation results for nonlinear functional dif-
ferential equations, Funkcial. Ekvac. 27(1984), 255–260. MR775209

[7] I. T. Kiguradze, On the oscillation of solutions of the equation dmu/dtm +

a(t)|u(t)|msgnu(t) = 0 (in Russian), Mat. Sb. (N.S.) 65(1964), 172–187. MR0173060

[8] I. T. Kiguradze, T. A. Chanturia, Asymptotic properties of solutions of nonautonomous or-
dinary differential equations, Kluwer Acad. Publ., Dordrecht 1993. https://doi.org/10.
1007/978-94-011-1808-8; MR1220223

[9] R. G. Koplatadze, T. A. Chanturiya, Oscillating and monotone solutions of first-
order differential equations with deviating argument, Differ. Uravn. 18(1982), 1463–1465.
MR0671174

[10] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations
with deviating arguments, Marcel Dekker, New York, 1987. MR1017244

[11] Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for dif-
ferential equations with positive delays, Arch. Math. (Basel) 36(1981), 168–178. MR619435

[12] E. Thandapani, T. Li, On the oscillation of third-order quasi-linear neutral functional
differential equations, Arch. Math. (Brno) 47(2011), 181–199. https://doi.org/10.1007/
BF01223686; MR2852380

[13] A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear
delay differential equations with damping, J. Math. Anal. Appl. 325(2007), 54–68. https:
//doi.org/10.1016/j.jmaa.2006.01.001; MR2273028

https://doi.org/10.1016/0022-247X(78)90189-0
https://doi.org/10.1016/0022-247X(78)90189-0
https://www.ams.org/mathscinet-getitem?mr=506315
https://www.ams.org/mathscinet-getitem?mr=775209
https://www.ams.org/mathscinet-getitem?mr=0173060
https://doi.org/10.1007/978-94-011-1808-8
https://doi.org/10.1007/978-94-011-1808-8
https://www.ams.org/mathscinet-getitem?mr=1220223
https://www.ams.org/mathscinet-getitem?mr=0671174
https://www.ams.org/mathscinet-getitem?mr=1017244
https://www.ams.org/mathscinet-getitem?mr=619435
https://doi.org/10.1007/BF01223686
https://doi.org/10.1007/BF01223686
https://www.ams.org/mathscinet-getitem?mr=2852380
https://doi.org/10.1016/j.jmaa.2006.01.001
https://doi.org/10.1016/j.jmaa.2006.01.001
https://www.ams.org/mathscinet-getitem?mr=2273028

	Introduction
	Oscillation of equation (1.1)
	Boundedness and oscillation of equation (1.5)

