

Bifurcation and blow-up results for equations with *p*-Laplacian and convex-concave nonlinearity

Yavdat Shavkatovich Ilyasov[⊠]

Institute of Mathematics, Ufa Scientific Center, Russian Academy of Sciences, 112, Chernyshevsky str., 450008 Ufa, Russia

Received 9 August 2017, appeared 29 December 2017 Communicated by Patrizia Pucci

Abstract. This paper is concerned with the existence of global, blow-up and bifurcation solutions for parametrized families of elliptic and parabolic equations with *p*-Laplacian and concave-convex nonlinearity. The main results are obtained by means of a generalised Collatz–Wielandt formula.

Keywords: concave–convex nonlinearity, Collatz–Wielandt formula, *p*-Laplacian, bifurcation, blow up.

2010 Mathematics Subject Classification: 35B44, 35B32, 35K59, 35J60, 35J70, 35K65.

1 Introduction

In this paper we study the following parabolic problem

$$\begin{cases} u_t = \Delta_p u + \lambda f(x) |u|^{\gamma - 2} u + q(x) |u|^{\alpha - 2} u & \text{in } (0, T) \times \Omega, \\ u = 0 & \text{on } [0, T) \times \partial \Omega, \\ u|_{t=0} = u_0 & \text{in } \Omega, \end{cases}$$
(1.1)

and the corresponding stationary problem

$$\begin{cases} -\Delta_p u = \lambda f(x) |u|^{\gamma - 2} u + q(x) |u|^{\alpha - 2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
(1.2)

Here Ω is a bounded domain in \mathbb{R}^N with $C^{1,\beta}$ -boundary $\partial\Omega$ for some $\beta \in (0,1)$, $N \geq 1$, $0 < T < \infty$; Δ_p is the *p*-Laplacian, $1 < \alpha < p < \gamma$, f := f(x) and q := q(x) are measurable functions on Ω . We assume that $u_0 \in W_0^{1,p}(\Omega)$ and by a weak solution of (1.1) we mean a function

$$u \in C(0,T;L^2(\Omega)) \cap L^p(0,T;W^{1,p}_0(\Omega)) \cap L^{\infty}((0,T) \times \Omega), \qquad u_t \in L^2((0,T) \times \Omega),$$

[™]Corresponding author. Email: ilyasov02@gmail.com

satisfying

$$\int_{\Omega} u(t)\phi(t)dx - \int_{\Omega} u_0\phi(0)dx$$
$$= \int_0^t \int_{\Omega} (u\phi_t - |\nabla u|^{p-2}(\nabla u, \nabla \phi) + \lambda f u^{\gamma-1}\phi + q u^{\alpha-1}\phi)dxdt \quad (1.3)$$

for all $t \in [0, T)$ and for all test functions $\phi \in C^1([0, T) \times \overline{\Omega})$, $\phi = 0$ on $[0, T) \times \partial \Omega$. A weak solution $u \in W_0^{1,p}(\Omega)$ of (1.2) is defined analogously.

Beginning with the well-known results of Ambrosetti, Brezis, Cerami [2], problems with concave-convex nonlinearity of type (1.2) have received a lot of attention (cf., in particular, Ambrosetti, Azorero, Peral [3], De Figueiredo, Gossez, Ubilla [19] and the references therein). In the case $f, q \in C(\overline{\Omega})$, $p \ge 2$, existence of local in time solutions of (1.1) is well understood; see Ladyzhenskaja, Solonnikov, Ural'tseva [30] for p = 2 and Zhao [42] for $p \ge 2$. Furthermore, for p = 2 and $f(x), q(x) \equiv 1$, Escobedo, Cazenave, Dickstein [18] have proved that there exists a unique positive solution of (1.1) defined on a maximal time interval $(0, T_m)$, where the blow up alternative holds: either $T_m = +\infty$, i.e., u_λ is a global in time solution, or else $T_m < +\infty$ and u_{λ} blows up in finite time $||u_{\lambda}(t)||_{L^{\infty}} \to +\infty$ as $t \to T_m$. Furthermore, they found that there exists a thresholds value $\Lambda > 0$ such that (1.1) has a global solution for $0 < \lambda \leq \Lambda$, whereas any positive solution of (1.1) blows up in finite time for $\lambda > \Lambda$. The dividing line Λ coincides with the critical value of Ambrosetti, Brezis, Cerami [2] for the stationary problem (1.2) which separates the interval $(0, \Lambda]$ of the existence of minimal positive solution of (1.2) and the interval $(\Lambda, +\infty)$ where positive solutions of (1.2) are absent. The key tool in [18] relies on the arguments introduced by Brezis, Cazenave, Martel, Ramiandrisoa in [9], which is based on the proving that any global solution $u_{\lambda}(t)$ of parabolic problem (1.1) converges to a weak solution of the stationary problem (1.2) as $t \to +\infty$. In this way, the blow up behaviour for $\lambda > \Lambda$ is obtained by contradiction.

The purpose of this paper is to investigate the existence of global and blow-up solutions of (1.1) and the existence of bifurcations for branches of positive solutions of (1.2) with respect to the behaviour of the functions f, q and the value of the parameter λ . Our approach is based on the development of the extended functional method [8, 21, 23–26]. The central role in this method is played by the so-called generalised Collatz–Wielandt formula which gives a threshold value λ^* of the existence of positive solutions for nonlinear elliptic boundary value problems [21, 24]. Furthermore, the dual variational problem corresponding to the Collatz–Wielandt formula allows finding a threshold value λ^{**} for the existence of global or blow-up solutions to parabolic problems [23, 25]. Our interest in the development of this approach also emerges from the fact that the Collatz–Wielandt formula gives a simple numerical algorithm for the calculating the threshold value λ^* [26].

2 Main results

The Collatz–Wielandt formula for the Perron root $r = \max_{x \in (\mathbb{R}^+)^n, x \neq 0} L(x)$ of $A_{n \times n} > 0$, where

$$L(x) = \min_{1 \le i \le n} \left\{ \frac{[Ax]_i}{x_i} : x_i \ne 0 \right\}, \qquad x \in (\mathbb{R}^+)^n,$$
(2.1)

was discovered in 1942 by L. Collatz [10] and then developed by H. Wielandt [41] in 1950. Since (2.1) has the following equivalent form (see e.g. [26])

$$L(x) = \min_{z \in (\mathbb{R}^+)^n} \left\{ \frac{\langle Ax, z \rangle}{\langle x, z \rangle} : z \neq 0 \right\}, \qquad x \in (\mathbb{R}^+)^n.$$

it is natural to call

$$\lambda^* = \sup_{u \in \mathcal{C}^+} \inf_{\phi \in \mathcal{C}_0^+} \left\{ L(u,\phi) : \int_{\Omega} f u^{\gamma-1} \phi \, dx \neq 0 \right\}$$
(2.2)

as a generalized Collatz-Wielandt formula, where

$$L(u,\phi) := \frac{\int_{\Omega} (|\nabla u|^{p-2} \nabla u, \nabla \phi) \, dx - \int_{\Omega} q u^{\alpha-1} \phi \, dx}{\int_{\Omega} f u^{\gamma-1} \phi \, dx}, \quad \text{for } \int_{\Omega} f u^{\gamma-1} \phi \, dx \neq 0,$$

$$\mathcal{C}^{+} = \{ u \in \mathcal{C}^{1}(\overline{\Omega}) | \ u > 0 \text{ in } \Omega, \ u = 0 \text{ on } \partial\Omega \},$$
(2.3)

$$\mathcal{C}_0^+ = \{ \phi \in C^1(\overline{\Omega}) | \ \phi(x) \ge 0 \text{ in } \Omega, \ \operatorname{supp}(\phi) \subset \Omega, \ \phi \neq 0 \}.$$
(2.4)

Remark 2.1. Another type of generalization for the Collatz–Wielandt formula to (1.2) can be obtained directly from (2.1), i.e. as follows

$$\tilde{\lambda}^* = \sup_{u \in C^2(\Omega)} \inf_{x \in \Omega} \left\{ \frac{-\Delta_p u(x) - q(x)u^{\alpha - 1}(x)}{f(x)u^{\gamma - 1}(x)} : u = 0 \text{ on } \partial\Omega, \ u > 0, \ f(x)u^{\gamma - 1}(x) \neq 0 \right\}.$$

For similar approach, the reader is refereed to Barta [4], Berestycki, Nirenberg, Varadhan [5], Birindelli, Demengel [7], Donsker, Varadhan [17], Berestycki, Coville, Vo [6] and references therein.

Remark 2.2. It is important to emphasise that minimax variational formula (2.2) admits a simple numerical procedure for finding the extremal value λ^* (see [26]).

Along with (2.2), we also need the following equivalent minimax variational formula

$$\lambda^* = \sup_{u \in \mathcal{C}^+} \inf_{\psi \in \mathcal{C}_0^+} \left\{ L(u, \psi^p / u^{p-1}) : \int_{\Omega} f u^{\gamma-p} \psi^p \, dx \neq 0 \right\}.$$
(2.5)

Furthermore, we shall deal with the dual variational formulas for (2.2) and (2.5):

$$\lambda^{**} = \inf_{\phi \in \mathcal{C}_0^+} \sup_{u \in \mathcal{C}^+} \left\{ L(u,\phi) : \int_{\Omega} f u^{\gamma-1} \phi \, dx \neq 0 \right\},$$
(2.6)

$$\lambda_P^{**} = \inf_{\psi \in \mathcal{C}_0^+} \sup_{u \in \mathcal{C}^+} \left\{ L(u, \psi^p / u^{p-1}) : \int_{\Omega} f u^{\gamma-p} \psi^p \, dx \neq 0 \right\},\tag{2.7}$$

respectively. By standard arguments it follows that $\lambda^* \leq \lambda^{**}$ and $\lambda^* \leq \lambda^{**}_p$.

Our main assumptions on f and q are the following.

- (*F*₁) There is an open subset $U \subset \Omega$ such that $\operatorname{ess\,inf}_{x \in U}{f(x), q(x)} > 0$.
- (*F*₂) ess sup_{$x \in \Omega$} {f(x), q(x)} < + ∞ .

Lemma 2.3. *Let* $1 < \alpha < p < \gamma$ *.*

- (a) Assume (F₁), then $\lambda^{**} < +\infty$, $\lambda_p^{**} < +\infty$ and thus $\lambda^* < +\infty$.
- (b) Assume $f(x) \ge 0$ in Ω and (F_2) , then $\lambda^* > 0$ and thus $\lambda^{**} > 0$, $\lambda_p^{**} > 0$.

Observe that problem (1.2) has the variational form with the Euler functional $I_{\lambda}(u)$, defined on $W_0^{1,p}(\Omega) \cap L^{\gamma}(|f|, \Omega) \cap L^{\alpha}(|q|, \Omega)$ by

$$I_{\lambda}(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^{p} dx - \frac{\lambda}{\gamma} \int_{\Omega} f|u|^{\gamma} dx - \frac{1}{\alpha} \int_{\Omega} q|u|^{\alpha} dx.$$
(2.8)

Our result on the existence and non-existence of positive solutions and the existence of bifurcation point for stationary problem (1.2) is as follows

Theorem 2.4. Let $1 < \alpha < p < \gamma$ and Ω be a bounded domain in \mathbb{R}^N with $C^{1,\beta}$ -boundary for some $\beta \in (0,1)$.

- (i) Assume (F_1) , then for any $\lambda > \lambda^*$, (1.2) has no weak solution $u_{\lambda} \in C^+$.
- (ii) Assume (F₁), $f(x) \ge 0$ in Ω and $f, q \in L^{\infty}(\Omega)$, then for any $\lambda \in (0, \lambda^*)$ there exists a weak solution u_{λ} of (1.2) such that $u_{\lambda} \in C^+$. Moreover, if $\inf_{x \in \Omega} f(x) > 0$, then (1.2) has a weak non-negative solution $u_{\lambda^*} \in L^{\gamma}(\Omega) \cap W_0^{1,p}(\Omega)$ for $\lambda = \lambda^*$.
- (iii) Assume p = 2, $f, q \in C(\overline{\Omega})$, $\min_{x \in \Omega} f(x) > 0$ and $q(x) \ge 0$ in Ω . Suppose that $u_{\lambda^*} \neq 0$ and $u_{\lambda^*} \in L^{\infty}(\Omega)$. Then $X_1 := KerD_u^2 I_{\lambda^*}(u_{\lambda^*})$ is an one-dimensional subspace of $W_0^{1,p}(\Omega)$ spanned by $\phi^* \in W_0^{1,p}(\Omega)$; *i.e.*, $X_1 = \langle \phi^* \rangle$, $W_0^{1,p}(\Omega) = X_1 \oplus X_2$.

Furthermore, $(\lambda^*, u_{\lambda^*})$ is a bifurcation point; i.e., there exist an interval $(-a, a) \subset \mathbb{R}$ and C^1 mappings $\lambda : (-a, a) \to \mathbb{R}$ and $u : (-a, a) \to W_0^{1,p}(\Omega)$ such that for each $s \in (-a, a)$ the function $u(s) \in C^+$ is a weak solution of problem (1.1) for $\lambda = \lambda(s)$, $(u(0), \lambda(0)) =$ $(u_{\lambda^*}, \lambda^*)$, $d\lambda(0)/ds = 0$, $du(0)/ds = \phi^*$ and $\lambda(s) \leq \lambda^*$ for $s \in (-a, a)$. Furthermore, $u(s) = u_{\lambda^*} + s\phi^* + \xi(s)$, where $\xi : (-a, a) \to X_2$, $\xi(0) = 0$, $d\xi(0)/ds = 0$.

Remark 2.5. If one does not take into account that λ^* is expressed in generalized Collatz–Wielandt formula (2.2), then statements (i), (ii) of Theorem 2.4 follow from Theorems 2.1, 2.2 in [19].

Remark 2.6. In the case of the subcritical Sobolev exponent $1 < \alpha < p < \gamma < p^*$, where $p^* = pN/(N-p)$ if N > p and $p^* = \infty$ if $N \le p$, the existence of the weak positive solution u_{λ} of (1.1) for $\lambda \in (0, \Lambda_{\mathcal{N}})$, where $\Lambda_{\mathcal{N}}$ is the so-called extreme value of the Nehari manifold method (see [28]) can be obtained by the Nehari manifold method under weaker assumptions $f \in L^{r_1}(\Omega)$ and $q \in L^{r_2}(\Omega)$ with some $r_1, r_2 \in (1, +\infty]$ (see, e.g., [22]). However, recent investigations Il'yasov, Silva and Silva, Macedo [27, 35] show that, in general, $\Lambda_{\mathcal{N}}$ does not give the threshold value for the existence of positive solutions of (1.1).

Remark 2.7. Under assumptions (iii) of Theorem 2.4, the conditions $u_{\lambda^*} \neq 0$, $u_{\lambda^*} \in L^{\infty}(\Omega)$ are satisfied, for example, if $1 < q < p < \gamma < p^*$ (see [19]) or p = 2, f(x), $q(x) \equiv 1$ and $N \leq 10$ (see Mignot, Puel [32]).

For (1.1) our main result is the following theorem.

Theorem 2.8. Let $1 < \alpha < p < \gamma$ and Ω be a bounded domain in \mathbb{R}^N with $C^{1,\beta}$ -boundary for some $\beta \in (0,1)$.

- (i) Assume (F_1) is satisfied and $\inf_{x \in \Omega} f(x) > 0$. Let u_{λ} be a weak non-negative solution of (1.1) defined on a maximal time interval $(0, T_m)$.
 - Suppose p = 2 and $\lambda > \lambda^{**}$. Then $T_m < +\infty$ and u_{λ} blows up in finite time, i.e., $\|u_{\lambda}(t)\|_{L^{\infty}} \to +\infty$ as $t \to T_m$.
 - Suppose $1 , <math>\gamma > 2$, $\lambda > \lambda_P^{**}$ and $u_{\lambda} \in C^1([0, T_m) \times \overline{\Omega})$, $u_{\lambda} > 0$ in $[0, T_m) \times \Omega$. Then $T_m < +\infty$ and u_{λ} blows up in finite time, i.e., $||u_{\lambda}(t)||_{L^{\infty}} \to +\infty$ as $t \to T_m$.
- (ii) Assume (F_1) , $f(x) \ge 0$ in Ω and $f, q \in L^{\infty}(\Omega)$. Then (1.1) possesses global in time weak positive solution u_{λ} for any $\lambda \in (0, \lambda^*)$.

As it was mention above, from [2, 18] it follows that if f(x), $q(x) \equiv 1$ and p = 2, then there exists $\Lambda > 0$ such that for $\lambda \in (0, \Lambda)$ parabolic problem (1.1) possesses a global in time solution whereas for $\lambda > \Lambda$ any positive solution u_{λ} blows up in finite time. Hence, Theorem 2.8 yields the following result on the saddle-point property for (2.2) and (2.6).

Corollary 2.9. Assume that $f(x), q(x) \equiv 1$, p = 2 and $1 < \alpha < 2 < \gamma$, Ω is a bounded domain in \mathbb{R}^N with C^1 -boundary. Then variational formulas (2.2) and (2.6) satisfy the saddle-point property: $\lambda^* = \lambda^{**} = \Lambda$.

3 Proof of Lemma 2.3

(a) Let us prove that $\lambda_p^{**} < +\infty$. The proof of $\lambda^{**} < +\infty$ is similar. Assume (*F*₁). Take a ball $B \subset U$. Consider the first eigenpair (λ_1, ϕ_1) of the operator $-\Delta_p$ on B with the zero Dirichlet boundary condition. It is well known that the eigenvalue λ_1 is positive, simple and isolated, and the corresponding eigenfunction ϕ_1 is positive and $\phi_1 \in C^1(\overline{B})$. Evidently $\phi_1^p/u^{p-1} \in C^1(\overline{\Omega})$ for any $u \in C^+$. Hence by Allegretto, Xi [1] there holds

$$\left(|\nabla u|^{p-2}\nabla u, \nabla \frac{\phi_1^p}{u^{p-1}}\right) \leq |\nabla \phi_1|^p \text{ in } \Omega, \ \forall u \in \mathcal{C}^+.$$

In view of (*F*₁), there is $\delta > 0$ such that $f(x) > \delta$, $q(x) > \delta$ a.e. on \overline{B} . This implies that there exists a sufficiently large $\Lambda > 0$ such that

$$\lambda_1 < \Lambda \delta s^{\gamma-p} + \delta s^{\alpha-p} \le \Lambda f(x) s^{\gamma-p} + q(x) s^{\alpha-p}$$
 a.e. in $B, \forall s > 0$.

Hence

$$L(u,\phi_1^p/u^{p-1}) \leq \frac{\int_B (\lambda_1 - q(x)u^{\alpha-p})\phi_1^p dx}{\int_B f(x)u^{\gamma-p}\phi_1^p dx} < \Lambda, \qquad \forall u \in \mathcal{C}^+,$$

which implies that $\lambda_p^{**} < +\infty$.

(b) Since (F_2), there exists K > 0 such that f(x) < K, q(x) < K a.e. in Ω . Following [2], let us consider

$$-\Delta_p e = 1$$
 in Ω ,
 $e|_{\partial \Omega} = 0.$

By the maximum principle (see Tolksdorf [38], Trudinger [39], Vázquez [40]) and the regularity arguments (see DiBenedetto [14], Lieberman [31], Tolksdorf [37]) one has $e \in C^+$. Furthermore, it is easily seen that for any sufficiently small $\lambda > 0$, there is $M = M(\lambda) > 0$ such that $M^{p-1} - KM^{\alpha-1} ||e||_{\infty}^{\alpha-1} > \lambda KM^{\gamma-1} ||e||_{\infty}^{\alpha-1}$. Hence and in view of that $f(x) \ge 0$ in Ω , by (2.2) we have

$$\lambda^* \geq \inf_{\phi \in \mathcal{C}^+_0} L(Me, \phi) \geq \inf_{\phi \in \mathcal{C}^+_0} \frac{\int_B (M^{p-1} - KM^{\alpha-1} \|e\|_{\infty}^{\alpha-1})\phi \, dx}{M^{\gamma-1} \int_B f(x) e^{\gamma-1} \phi \, dx} > \lambda > 0.$$

4 **Proof of Theorem 2.4**

(i) By (*F*₁), Lemma 2.3 implies that $\lambda^* < +\infty$. Let $\lambda > \lambda^*$ and suppose, contrary to our claim, that there exists a weak solution u_{λ} of (1.2) such that $u_{\lambda} \in C^+$. By (2.2), there is $\phi_{\lambda} \in C_0^+$ such that $L(u_{\lambda}, \phi_{\lambda}) < \lambda$ and $\int_{\Omega} f u_{\lambda}^{\gamma-1} \phi_{\lambda} dx \neq 0$. Assume, for instance, that $\int_{\Omega} f u_{\lambda}^{\gamma-1} \phi_{\lambda} dx > 0$. Then

$$\int_{\Omega} (|\nabla u_{\lambda}|^{p-2} \nabla u_{\lambda}, \nabla \phi_{\lambda}) \, dx - \int_{\Omega} q u_{\lambda}^{\alpha-1} \phi_{\lambda} \, dx - \lambda \int_{\Omega} f u_{\lambda}^{\gamma-1} \phi_{\lambda} \, dx < 0$$

which is a contradiction.

(ii) Since (F_2) and $f(x) \ge 0$ in Ω , Lemma 2.3 implies that $\lambda^* > 0$. Let $0 < \lambda < \lambda^*$. By (2.2), one can find $\hat{u}_{\lambda} \in C^+$ such that $L(\hat{u}_{\lambda}, \phi) > \lambda$ for all $\phi \in C_0^+$. Hence and since $f(x) \ge 0$, \hat{u}_{λ} is a super-solution of (1.2). Take $\check{u} = 0$ for a sub-solution. Consider

$$\hat{I}_{\lambda} = \min\{I_{\lambda}(u) \mid u \in M_{\lambda}\},\tag{4.1}$$

where $M_{\lambda} = \{u \in W_0^{1,p}(\Omega) | 0 \le u \le \hat{u}_{\lambda}\}$. In view of that $f, q \in L^{\infty}(\Omega)$, we may apply Proposition 3.1 from [19] (see also for semilinear case Theorem 2.4 in Struwe [36]). Thus for any $\lambda \in (0, \lambda^*)$ there exists a minimizer $u_{\lambda} \in M_{\lambda}$ of (4.1) which weakly satisfies (1.2).

Using (*F*₁) it is not hard to show that there exists $u_0 \in M_\lambda$ such that

$$\int q(x)|u_0|^{\alpha}dx > 0 \quad \text{and} \quad \int f(x)|u_0|^{\gamma}dx > 0.$$

This and the assumption $1 < \alpha < p < \gamma$ imply that there is a sufficiently small t > 0 such that $tu_0 \in M_\lambda$ and $I_\lambda(tu_0) < 0$. Thus $\hat{I}_\lambda = I_\lambda(u_\lambda) < 0$ and therefore $u_\lambda \neq 0$.

Since $u_{\lambda} \leq \hat{u}_{\lambda}$ in Ω , one has $u_{\lambda} \in L^{\infty}(\Omega)$. Furthermore, by the assumptions $\partial\Omega$ is $C^{1,\beta}$ manifold for some $\beta \in (0,1)$. Hence, by $C^{1,\alpha}$ -regularity results [14,31,37] we have $u_{\lambda} \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,\beta)$. Finally, the maximum principle [38–40] implies that $u_{\lambda} > 0$ in Ω for all $\lambda \in (0,\lambda^*)$.

Let us show that there exists a limit solution u_{λ^*} . Since $I_{\lambda}(u_{\lambda}) < 0$ and $D_u I_{\lambda}(u_{\lambda})(u_{\lambda}) = 0$, we have

$$\frac{(\gamma-p)}{p} \|u_{\lambda}\|_{1}^{p} - \frac{(\gamma-\alpha)}{\alpha} \int q(x) |u_{\lambda}|^{\alpha} dx < 0,$$
(4.2)

$$\lambda \frac{(\gamma - p)}{\gamma} \int f(x) |u_{\lambda}|^{\gamma} dx - \frac{(p - \alpha)}{\alpha} \int q(x) |u_{\lambda}|^{\alpha} dx < 0,$$
(4.3)

 $\forall \lambda \in (0, \lambda^*)$. Here and what follows we denote by $\|\cdot\|_1$ the norm in the space $W_0^{1,p}(\Omega)$. In view of that $q(x) < +\infty$ in Ω , inequality (4.2) implies that $\|u_\lambda\|_1 < C_1 < +\infty$ and $\int q(x)|u_\lambda|^{\alpha}dx < C_2 < +\infty$, where C_1, C_2 do not depend on $\lambda \in (0, \lambda^*)$. Hence by (4.3), $\int f(x)|u_\lambda|^{\gamma}dx < C_3 < +\infty$. Consequently using $\inf_{x\in\Omega} f(x) > 0$ we derive that $\|u_\lambda\|_{L^{\gamma}} < C_4 < +\infty$, where C_3, C_4 do not depend on $\lambda \in (0, \lambda^*)$. Now the Banach–Alaoglu and Sobolev theorems imply that there exists a sequence λ_n such that $\lambda_n \uparrow \lambda^*$ and $u_{\lambda_n} \to u_{\lambda^*}$ weakly in $W_0^{1,p}$, strongly in $L^{\alpha}(\Omega)$ and $u_{\lambda_n} \to u_{\lambda^*} \ge 0$ a.e. in Ω as $n \to \infty$. Furthermore, since $u_{\lambda_n} \to u_{\lambda^*}$ a.e. in Ω and $||u_{\lambda}||_{L^{\gamma}} < C_4$, we have $u_{\lambda_n} \to u_{\lambda^*} \in L^{\gamma}(\Omega)$ weakly in $L^{\gamma}(\Omega)$ (see, e.g, Theorem 13.44 in Hewitt, Stromberg [20]). By the same arguments $u_{\lambda_n}^{\gamma-1} \to u_{\lambda^*}^{\gamma-1}$ weakly in $L^{\gamma/(\gamma-1)}(\Omega)$. Hence in virtue of that $f, q \in L^{\infty}(\Omega)$, we may pass to the limit in (1.2) as $n \to \infty$. Thus u_{λ^*} weakly satisfies (1.2) for $\lambda = \lambda^*$. This completes the proof of (ii).

(iii) Let p = 2. Since $u_{\lambda^*} \neq 0$ and $u_{\lambda^*} \in L^{\infty}(\Omega)$, the standard theory of regularity solutions and maximum principle for elliptic equations yield $u_{\lambda^*} \in C^1(\overline{\Omega}) \cap C^2(\Omega)$, $u_{\lambda^*} > 0$. Furthermore, since f(x) > 0 and $q(x) \ge 0$ in Ω , Hoph's lemma implies (see Protter, Weinberger [34]) that $\partial u_{\lambda^*}/\partial v < 0$ on $\partial \Omega$, where v := v(x) denotes the exterior unit normal to $\partial \Omega$ at $x \in \partial \Omega$.

Consider the eigenvalue problem

$$\begin{cases} -\Delta\psi - [\lambda^*(\gamma - 1)f u_{\lambda^*}^{\gamma - 2} + (\alpha - 1)q u_{\lambda^*}^{\alpha - 2}]\psi = \mu\psi & \text{in }\Omega, \\ \psi = 0 & \text{on }\partial\Omega. \end{cases}$$
(4.4)

Then there exists a first eigenpair (μ_1, ϕ^*) of (4.4) such that $\phi^* > 0$, $\phi^* \in C^2(\Omega) \cap C^1(\overline{\Omega})$ and

$$\mu_{1} = \inf_{\psi \in W_{0}^{1,2}(\Omega) \setminus 0} \left\{ \frac{\int |\nabla \psi|^{2} dx - \int [\lambda^{*}(\gamma - 1) f u_{\lambda^{*}}^{\gamma - 2} + (\alpha - 1) q u_{\lambda^{*}}^{\alpha - 2}] \psi^{2} dx}{\int \psi^{2} dx} \right\}.$$
(4.5)

Indeed, this can be shown by arguments introduced Díaz, Hernández [13], Díaz, Hernández, Il'yasov [12]. Let us give a sketch of its proof. Since $\partial u_{\lambda^*}/\partial \nu < 0$ on $\partial \Omega$, one has $c d(x) \leq u_{\lambda^*}(x) \leq C d(x)$ for $x \in \Omega$ with some constants $0 < c, C < +\infty$, where $d(x) := \text{dist}(x, \partial \Omega)$. Hence by the monotonicity properties of eigenvalues it is sufficient to show that the first eigenvalue of the problem

$$\begin{cases} -\Delta\psi - \left(\lambda^*(\gamma - 1)f u_{\lambda^*}^{\gamma - 2} + q \frac{(\alpha - 1)}{d(x)^{2 - \alpha}}\right)\psi = \mu\psi & \text{in }\Omega,\\ \psi = 0 & \text{on }\partial\Omega, \end{cases}$$
(4.6)

is well-defined and has the usual properties. Assume first that $\mu > 0$. Then (4.6) is equivalent to the existence of μ such that $r(\mu) = 1$, where $r(\mu)$ is the first eigenvalue for the associated problem

$$\begin{cases} -\Delta \psi = r(\mu) \left(\lambda^* (\gamma - 1) f u_{\lambda^*}^{\gamma - 2} + q \frac{(\alpha - 1)}{d(x)^{2 - \alpha}} + \mu \right) \psi & \text{in } \Omega, \\ \psi = 0 & \text{on } \partial \Omega. \end{cases}$$
(4.7)

That $r(\mu) > 0$ is well-defined follows by showing that (4.7) is equivalently formulated as Tw = rw, with $T = i \circ P \circ F$, where $F : L^2(\Omega, d^{2-\alpha}) \to W^{-1,2}(\Omega)$ defined by

$$F(\psi) = \left(\lambda^*(\gamma - 1)f u_{\lambda^*}^{\gamma - 2} + q \frac{(\alpha - 1)}{d(x)^{2 - \alpha}} + \mu\right)\psi,$$

 $P: W^{-1,2}(\Omega) \to W^{1,2}_0(\Omega)$ is the solution operator for the linear problem

$$\begin{cases} -\Delta z = h(x) & \text{in } \Omega, \\ z = 0 & \text{on } \partial \Omega, \end{cases}$$
(4.8)

for $h \in W^{-1,2}(\Omega)$, and where $i : W_0^{1,2}(\Omega) \to L^2(\Omega, d^{2-\alpha})$ is the standard embedding. Then *F* and *P* are continuous and the map *i* is compact (see Kufner [29]). Hence, it is possible to

apply the Krein–Rutman theorem in the formulation by Daners, Koch-Medina [16]. Thus we have the variational formulation

$$r(\mu) = \inf_{w \in W_0^{1,2}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla w|^2 dx}{\int \left([\lambda^*(\gamma - 1) f u_{\lambda^*}^{\gamma - 2} + (\alpha - 1) q u_{\lambda^*}^{\alpha - 2}] w^2 + \mu w^2 \right) dx}.$$
 (4.9)

Hence a positive eigenvalue of (4.7) exits if and only if there is a $\mu > 0$ such that $r(\mu) = 1$. Analogous argument gives the formulation for $\mu < 0$

$$r_{1}(\mu) = \inf_{w \in W_{0}^{1,2}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \left(|\nabla w|^{2} - \mu w^{2} \right) \, dx}{\int [\lambda^{*}(\gamma - 1) f u_{\lambda^{*}}^{\gamma - 2} + (\alpha - 1) q u_{\lambda^{*}}^{\alpha - 2}] w^{2} \, dx}.$$
(4.10)

It is not hard to show that $r(\mu)$ ($r_1(\mu)$) is decreasing (increasing) in μ and $r(\mu) \rightarrow 0$ ($r_1(\mu) \rightarrow +\infty$) as $\mu \rightarrow +\infty$ ($\mu \rightarrow -\infty$). Observe

$$r(0) = r_1(0) = \inf_{w \in W_0^{1,2}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla w|^2 dx}{\int [\lambda^*(\gamma - 1) f u_{\lambda^*}^{\gamma - 2} + (\alpha - 1) q u_{\lambda^*}^{\alpha - 2}] w^2 dx}$$

Thus, there exists a positive eigenvalue of (4.7) if r(0) > 1 and a negative one if r(0) < 1. Hence $-\infty < \mu_1 < +\infty$ and there exists a minimizer ϕ^* of (4.5) such that $\phi^* \in C^1(\overline{\Omega}) \cap C^2(\Omega)$, $\phi^* > 0$, $\partial \phi^* / \partial \nu < 0$ on $\partial \Omega$ and

$$\begin{cases} -\Delta \phi^* - (\lambda^* (\gamma - 1) f u_{\lambda^*}^{\gamma - 2} + (\alpha - 1) q u_{\lambda^*}^{\alpha - 2}) \phi^* = \mu_1 \phi^* & \text{in } \Omega, \\ \phi^* = 0 & \text{on } \partial \Omega. \end{cases}$$
(4.11)

Let us show that $\mu_1 = 0$. Assume the converse $\mu_1 \neq 0$ and suppose, for instance, that $\mu_1 > 0$. Consider $u_{\varepsilon} = u_{\lambda^*} + \varepsilon \phi^*$. It is readily seen that $u_{\varepsilon} \in C^+$ for sufficient small ε . The equations (1.2) and (4.11) imply the following equality

$$\int (\nabla u_{\varepsilon}, \nabla \psi) dx - \int q u_{\varepsilon}^{\alpha - 1} \psi dx = \lambda^* \int f u_{\varepsilon}^{\gamma - 1} \psi dx + \varepsilon \mu_1 \int \phi^* \psi dx + \bar{o}(\varepsilon)$$

which holds uniformly with respect to $\psi \in B^1 := \{\psi \in C_0^+ : \|\psi\|_{W^{1,2}} \le 1\}$ so that $\bar{o}(\varepsilon) = r(\varepsilon, \psi)$, where $|r(\varepsilon, \psi)| < C\varepsilon^2$ and $C < +\infty$ does not depend on $\psi \in B^1$. Hence there exists $\varepsilon_0 > 0$ such that

$$\inf_{\psi \in \mathcal{C}_{0}^{+}} \frac{\int (\nabla u_{\varepsilon_{0}}, \nabla \psi) dx - \int q u_{\varepsilon_{0}}^{\alpha - 1} \psi dx}{\int f u_{\varepsilon_{0}}^{\gamma - 1} \psi dx} > \lambda^{*},$$
(4.12)

which contradicts (2.2). The maximum principle for elliptic boundary value problems (see e.g. [34]) implies that the minimal eigenvalue μ_1 is simple. Consequently, the kernel $X_1 := \text{Ker } D^2_{\mu} I_{\lambda^*}(u_{\lambda^*})$ is the one-dimensional subspace in $W^{1,p}_0(\Omega)$ spanned by ϕ^* .

The proof of the second part of assertion (iii) follows from the bifurcation theorem of Crandall and Rabinowitz [11].

5 Blow up and global solutions

(i) Let p = 2. Since (F_1), Lemma 2.3 implies that $\lambda^{**} < +\infty$. Let $\lambda > \lambda^{**}$. Take $\varepsilon > 0$ such that $\lambda - \varepsilon > \lambda^{**}$. Then by (2.6), there exists $\phi_{\lambda} \in C_0^+$ such that

$$\sup_{u\in\mathcal{C}^+}\frac{\int_{\Omega}(\nabla u,\nabla\phi_{\lambda})\,dx-\int_{\Omega}qu^{\alpha-1}\phi_{\lambda}\,dx}{\int_{\Omega}fu^{\gamma-1}\phi_{\lambda}\,dx}<\lambda-\varepsilon,$$

that is

$$\int_{\Omega} (\nabla u, \nabla \phi_{\lambda}) \, dx - \lambda \int_{\Omega} f u^{\gamma - 1} \phi_{\lambda} \, dx - \int_{\Omega} q u^{\alpha - 1} \phi_{\lambda} \, dx < -\varepsilon \int_{\Omega} f u^{\gamma - 1} \phi_{\lambda} \, dx. \tag{5.1}$$

By the assumptions there is $a_0 > 0$ such that $f(x) \ge a_0$ a.e. in Ω . Hence, Jensen's inequality yields

$$\left(\int_{\Omega} u\phi_{\lambda} \, dx\right)^{\gamma-1} \le c_0 \int_{\Omega} f u^{\gamma-1} \phi_{\lambda} \, dx, \tag{5.2}$$

where $0 < c_0 < \infty$ does not depend on $u \in C^+$. Thus, one has the inequality

$$\int_{\Omega} (\nabla u, \nabla \phi_{\lambda}) \, dx - \lambda \int_{\Omega} f u^{\gamma - 1} \phi_{\lambda} \, dx - \int_{\Omega} q u^{\alpha - 1} \phi_{\lambda} \, dx < -\varepsilon c_0 \left(\int_{\Omega} u \phi_{\lambda} \, dx \right)^{\gamma - 1} \, dx$$

which holds by continuity for any $u \in W_0^{1,p}(\Omega)$, $u \ge 0$ in Ω .

Assume that there exists a non-negative weak solution u of (1.1) defined on a maximal time interval $(0, T_m)$. Suppose, contrary to our claim, that $T_m = +\infty$.

Consider $\eta(t) = \int_{\Omega} u(t)\phi_{\lambda} dx$. Then by (1.3) we have

$$\frac{d}{dt}\eta(t) = \int_{\Omega} (-(\nabla u, \nabla \phi_{\lambda}) + (\lambda f u^{\gamma-1} + q u^{\alpha-1})\phi_{\lambda}) \, dx > \varepsilon c_0(\eta(t))^{\gamma-1} \quad \text{a.e. in } (0, +\infty).$$

However, then

$$\eta(t) > C_1 \left(\frac{1}{1 - C_2 t}\right)^{1/(\gamma - 2)}$$

with some constants $0 < C_1, C_2 < +\infty$. Hence and since $\gamma > 2$, we have

$$\eta(t) \equiv \int_{\Omega} u(t) \phi_{\lambda} \, dx \to +\infty \quad \text{as } t \to 1/C_2.$$

But this is possible only if $||u(t)||_{L^{\infty}} \to +\infty$ as $t \to T^*$.

Consider the case $1 . By Lemma 2.3, <math>\lambda_P^{**} < +\infty$. Take $\lambda > \lambda_P^{**}$. Then there is $\varepsilon > 0$ such that $\lambda - \varepsilon > \lambda_P^{**}$. By (2.7), there exists $\phi_{\lambda} \in C_0^+$ such that

$$\sup_{u\in\mathcal{C}^{+}}\frac{\int_{\Omega}(|\nabla u|^{p-2}\nabla u,\nabla(\phi_{\lambda}^{p}/u^{p-1})\,dx-\int_{\Omega}qu^{\alpha-p}\phi_{\lambda}^{p}\,dx}{\int_{\Omega}fu^{\gamma-p}\phi_{\lambda}^{p}\,dx}<\lambda-\varepsilon$$

As above, we may assume that $f(x) \ge a_0$ a.e. in Ω for some $a_0 > 0$. In view of that $1 and <math>\gamma > 2$, Jensen's inequality yields

$$\left(\int_{\Omega} u^{2-p} \phi_{\lambda}^{p} dx\right)^{\frac{\gamma-p}{2-p}} \leq c_{0} \int_{\Omega} f u^{\gamma-p} \phi_{\lambda}^{p} dx,$$
(5.3)

where $0 < c_0 < \infty$ does not depend on $u \in C^+$. Thus, one has the inequality

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u, \nabla (\phi_{\lambda}^{p}/u^{p-1}) dx - \lambda \int_{\Omega} f u^{\gamma-p} \phi_{\lambda}^{p} dx - \int_{\Omega} q u^{\alpha-p} \phi_{\lambda}^{p} dx$$
$$< -C_{0} \left(\int_{\Omega} u^{2-p} \phi_{\lambda}^{p} dx \right)^{\frac{\gamma-p}{2-p}},$$

for any $u \in C^+$ with $C_0 = \varepsilon c_0 > 0$.

Assume that there exists a weak positive solution $u \in C^1([0, T_m) \times \overline{\Omega})$ of (1.1). Suppose, contrary to our claim, that $T_m = +\infty$.

Consider $\zeta(t) = \int_{\Omega} u(t)^{2-p} \phi_{\lambda}^{p} dx$. Then by (1.3) we have

$$\frac{d}{dt}\zeta(t) = (2-p)\int_{\Omega} \left(-\left(|\nabla u|^{p-2}\nabla u, \nabla(\phi_{\lambda}^{p}/u^{p-1})\right) + \left(\lambda f u^{\gamma-p} + q u^{\alpha-p}\right)\phi_{\lambda}\right)dx > C_{0}'(\zeta(t))^{\frac{\gamma-p}{2-p}}$$

a.e. in $(0, +\infty)$. Hence,

$$\frac{d}{dt}\zeta(t) > C_0'(\zeta(t))^{\frac{\gamma-p}{2-p}} \quad \text{a.e. in } (0, +\infty),$$
(5.4)

which implies that

$$\zeta(t) \equiv \int_{\Omega} u(t)^{2-p} \phi_{\lambda}^{p} dx \to +\infty \quad ext{as } t \to T^{*}$$

for some $T^* > 0$.

(ii) By Theorem 2.4 (ii), for $\lambda \in (0, \lambda^*)$ there exists a positive weak solution u_{λ} of (1.2) which is a positive stationary solution of (1.1) defined globally in the time interval $[0, +\infty)$. This completes the proof of (ii), Theorem 2.8.

Acknowledgements

The author wishes to express his thanks to Vladimir Bobkov and Kaye Silva for helpful discussion on the subject of the paper.

References

- W. ALLEGRETTO, H.Y. XI, A Picone's identity for the *p*-Laplacian and applications. *Nonlinear Anal.* 32(1998), No. 7, 819–830. MR1618334; https://doi.org/10.1016/ S0362-546X(97)00530-0
- [2] A. AMBROSETTI, H. BREZIS, G. CERAMI, Combined effect of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(1994), 519–543. MR1276168; https://doi.org/10.1006/jfan.1994.1078
- [3] A. AMBROSETTI, J. G. AZORERO, I. PERAL, Existence and multipicity results for some nonlinear elliptic equations: a survey, *Rend. Mat. Appl.* (7) **20**(2000), 167–198. MR1823096
- [4] J. BARTA, Sur la vibration fondamentale d'une membrane (in French), C. R. Acad. Sci. Paris 204(1937), No. 7, 472–473.
- [5] H. BERESTYCKI, L. NIRENBERG, S. S. VARADHAN, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, *Comm. Pure Appl. Math.*, 47(1994), No. 1, 47–92. MR1258192; https://doi.org/10.1002/cpa.3160470105

- [6] H. BERESTYCKI, J. COVILLE, H. H. Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, *J. Funct. Anal.* 271(2016), No. 10, 2701–2751. MR3548277; https://doi.org/10.1016/j.jfa.2016.05.017
- [7] I. BIRINDELLI, F. DEMENGEL, Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators. J. Differential Equations, 249(2010), No. 5, 1089–1110. MR2652165; https://doi.org/10.1016/j.jde.2010.03.015
- [8] V. Вовкоv, Y. IL'YASOV, Maximal existence domains of positive solutions for twoparametric systems of elliptic equations, *Complex Var. Elliptic Equ.* 61(2016), No. 5, 587– 607. MR3482784; https://doi.org/10.1080/17476933.2015.1107905
- [9] H. BREZIS, T. CAZENAVE, Y. MARTEL, A. RAMIANDRISOA, Blow up for $u_t \Delta u = g(u)$ revisited, *Adv. Differential Equations* 1(1996), No. 1, 73–90. MR1357955
- [10] L. COLLATZ, Einschliessungssatz für die charakteristischen Zahlen von Matrizen (in German), Math. Z. 48(1942), 221–226. MR0008590; https://doi.org/10.1007/BF01180013
- [11] M. G. CRANDALL, P. H. RABINOWITZ, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52(1973), 161–180. MR0341212; https:// doi.org/10.1007/BF00282325
- [12] J. I. DÍAZ, J. HERNÁNDEZ, Y. IL'YASOV, Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for $N \ge 3$, *Chin. Ann. Math. Ser. B* **38**(2017), No. 1, 345–378. MR3592166; https://doi.org/10.1007/s1140.
- [13] J. I. DÍAZ, J. HERNÁNDEZ, Linearised stability for degenerate and singular semilinear and quasilinear parabolic problems: the linearized singular equations, in preparation.
- [14] E. DIBENEDETTO, C^{1+α} local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7(1983), No. 8, 827–850. MR0709038; https://doi.org/0.1016/0362-546X(83)90061-5
- [15] E. DIBENEDETTO, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. MR1230384; https://doi.org/10.1007/978-1-4612-0895-2
- [16] D. DANERS, P. KOCH-MEDINA, Abstract evolution equations, periodic problems and applications, Pitman Research Notes in Mathematics Series, Vol. 279, Longman Scientific & Technical, Harlow, 1992. MR1204883
- [17] M. D. DONSKER, S. R. S. VARADHAN, On a variational formula for the principal eigenvalue for operators with maximum principle, *Proc. Nat. Acad. Sci. U.S.A.* 72(1975), 780–783. MR0361998
- [18] M. ESCOBEDO, T. CAZENAVE, F. DICKSTEIN, A semilinear heat equation with concaveconvex nonlinearity, *Rend. Mat. Appl.* (7) 19(1999), No. 2, 211–242. MR1738524
- [19] D. G. DE FIGUEIREDO, J.-P. GOSSEZ, P. UBILLA, Local "superlinearity" and "sublinearity" for the *p*-Laplacian, *J. Funct. Anal.* 257(2009), No. 3, 721–752. MR2530603; https://doi. org/10.1016/j.jfa.2009.04.001

- [20] E. HEWITT, K. STROMBERG, Real and abstract analysis: a modern treatment of the theory of functions of a real variable, Springer-Verlag, 1969. MR0274666; https://doi.org/10.1007/ 978-3-642-88047-6
- [21] Y. IL'YASOV, On positive solutions of indefinite elliptic equations, C. R. Acad. Sci. Paris Sér. I Math. 333(2001), No. 6, 533–538. MR1860925; https://doi.org/10.1016/ S0764-4442(01)01924-3
- [22] Y. IL'YASOV, On nonlocal existence results for elliptic equations with convex-concave nonlinearities. *Nonlinear Anal.* 61(2005), No. 1–2, 211–236. MR2122250; https://doi.org/10. 1016/j.na.2004.10.022
- [23] Y. SH. IL'YASOV, On global positive solutions of parabolic equations with a sign-indefinite nonlinearity, *Differential Equations* 41(2005), No. 4, 548–556. MR2200622; https://doi. org/10.1007/s10625-005-0188-0
- [24] Y. SH. IL'YASOV, Calculus of bifurcations by the extended functional method, *Funct. Anal. Appl.* 41(2007), No. 1, 18–30. MR2333980; https://doi.org/10.1007/s10688-007-0002-2
- [25] Y. IL'YASOV, A duality principle corresponding to the parabolic equations. *Phys. D* 237(2008), No. 5, 692–698. MR2454890; https://doi.org/10.1016/j.physd.2007.10.007
- [26] Y.IL'YASOV, A. IVANOV, Computation of maximal turning points to nonlinear equations by nonsmooth optimization, *Optim. Methods Softw.* **31**(2016), No. 1, 1–23. MR3439451; https://doi.org/10.1080/10556788.2015.1009978
- [27] Y. IL'YASOV, K. SILVA, On branches of positive solutions for *p*-Laplacian problems at the extreme value of Nehari manifold method, *arXiv preprint*, 2017. https://arxiv.org/abs/ 1704.02477.
- [28] Y. ILYASOV, On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, *Topol. Methods Nonlinear Anal.* 49(2017), 683–714. MR3670482; https://doi.org/10. 12775/TMNA.2017.005
- [29] A. KUFNER, Weighted Sobolev spaces, John Wiley & Sons Inc., New York, 1985. MR802206
- [30] O. A. LADYZHENSKAJA, V. A. SOLONNIKOV, N. N. URAL'TSEVA, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. MR0241822
- [31] G. M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12(1988), No. 11, 1203–1219. MR0969499; https://doi.org/10.1016/ 0362-546X(88)90053-3
- [32] F. MIGNOT, J. P. PUEL, Sur une classe de problèmes non linéaires avec non linéarité positive, croissante, convexe (in French), *Comm. Partial Differential Equations* 5(1980), No. 8, 791–836 MR0583604; https://doi.org/10.1080/03605308008820155.
- [33] R. D. NUSSBAUM, Y. PINCHOVER, On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications, J. Anal. Math. 59(1992), 161–177 MR1226957; https://doi.org/10.1007/BF02790223

- [34] M. H. PROTTER, H. F. WEINBERGER, Maximum principles in differential equations, Springer Science & Business Media, 2012. MR0762825; https://doi.org/10.1007/ 978-1-4612-5282-5.
- [35] K. SILVA, A. MACEDO, Local minimizers over the Nehari manifold for a class of concaveconvex problems with sign changing nonlinearity, arXiv preprint, 2017. https://arxiv. org/abs/1706.06686
- [36] M. STRUWE, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer-Verlag, Berlin, 1996. MR1411681; https://doi.org/10. 1007/978-3-540-74013-1
- [37] P. TOLKSDORF, Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51(1984), No. 1, 126–150. MR0727034; https://doi.org/10.1016/ 0022-0396(84)90105-0
- [38] P. TOLKSDORF, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, *Comm. Partial Differential Equations* 8(1983), No. 7, 773–817. MR700735; https://doi.org/10.1080/03605308308820285
- [39] N. S. TRUDINGER, On Harnack type inequalities and their application to quasilinear elliptic equations. *Comm. Pure Appl. Math.* 20(1967) 721–747. MR0700735; https://doi.org/ 10.1002/cpa.3160200406
- [40] J. L. VÁZQUEZ, A strong maximum principle for some quasilinear elliptic equations, *Appl. Math. Optim.* 12(1984), 191–202. MR0768629; https://doi.org/10.1007/BF01449041
- [41] H. WIELANDT, Unzerlegbare, nicht negative Matrizen, Math. Z. 52(1950), No. 1, 642–648.
 MR0035265; https://doi.org/10.1007/BF02230720
- [42] J. N. ZHAO, Existence and nonexistence of solutions for $u_t = \text{div}(|\nabla u|^{p-2}u) + f(\nabla u, u, x, t)$, J. Math. Anal. Appl. 172(1993), 130–146. MR1199500; https://doi.org/10. 1006/jmaa.1993.1012