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1 Introduction

In this paper we study the following parabolic problem
ut = ∆pu + λ f (x)|u|γ−2u + q(x)|u|α−2u in (0, T)×Ω,

u = 0 on [0, T)× ∂Ω,

u|t=0 = u0 in Ω,

(1.1)

and the corresponding stationary problem{
−∆pu = λ f (x)|u|γ−2u + q(x)|u|α−2u in Ω,

u = 0 on ∂Ω.
(1.2)

Here Ω is a bounded domain in RN with C1,β-boundary ∂Ω for some β ∈ (0, 1), N ≥ 1,
0 < T < ∞; ∆p is the p-Laplacian, 1 < α < p < γ, f := f (x) and q := q(x) are measurable
functions on Ω. We assume that u0 ∈ W1,p

0 (Ω) and by a weak solution of (1.1) we mean a
function

u ∈ C(0, T; L2(Ω)) ∩ Lp(0, T; W1,p
0 (Ω)) ∩ L∞((0, T)×Ω), ut ∈ L2((0, T)×Ω),
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satisfying

∫
Ω

u(t)φ(t)dx−
∫

Ω
u0φ(0)dx

=
∫ t

0

∫
Ω
(uφt − |∇u|p−2(∇u,∇φ) + λ f uγ−1φ + quα−1φ)dxdt (1.3)

for all t ∈ [0, T) and for all test functions φ ∈ C1([0, T)×Ω), φ = 0 on [0, T)× ∂Ω. A weak
solution u ∈W1,p

0 (Ω) of (1.2) is defined analogously.
Beginning with the well-known results of Ambrosetti, Brezis, Cerami [2], problems with

concave-convex nonlinearity of type (1.2) have received a lot of attention (cf., in particular,
Ambrosetti, Azorero, Peral [3], De Figueiredo, Gossez, Ubilla [19] and the references therein).
In the case f , q ∈ C(Ω), p ≥ 2, existence of local in time solutions of (1.1) is well understood;
see Ladyzhenskaja, Solonnikov, Ural’tseva [30] for p = 2 and Zhao [42] for p ≥ 2. Further-
more, for p = 2 and f (x), q(x) ≡ 1, Escobedo, Cazenave, Dickstein [18] have proved that there
exists a unique positive solution of (1.1) defined on a maximal time interval (0, Tm), where the
blow up alternative holds: either Tm = +∞, i.e., uλ is a global in time solution, or else Tm < +∞
and uλ blows up in finite time ‖uλ(t)‖L∞ → +∞ as t→ Tm. Furthermore, they found that there
exists a thresholds value Λ > 0 such that (1.1) has a global solution for 0 < λ ≤ Λ, whereas
any positive solution of (1.1) blows up in finite time for λ > Λ. The dividing line Λ coin-
cides with the critical value of Ambrosetti, Brezis, Cerami [2] for the stationary problem (1.2)
which separates the interval (0, Λ] of the existence of minimal positive solution of (1.2) and
the interval (Λ,+∞) where positive solutions of (1.2) are absent. The key tool in [18] relies on
the arguments introduced by Brezis, Cazenave, Martel, Ramiandrisoa in [9], which is based
on the proving that any global solution uλ(t) of parabolic problem (1.1) converges to a weak
solution of the stationary problem (1.2) as t → +∞. In this way, the blow up behaviour for
λ > Λ is obtained by contradiction.

The purpose of this paper is to investigate the existence of global and blow-up solutions
of (1.1) and the existence of bifurcations for branches of positive solutions of (1.2) with respect
to the behaviour of the functions f , q and the value of the parameter λ. Our approach is
based on the development of the extended functional method [8, 21, 23–26]. The central role
in this method is played by the so-called generalised Collatz–Wielandt formula which gives a
threshold value λ∗ of the existence of positive solutions for nonlinear elliptic boundary value
problems [21, 24]. Furthermore, the dual variational problem corresponding to the Collatz–
Wielandt formula allows finding a threshold value λ∗∗ for the existence of global or blow-up
solutions to parabolic problems [23,25]. Our interest in the development of this approach also
emerges from the fact that the Collatz–Wielandt formula gives a simple numerical algorithm
for the calculating the threshold value λ∗ [26].

2 Main results

The Collatz–Wielandt formula for the Perron root r = maxx∈(R+)n, x 6=0 L(x) of An×n > 0,
where

L(x) = min
1≤i≤n

{
[Ax]i

xi
: xi 6= 0

}
, x ∈ (R+)n, (2.1)
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was discovered in 1942 by L. Collatz [10] and then developed by H. Wielandt [41] in 1950.
Since (2.1) has the following equivalent form (see e.g. [26])

L(x) = min
z∈(R+)n

{
〈Ax, z〉
〈x, z〉 : z 6= 0

}
, x ∈ (R+)n,

it is natural to call

λ∗ = sup
u∈C+

inf
φ∈C+0

{
L(u, φ) :

∫
Ω

f uγ−1φ dx 6= 0
}

(2.2)

as a generalized Collatz–Wielandt formula, where

L(u, φ) :=

∫
Ω(|∇u|p−2∇u,∇φ) dx−

∫
Ω quα−1φ dx∫

Ω f uγ−1φ dx
, for

∫
Ω

f uγ−1φ dx 6= 0,

C+ = {u ∈ C1(Ω)| u > 0 in Ω, u = 0 on ∂Ω}, (2.3)

C+0 = {φ ∈ C1(Ω)| φ(x) ≥ 0 in Ω, supp(φ) ⊂ Ω, φ 6≡ 0}. (2.4)

Remark 2.1. Another type of generalization for the Collatz–Wielandt formula to (1.2) can be
obtained directly from (2.1), i.e. as follows

λ̃∗ = sup
u∈C2(Ω)

inf
x∈Ω

{
−∆pu(x)− q(x)uα−1(x)

f (x)uγ−1(x)
: u = 0 on ∂Ω, u > 0, f (x)uγ−1(x) 6= 0

}
.

For similar approach, the reader is refereed to Barta [4] , Berestycki, Nirenberg, Varadhan [5],
Birindelli, Demengel [7], Donsker, Varadhan [17], Berestycki, Coville, Vo [6] and references
therein.

Remark 2.2. It is important to emphasise that minimax variational formula (2.2) admits a
simple numerical procedure for finding the extremal value λ∗ (see [26]).

Along with (2.2), we also need the following equivalent minimax variational formula

λ∗ = sup
u∈C+

inf
ψ∈C+0

{
L(u, ψp/up−1) :

∫
Ω

f uγ−pψp dx 6= 0
}

. (2.5)

Furthermore, we shall deal with the dual variational formulas for (2.2) and (2.5):

λ∗∗ = inf
φ∈C+0

sup
u∈C+

{
L(u, φ) :

∫
Ω

f uγ−1φ dx 6= 0
}

, (2.6)

λ∗∗P = inf
ψ∈C+0

sup
u∈C+

{
L(u, ψp/up−1) :

∫
Ω

f uγ−pψp dx 6= 0
}

, (2.7)

respectively. By standard arguments it follows that λ∗ ≤ λ∗∗ and λ∗ ≤ λ∗∗P .

Our main assumptions on f and q are the following.

(F1) There is an open subset U ⊂ Ω such that ess infx∈U{ f (x), q(x)} > 0.

(F2) ess supx∈Ω{ f (x), q(x)} < +∞.
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Lemma 2.3. Let 1 < α < p < γ.

(a) Assume (F1), then λ∗∗ < +∞, λ∗∗P < +∞ and thus λ∗ < +∞.

(b) Assume f (x) ≥ 0 in Ω and (F2), then λ∗ > 0 and thus λ∗∗ > 0, λ∗∗P > 0.

Observe that problem (1.2) has the variational form with the Euler functional Iλ(u), defined
on W1,p

0 (Ω) ∩ Lγ(| f |, Ω) ∩ Lα(|q|, Ω) by

Iλ(u) =
1
p

∫
Ω
|∇u|pdx− λ

γ

∫
Ω

f |u|γdx− 1
α

∫
Ω

q|u|αdx. (2.8)

Our result on the existence and non-existence of positive solutions and the existence of
bifurcation point for stationary problem (1.2) is as follows

Theorem 2.4. Let 1 < α < p < γ and Ω be a bounded domain in RN with C1,β-boundary for some
β ∈ (0, 1).

(i) Assume (F1), then for any λ > λ∗, (1.2) has no weak solution uλ ∈ C+.

(ii) Assume (F1), f (x) ≥ 0 in Ω and f , q ∈ L∞(Ω), then for any λ ∈ (0, λ∗) there exists a weak
solution uλ of (1.2) such that uλ ∈ C+. Moreover, if infx∈Ω f (x) > 0, then (1.2) has a weak
non-negative solution uλ∗ ∈ Lγ(Ω) ∩W1,p

0 (Ω) for λ = λ∗.

(iii) Assume p = 2, f , q ∈ C(Ω), minx∈Ω f (x) > 0 and q(x) ≥ 0 in Ω. Suppose that uλ∗ 6= 0 and
uλ∗ ∈ L∞(Ω). Then X1 := KerD2

u Iλ∗(uλ∗) is an one-dimensional subspace of W1,p
0 (Ω) spanned

by φ∗ ∈W1,p
0 (Ω); i.e., X1 = 〈φ∗〉, W1,p

0 (Ω) = X1 ⊕ X2.

Furthermore, (λ∗, uλ∗) is a bifurcation point; i.e., there exist an interval (−a, a) ⊂ R and C1

mappings λ : (−a, a) → R and u : (−a, a) → W1,p
0 (Ω) such that for each s ∈ (−a, a)

the function u(s) ∈ C+ is a weak solution of problem (1.1) for λ = λ(s), (u(0), λ(0)) =
(uλ∗ , λ∗), dλ(0)/ds = 0, du(0)/ds = φ∗ and λ(s) ≤ λ∗ for s ∈ (−a, a). Furthermore,
u(s) = uλ∗ + sφ∗ + ξ(s), where ξ : (−a, a)→ X2, ξ(0) = 0, dξ(0)/ds = 0.

Remark 2.5. If one does not take into account that λ∗ is expressed in generalized Collatz–
Wielandt formula (2.2), then statements (i), (ii) of Theorem 2.4 follow from Theorems 2.1, 2.2
in [19].

Remark 2.6. In the case of the subcritical Sobolev exponent 1 < α < p < γ < p∗, where
p∗ = pN/(N − p) if N > p and p∗ = ∞ if N ≤ p, the existence of the weak positive solution
uλ of (1.1) for λ ∈ (0, ΛN ), where ΛN is the so-called extreme value of the Nehari manifold
method (see [28]) can be obtained by the Nehari manifold method under weaker assumptions
f ∈ Lr1(Ω) and q ∈ Lr2(Ω) with some r1, r2 ∈ (1,+∞] (see, e.g., [22]). However, recent
investigations Il’yasov, Silva and Silva, Macedo [27, 35] show that, in general, ΛN does not
give the threshold value for the existence of positive solutions of (1.1).

Remark 2.7. Under assumptions (iii) of Theorem 2.4, the conditions uλ∗ 6= 0, uλ∗ ∈ L∞(Ω) are
satisfied, for example, if 1 < q < p < γ < p∗ (see [19]) or p = 2, f (x), q(x) ≡ 1 and N ≤ 10
(see Mignot, Puel [32]).

For (1.1) our main result is the following theorem.

Theorem 2.8. Let 1 < α < p < γ and Ω be a bounded domain in RN with C1,β-boundary for some
β ∈ (0, 1).
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(i) Assume (F1) is satisfied and infx∈Ω f (x) > 0. Let uλ be a weak non-negative solution of (1.1)
defined on a maximal time interval (0, Tm).

• Suppose p = 2 and λ > λ∗∗. Then Tm < +∞ and uλ blows up in finite time, i.e.,
‖uλ(t)‖L∞ → +∞ as t→ Tm.

• Suppose 1 < p < 2, γ > 2, λ > λ∗∗P and uλ ∈ C1([0, Tm)×Ω), uλ > 0 in [0, Tm)×Ω.
Then Tm < +∞ and uλ blows up in finite time, i.e., ‖uλ(t)‖L∞ → +∞ as t→ Tm.

(ii) Assume (F1), f (x) ≥ 0 in Ω and f , q ∈ L∞(Ω). Then (1.1) possesses global in time weak
positive solution uλ for any λ ∈ (0, λ∗).

As it was mention above, from [2, 18] it follows that if f (x), q(x) ≡ 1 and p = 2, then
there exists Λ > 0 such that for λ ∈ (0, Λ) parabolic problem (1.1) possesses a global in
time solution whereas for λ > Λ any positive solution uλ blows up in finite time. Hence,
Theorem 2.8 yields the following result on the saddle-point property for (2.2) and (2.6).

Corollary 2.9. Assume that f (x), q(x) ≡ 1, p = 2 and 1 < α < 2 < γ, Ω is a bounded domain
in RN with C1-boundary. Then variational formulas (2.2) and (2.6) satisfy the saddle-point property:
λ∗ = λ∗∗ = Λ.

3 Proof of Lemma 2.3

(a) Let us prove that λ∗∗P < +∞. The proof of λ∗∗ < +∞ is similar. Assume (F1). Take a
ball B ⊂ U. Consider the first eigenpair (λ1, φ1) of the operator −∆p on B with the zero
Dirichlet boundary condition. It is well known that the eigenvalue λ1 is positive, simple
and isolated, and the corresponding eigenfunction φ1 is positive and φ1 ∈ C1(B). Evidently
φ

p
1 /up−1 ∈ C1(Ω) for any u ∈ C+. Hence by Allegretto, Xi [1] there holds(

|∇u|p−2∇u,∇
φ

p
1

up−1

)
≤ |∇φ1|p in Ω, ∀u ∈ C+.

In view of (F1), there is δ > 0 such that f (x) > δ, q(x) > δ a.e. on B. This implies that there
exists a sufficiently large Λ > 0 such that

λ1 < Λδsγ−p + δsα−p ≤ Λ f (x)sγ−p + q(x)sα−p a.e. in B, ∀s > 0.

Hence

L(u, φ
p
1 /up−1) ≤

∫
B(λ1 − q(x)uα−p)φ

p
1 dx∫

B f (x)uγ−pφ
p
1 dx

< Λ, ∀u ∈ C+,

which implies that λ∗∗P < +∞.
(b) Since (F2), there exists K > 0 such that f (x) < K, q(x) < K a.e. in Ω. Following [2], let

us consider

−∆pe = 1 in Ω,

e|∂Ω = 0.

By the maximum principle (see Tolksdorf [38], Trudinger [39], Vázquez [40]) and the reg-
ularity arguments (see DiBenedetto [14], Lieberman [31], Tolksdorf [37]) one has e ∈ C+.
Furthermore, it is easily seen that for any sufficiently small λ > 0, there is M = M(λ) > 0
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such that Mp−1 − KMα−1‖e‖α−1
∞ > λKMγ−1‖e‖α−1

∞ . Hence and in view of that f (x) ≥ 0 in Ω,
by (2.2) we have

λ∗ ≥ inf
φ∈C+0

L(Me, φ) ≥ inf
φ∈C+0

∫
B(Mp−1 − KMα−1‖e‖α−1

∞ )φ dx
Mγ−1

∫
B f (x)eγ−1φ dx

> λ > 0.

4 Proof of Theorem 2.4

(i) By (F1), Lemma 2.3 implies that λ∗ < +∞. Let λ > λ∗ and suppose, contrary to our claim,
that there exists a weak solution uλ of (1.2) such that uλ ∈ C+. By (2.2), there is φλ ∈ C+0 such
that L(uλ, φλ) < λ and

∫
Ω f uγ−1

λ φλ dx 6= 0. Assume, for instance, that
∫

Ω f uγ−1
λ φλ dx > 0.

Then ∫
Ω
(|∇uλ|p−2∇uλ,∇φλ) dx−

∫
Ω

quα−1
λ φλ dx− λ

∫
Ω

f uγ−1
λ φλ dx < 0

which is a contradiction.
(ii) Since (F2) and f (x) ≥ 0 in Ω, Lemma 2.3 implies that λ∗ > 0. Let 0 < λ < λ∗. By (2.2),

one can find ûλ ∈ C+ such that L(ûλ, φ) > λ for all φ ∈ C+0 . Hence and since f (x) ≥ 0, ûλ is a
super-solution of (1.2). Take ǔ = 0 for a sub-solution. Consider

Îλ = min{Iλ(u) | u ∈ Mλ}, (4.1)

where Mλ = {u ∈ W1,p
0 (Ω)| 0 ≤ u ≤ ûλ}. In view of that f , q ∈ L∞(Ω), we may apply

Proposition 3.1 from [19] (see also for semilinear case Theorem 2.4 in Struwe [36]). Thus for
any λ ∈ (0, λ∗) there exists a minimizer uλ ∈ Mλ of (4.1) which weakly satisfies (1.2).

Using (F1) it is not hard to show that there exists u0 ∈ Mλ such that∫
q(x)|u0|αdx > 0 and

∫
f (x)|u0|γdx > 0.

This and the assumption 1 < α < p < γ imply that there is a sufficiently small t > 0 such that
tu0 ∈ Mλ and Iλ(tu0) < 0. Thus Îλ = Iλ(uλ) < 0 and therefore uλ 6= 0.

Since uλ ≤ ûλ in Ω, one has uλ ∈ L∞(Ω). Furthermore, by the assumptions ∂Ω is C1,β-
manifold for some β ∈ (0, 1). Hence, by C1,α-regularity results [14,31,37] we have uλ ∈ C1,α(Ω)

for some α ∈ (0, β). Finally, the maximum principle [38–40] implies that uλ > 0 in Ω for all
λ ∈ (0, λ∗).

Let us show that there exists a limit solution uλ∗ . Since Iλ(uλ) < 0 and Du Iλ(uλ)(uλ) = 0,
we have

(γ− p)
p
‖uλ‖

p
1 −

(γ− α)

α

∫
q(x)|uλ|αdx < 0, (4.2)

λ
(γ− p)

γ

∫
f (x)|uλ|γdx− (p− α)

α

∫
q(x)|uλ|αdx < 0, (4.3)

∀λ ∈ (0, λ∗). Here and what follows we denote by ‖ · ‖1 the norm in the space W1,p
0 (Ω).

In view of that q(x) < +∞ in Ω, inequality (4.2) implies that ‖uλ‖1 < C1 < +∞ and∫
q(x)|uλ|αdx < C2 < +∞ , where C1, C2 do not depend on λ ∈ (0, λ∗). Hence by (4.3),∫
f (x)|uλ|γdx < C3 < +∞. Consequently using infx∈Ω f (x) > 0 we derive that ‖uλ‖Lγ <

C4 < +∞, where C3, C4 do not depend on λ ∈ (0, λ∗). Now the Banach–Alaoglu and Sobolev
theorems imply that there exists a sequence λn such that λn ↑ λ∗ and uλn → uλ∗ weakly
in W1,p

0 , strongly in Lα(Ω) and uλn → uλ∗ ≥ 0 a.e. in Ω as n → ∞. Furthermore, since
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uλn → uλ∗ a.e. in Ω and ||uλ||Lγ < C4, we have uλn → uλ∗ ∈ Lγ(Ω) weakly in Lγ(Ω) (see, e.g,
Theorem 13.44 in Hewitt, Stromberg [20]). By the same arguments uγ−1

λn
→ uγ−1

λ∗ weakly in
Lγ/(γ−1)(Ω). Hence in virtue of that f , q ∈ L∞(Ω), we may pass to the limit in (1.2) as n→ ∞.
Thus uλ∗ weakly satisfies (1.2) for λ = λ∗. This completes the proof of (ii).

(iii) Let p = 2. Since uλ∗ 6= 0 and uλ∗ ∈ L∞(Ω), the standard theory of regularity solutions
and maximum principle for elliptic equations yield uλ∗ ∈ C1(Ω) ∩ C2(Ω), uλ∗ > 0. Further-
more, since f (x) > 0 and q(x) ≥ 0 in Ω, Hoph’s lemma implies (see Protter, Weinberger [34])
that ∂uλ∗/∂ν < 0 on ∂Ω, where ν := ν(x) denotes the exterior unit normal to ∂Ω at x ∈ ∂Ω.

Consider the eigenvalue problem{
−∆ψ− [λ∗(γ− 1) f uγ−2

λ∗ + (α− 1)quα−2
λ∗ ]ψ = µψ in Ω,

ψ = 0 on ∂Ω.
(4.4)

Then there exists a first eigenpair (µ1, φ∗) of (4.4) such that φ∗ > 0, φ∗ ∈ C2(Ω) ∩ C1(Ω) and

µ1 = inf
ψ∈W1,2

0 (Ω)\0

{∫
|∇ψ|2dx−

∫
[λ∗(γ− 1) f uγ−2

λ∗ + (α− 1)quα−2
λ∗ ]ψ2dx∫

ψ2dx

}
. (4.5)

Indeed, this can be shown by arguments introduced Díaz, Hernández [13], Díaz, Hernández,
Il’yasov [12]. Let us give a sketch of its proof. Since ∂uλ∗/∂ν < 0 on ∂Ω, one has c d(x) ≤
uλ∗(x) ≤ C d(x) for x ∈ Ω with some constants 0 < c, C < +∞, where d(x) := dist(x, ∂Ω).
Hence by the monotonicity properties of eigenvalues it is sufficient to show that the first
eigenvalue of the problem−∆ψ−

(
λ∗(γ− 1) f uγ−2

λ∗ + q
(α− 1)
d(x)2−α

)
ψ = µψ in Ω,

ψ = 0 on ∂Ω,
(4.6)

is well-defined and has the usual properties. Assume first that µ > 0. Then (4.6) is equivalent
to the existence of µ such that r(µ) = 1, where r(µ) is the first eigenvalue for the associated
problem −∆ψ = r(µ)

(
λ∗(γ− 1) f uγ−2

λ∗ + q
(α− 1)
d(x)2−α

+ µ

)
ψ in Ω,

ψ = 0 on ∂Ω.
(4.7)

That r(µ) > 0 is well-defined follows by showing that (4.7) is equivalently formulated as
Tw = rw, with T = i ◦ P ◦ F, where F : L2(Ω, d2−α)→W−1,2(Ω) defined by

F(ψ) =
(

λ∗(γ− 1) f uγ−2
λ∗ + q

(α− 1)
d(x)2−α

+ µ

)
ψ,

P : W−1,2(Ω)→W1,2
0 (Ω) is the solution operator for the linear problem{

−∆z = h(x) in Ω,

z = 0 on ∂Ω,
(4.8)

for h ∈ W−1,2(Ω), and where i : W1,2
0 (Ω) → L2(Ω, d2−α) is the standard embedding. Then

F and P are continuous and the map i is compact (see Kufner [29]). Hence, it is possible to
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apply the Krein–Rutman theorem in the formulation by Daners, Koch-Medina [16]. Thus we
have the variational formulation

r(µ) = inf
w∈W1,2

0 (Ω)\{0}

∫
Ω
|∇w|2dx∫ (

[λ∗(γ− 1) f uγ−2
λ∗ + (α− 1)quα−2

λ∗ ]w2 + µw2
)

dx
. (4.9)

Hence a positive eigenvalue of (4.7) exits if and only if there is a µ > 0 such that r(µ) = 1.
Analogous argument gives the formulation for µ < 0

r1(µ) = inf
w∈W1,2

0 (Ω)\{0}

∫
Ω

(
|∇w|2 − µw2) dx∫

[λ∗(γ− 1) f uγ−2
λ∗ + (α− 1)quα−2

λ∗ ]w2 dx
. (4.10)

It is not hard to show that r(µ) ( r1(µ)) is decreasing (increasing) in µ and r(µ)→ 0 (r1(µ)→
+∞) as µ→ +∞ (µ→ −∞). Observe

r(0) = r1(0) = inf
w∈W1,2

0 (Ω)\{0}

∫
Ω
|∇w|2 dx∫

[λ∗(γ− 1) f uγ−2
λ∗ + (α− 1)quα−2

λ∗ ]w2 dx
.

Thus, there exists a positive eigenvalue of (4.7) if r(0) > 1 and a negative one if r(0) < 1.
Hence −∞ < µ1 < +∞ and there exists a minimizer φ∗ of (4.5) such that φ∗ ∈ C1(Ω)∩C2(Ω),
φ∗ > 0, ∂φ∗/∂ν < 0 on ∂Ω and

{
−∆φ∗ − (λ∗(γ− 1) f uγ−2

λ∗ + (α− 1)quα−2
λ∗ )φ∗ = µ1φ∗ in Ω,

φ∗ = 0 on ∂Ω.
(4.11)

Let us show that µ1 = 0. Assume the converse µ1 6= 0 and suppose, for instance, that µ1 > 0.
Consider uε = uλ∗ + εφ∗. It is readily seen that uε ∈ C+ for sufficient small ε. The equations
(1.2) and (4.11) imply the following equality

∫
(∇uε,∇ψ)dx−

∫
quα−1

ε ψdx = λ∗
∫

f uγ−1
ε ψdx + εµ1

∫
φ∗ψdx + ō(ε)

which holds uniformly with respect to ψ ∈ B1 := {ψ ∈ C+0 : ‖ψ‖W1,2 ≤ 1} so that ō(ε) = r(ε, ψ),
where |r(ε, ψ)| < Cε2 and C < +∞ does not depend on ψ ∈ B1. Hence there exists ε0 > 0
such that

inf
ψ∈C+0

∫
(∇uε0 ,∇ψ)dx−

∫
quα−1

ε0
ψdx∫

f uγ−1
ε0 ψdx

> λ∗, (4.12)

which contradicts (2.2). The maximum principle for elliptic boundary value problems (see
e.g. [34]) implies that the minimal eigenvalue µ1 is simple. Consequently, the kernel X1 :=
Ker D2

u Iλ∗(uλ∗) is the one-dimensional subspace in W1,p
0 (Ω) spanned by φ∗.

The proof of the second part of assertion (iii) follows from the bifurcation theorem of
Crandall and Rabinowitz [11].
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5 Blow up and global solutions

(i) Let p = 2. Since (F1), Lemma 2.3 implies that λ∗∗ < +∞. Let λ > λ∗∗. Take ε > 0 such that
λ− ε > λ∗∗. Then by (2.6), there exists φλ ∈ C+0 such that

sup
u∈C+

∫
Ω(∇u,∇φλ) dx−

∫
Ω quα−1φλ dx∫

Ω f uγ−1φλ dx
< λ− ε,

that is ∫
Ω
(∇u,∇φλ) dx− λ

∫
Ω

f uγ−1φλ dx−
∫

Ω
quα−1φλ dx < −ε

∫
Ω

f uγ−1φλ dx. (5.1)

By the assumptions there is a0 > 0 such that f (x) ≥ a0 a.e. in Ω. Hence, Jensen’s inequality
yields (∫

Ω
uφλ dx

)γ−1

≤ c0

∫
Ω

f uγ−1φλ dx, (5.2)

where 0 < c0 < ∞ does not depend on u ∈ C+. Thus, one has the inequality

∫
Ω
(∇u,∇φλ) dx− λ

∫
Ω

f uγ−1φλ dx−
∫

Ω
quα−1φλ dx < −εc0

(∫
Ω

uφλ dx
)γ−1

,

which holds by continuity for any u ∈W1,p
0 (Ω), u ≥ 0 in Ω.

Assume that there exists a non-negative weak solution u of (1.1) defined on a maximal
time interval (0, Tm). Suppose, contrary to our claim, that Tm = +∞.

Consider η(t) =
∫

Ω u(t)φλ dx. Then by (1.3) we have

d
dt

η(t) =
∫

Ω
(−(∇u,∇φλ) + (λ f uγ−1 + quα−1)φλ) dx > εc0(η(t))γ−1 a.e. in (0,+∞).

However, then

η(t) > C1

(
1

1− C2t

)1/(γ−2)

with some constants 0 < C1, C2 < +∞. Hence and since γ > 2, we have

η(t) ≡
∫

Ω
u(t)φλ dx → +∞ as t→ 1/C2.

But this is possible only if ‖u(t)‖L∞ → +∞ as t→ T∗.
Consider the case 1 < p < 2. By Lemma 2.3, λ∗∗P < +∞. Take λ > λ∗∗P . Then there is ε > 0

such that λ− ε > λ∗∗P . By (2.7), there exists φλ ∈ C+0 such that

sup
u∈C+

∫
Ω(|∇u|p−2∇u,∇(φp

λ/up−1) dx−
∫

Ω quα−pφ
p
λ dx∫

Ω f uγ−pφ
p
λ dx

< λ− ε.

As above, we may assume that f (x) ≥ a0 a.e. in Ω for some a0 > 0. In view of that 1 < p < 2
and γ > 2, Jensen’s inequality yields

(∫
Ω

u2−pφ
p
λ dx

) γ−p
2−p

≤ c0

∫
Ω

f uγ−pφ
p
λ dx, (5.3)
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where 0 < c0 < ∞ does not depend on u ∈ C+. Thus, one has the inequality∫
Ω
(|∇u|p−2∇u,∇(φp

λ/up−1) dx− λ
∫

Ω
f uγ−pφ

p
λ dx−

∫
Ω

quα−pφ
p
λ dx

< −C0

(∫
Ω

u2−pφ
p
λ dx

) γ−p
2−p

,

for any u ∈ C+ with C0 = εc0 > 0.
Assume that there exists a weak positive solution u ∈ C1([0, Tm)×Ω) of (1.1). Suppose,

contrary to our claim, that Tm = +∞.
Consider ζ(t) =

∫
Ω u(t)2−pφ

p
λ dx. Then by (1.3) we have

d
dt

ζ(t) =(2− p)
∫

Ω
(−(|∇u|p−2∇u,∇(φp

λ/up−1) ) + (λ f uγ−p + quα−p)φλ) dx > C′0(ζ(t))
γ−p
2−p

a.e. in (0,+∞). Hence,
d
dt

ζ(t) > C′0(ζ(t))
γ−p
2−p a.e. in (0,+∞), (5.4)

which implies that

ζ(t) ≡
∫

Ω
u(t)2−pφ

p
λ dx → +∞ as t→ T∗

for some T∗ > 0.
(ii) By Theorem 2.4 (ii), for λ ∈ (0, λ∗) there exists a positive weak solution uλ of (1.2)

which is a positive stationary solution of (1.1) defined globally in the time interval [0,+∞).
This completes the proof of (ii), Theorem 2.8.
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