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Abstract. The purpose of this paper is to study the existence of ground state solution
for the Schrödinger–Poisson systems:{

−∆u + V(x)u + K(x)φu = Q(x)|u|4u + f (x, u), x ∈ R3,
−∆φ = K(x)u2, x ∈ R3,

where V(x), K(x), Q(x) and f (x, u) are asymptotically periodic functions in x.
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1 Introduction

For past decades, much attention has been paid to the nonlinear Schrödinger–Poisson system{
ih̄ ∂Ψ

∂t = − h̄2

2m ∆Ψ + U(x)Ψ + φ(x)Ψ− |Ψ|q−1Ψ, x ∈ R3, t ∈ R

−∆φ = |Ψ|2, x ∈ R3
(1.1)

where h̄ is the Planck constant. Equation (1.1) derived from quantum mechanics. For this
equation, the existence of stationary wave solutions is often sought, that is, the following form
of solution

Ψ(x, t) = eitu(x), x ∈ R3, t ∈ R.

Therefore, the existence of the standing wave solution of the equation (1.1) is equivalent to
finding the solution of the following system (m = 1

2 , h̄ = 1 and V(x) = U(x) + 1){
−∆u + V(x)u + φu = |u|q−1u, x ∈ R3,

−∆φ = u2, x ∈ R3.
(1.2)
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To the best of our knowledge, the first result on Schrödinger–Poisson system was obtained
in [5]. Thereafter, using the variational method, there is a series of work to discuss the ex-
istence, non existence, radially symmetric solutions, non-radially symmetric solutions and
ground state to Schrödinger–Poisson system (1.2) and similar problems [1, 3–5, 8–17, 20, 28, 32,
34, 37–39, 42, 44–47].

As far as we know, in [4], Azzollini and Pomponio firstly obtained the ground state solu-
tion to the Schrödinger–Poisson system (1.2). They obtained that system (1.2) has a ground
state solution when V is a positive constant and 2 < q < 5, or V is non-constant, possibly
unbounded below and 3 < q < 5. Since it’s great physical interests, many scholars pay at-
tention to study ground state solutions to the Schrödinger–Poisson system (1.2) and similar
problems [1, 8, 11, 12, 14, 15, 20, 37, 38, 45, 46].

In [1], Alves, Souto and Soares studied Schrödinger–Poisson system{
−∆u + V(x)u + φu = f (u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.3)

where f ∈ C(R+, R) and V is bounded, local Hölder continuous and satisfies:

(1) V(x) ≥ α > 0, x ∈ R3,

(2) V(x) = V(x + y), ∀x ∈ R3, ∀y ∈ Z3,

(3) lim|x|→∞ |V(x)−V0(x)| = 0,

(4) V(x) ≤ V0(x), ∀x ∈ R3, and there exists Ω ⊂ R3 with m(Ω) > 0 such that

V(x) < V0(x), ∀x ∈ Ω,

where V0 satisfies (2). Alves et al. studied the ground state solutions to system (1.3) in case
the periodic condition under (1)–(2) and in case the asymptotically periodic condition under
(1), (3) and (4) respectively.

In [45], Zhang, Xu and Zhang considered existence of positive ground state solution for
the following non-autonomous Schrödinger–Poisson system{

−∆u + V(x)u + K(x)φu = f (x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3.
(1.4)

In some weaken asymptotically periodic sense compare with that of in [1], they obtained the
positive ground state solution to system (1.4) when V, K and f are all asymptotically periodic
in x.

More recently, Zhang, Xu, Zhang and Du [46] completed the results obtained in [45] to
Schrödinger–Poisson system with critical growth{

−∆u + V(x)u + K(x)φu = Q(x)|u|4u + f (x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3.
(1.5)

In [46], V, K, Q satisfy: V, K, Q ∈ L∞(R3), infR3 V > 0, infR3 K > 0, infR3 Q > 0 and
V − Vp, K − Kp, Q − Qp ∈ F , where Vp, Kp and Qp are 1-periodic in xi, 1 ≤ i ≤ 3, and
F = {g ∈ L∞(R3) : ∀ε > 0, the set {x ∈ R3 : |g(x)| ≥ ε} has finite Lebesgue measure}.
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On the other hand, when K = 0 the Schrödinger–Poisson system (1.4) becomes the stan-
dard Schrödinger equation (replace R3 with RN)

− ∆u + V(x)u = f (x, u), x ∈ RN . (1.6)

The Schrödinger equation (1.6) has been widely investigated by many authors in the last
decades, see [2, 6, 19, 24, 25, 29–31, 40, 41, 43] and reference therein. Especially, in [19, 24, 25,
29, 40, 41], they studied the nontrivial solution or ground state solution for problem (1.6)
with subcritical growth or critical growth in which V, f satisfy the asymptotically periodic
condition. Other context about asymptotically periodic condition, we refer the reader to [18,
21, 35, 36] and reference therein.

Motivated by above results, in this paper, we will study ground state solutions to sys-
tem (1.5) under reformative condition about asymptotically periodic case of V, K, Q and f at
infinity.

To state our main results, we assume that:

(V) there exist Vp : R3 → R, 1-periodic in xi, 1 ≤ i ≤ 3, such that

V0 := inf
x∈R3

Vp > 0, 0 ≤ V(x) ≤ Vp(x) ∈ L∞(R3) and V(x)−Vp(x) ∈ A0,

where

A0 := {k(x) : for any ε > 0, m{x ∈ B1(y) : |k(x)| ≥ ε} → 0 as |y| → ∞};

(K) there exist Kp : R3 → R, 1-periodic in xi, 1 ≤ i ≤ 3, such that

K0 := inf
x∈R3

Vp > 0, 0 < K(x) ≤ Kp(x) ∈ L∞(R3) and K(x)− Kp(x) ∈ A0;

(Q) there exist Qp ∈ C(R3, R), 1-periodic in xi, 1 ≤ i ≤ 3, and point x0 ∈ R3 such that

0 < Qp(x) ≤ Q(x) ∈ C(R3, R), Q(x)−Qp(x) ∈ A0

and

Q(x) = |Q|∞ + O(|x− x0|), as x → x0;

and f ∈ C(R3 ×R+, R) satisfies

( f1) lims→0+
f (x,s)

s = 0 uniformly for x ∈ R3,

( f2) lims→+∞
f (x,s)

s5 = 0 uniformly for x ∈ R3,

( f3) s→ f (x,s)
s3 is nondecreasing on (0,+∞),

( f4) there exists an open bounded set Ω ⊂ R3, containing x0 given by (Q), satisfies

lim
s→+∞

F(x, s)
s4 = +∞ uniformly for x ∈ Ω,

( f5) there exists fp ∈ C(R3 ×R+, R+), 1-periodic in xi, 1 ≤ i ≤ 3, such that
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(i) f (x, s) ≥ fp(x, s) for all (x, s) ∈ R3 ×R+ and f (x, s)− fp(x, s) ∈ A, where

A := {h(x, s) : for any ε > 0, m{x ∈ B1(y) : |h(x, s)| ≥ ε} → 0

as |y| → ∞ uniformly for |s| bounded },

(ii) s→ fp(x,s)
s3 is nondecreasing on (0,+∞).

The next theorem is the main result of the present paper.

Theorem 1.1. Suppose that conditions (V), (K), (Q) and ( f1)–( f5) are satisfied. Then the system
(1.5) has a ground state solution.

Remark 1.2.

(i) Functional sets A0 in V, Q, K and A in ( f5) were introduced by [24, 25] in which Liu,
Liao and Tang studied positive ground state solution to Schrödinger equation (1.6) with
subcritical growth or critical growth.

(ii) Since F ⊂ A0, our assumptions on V, Q and K are weaker than [46]. Furthermore,
V(x) ≥ 0 in our paper but in [46] they assumed V(x) > 0.

(iii) In [46], to obtained the ground state to system (1.5), they firstly consider the periodic
system {

−∆u + Vp(x)u + Kp(x)φu = Qp(x)|u|4u + fp(x, u), x ∈ R3,

−∆φ = Kp(x)u2, x ∈ R3.
(1.7)

Then a solution of system (1.5) was obtained by applying inequality between the energy of
periodic system (1.7) and that of system (1.5). In this paper, we do not use methods of [46]
and prove Theorem 1.1 directly.

2 The variational framework and preliminaries

To fix some notations, the letter C and Ci will be repeatedly used to denote various positive
constants whose exact values are irrelevant. BR(z) denotes the ball centered at z with radius R.

We denote the standard norm of Lp by |u|p = (
∫

R3 |u|pdx)
1
p and |u|∞ = ess supx∈R3 |u|. Since

we are looking for a nonnegative solution, we may assume that f (x, s) = fp(x, s) = 0 for all
(x, s) ∈ (R3, R−).

The Sobolev space H1(R3) endowed with the norm

‖u‖2
H :=

∫
R3
(|∇u|2 + u2)dx.

The space D1,2(R3) endowed with the standard norm

‖u‖2
D1,2 :=

∫
R3
|∇u|2dx.

Let E := {u ∈ L6(R3) : |∇u| ∈ L2(R3) and
∫

R3 V(x)u2dx < ∞} be the Sobolev space
endowed with the norm

‖u‖2 :=
∫

R3
(|∇u|2 + V(x)u2)dx.
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Lemma 2.1 ([24]). Suppose (V) holds. Then there exists two positive constants C1 and C2 such that
C1‖u‖2

H ≤ ‖u‖ ≤ C2‖u‖2
H for all u ∈ E. Moreover, E ↪→ Lp(R3) for any p ∈ [2, 6] is continuous.

The system (1.5) can be transformed into a Schrödinger equation with a nonlocal term. In
fact, for all u ∈ E (then u ∈ H1(R3)), considering the linear functional Lu defined in D1,2(R3)

by

Lu(v) =
∫

R3
K(x)u2vdx.

By the Hölder inequality, we have

|Lu(v)| ≤ |K|∞|u|212
5
|v|6 ≤ C|u|212

5
‖v‖D1,2 . (2.1)

Therefor, the Lax–Milgram theorem implies that there exists a unique φu ∈ D1,2(R3) such
that ∫

R3
∇φu · ∇vdx = (φu, v)D1,2 = Lu(v) =

∫
R3

K(x)u2vdx for any v ∈ D1,2(R3).

Namely, φu is the unique solution of −∆φ = K(x)u2. Moreover, φu can be expressed as

φu =
∫

R3

K(y)u2(y)
|x− y| dy.

Substituting φu into the systems (1.5), we obtain

− ∆u + V(x)u + K(x)φuu = Q(x)|u|4u + f (x, u), x ∈ R3. (2.2)

By (2.1), we get
‖φu‖D1,2 = ‖Lu‖ ≤ C|u|212

5
≤ C‖u‖2.

Then, we have

|
∫

R3
K(x)φuu2dx| ≤ |K(x)|∞|φu|6|u|212

5
(2.3)

≤ C|K(x)|∞‖φu‖D1,2 |u|212
5

≤ C|u|412
5

≤ C0‖u‖4.

So the energy functional I : E→ R corresponding to Eq. (2.2) is defined by

I(u) =
1
2

∫
R3
(|∇u|2 + V(x)u2)dx +

1
4

∫
R3

K(x)φuu2dx− 1
6

∫
R3

Q(x)(u+)6dx−
∫

R3
F(x, u)dx,

where F(x, s) =
∫ s

0 f (x, t)dt.
Moreover, under our conditions, I belongs to C1, so the Fréchet derivative of I is

〈I′(u), v〉 =
∫

R3
(∇u · ∇v +V(x)uv)dx +

∫
R3

K(x)φuuvdx−
∫

R3
Q(x)(u+)5vdx−

∫
R3

f (x, u)vdx

and (u, φ) ∈ E× D1,2(R3) is a solution of system (1.5) if and only if u ∈ E is a critical point of
I and φ = φu.

For all u ∈ E, let φ̃u ∈ D1,2(R3) is unique solution of the following equation

−∆φ = Kp(x)u2.
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Moreover, φ̃u can be expressed as

φ̃u =
∫

R3

Kp(y)u2(y)
|x− y| dy.

Let

Ip(u) =
1
2

∫
R3
(|∇u|2 + Vp(x)u2)dx +

1
4

∫
R3

Kp(x)φ̃uu2dx

− 1
6

∫
R3

Qp(x)(u+)6dx−
∫

R3
Fp(x, u)dx,

where Fp(x, s) =
∫ s

0 fp(x, t)dt. Then Ip is the energy functional corresponding to the following
equation

− ∆u + Vp(x)u + Kp(x)φ̃uu = Qp(x)|u|4u + fp(x, u), x ∈ R3. (2.4)

It is easy to see that (u, φ) ∈ E× D1,2(R3) is a solution of periodic system (1.7) if and only
if u ∈ E is a critical point of Ip and φ = φ̃u.

Lemma 2.2. Suppose (K) holds. Then,∫
R3

Kp(x)φ̃u(·+z)u
2(·+ z)dx =

∫
R3

Kp(x)φ̃uu2dx, ∀z ∈ Z3, u ∈ E.

Lemma 2.3. Suppose that ( f1), ( f3) and ( f5) hold. Then

(i) 1
4 f (x, s)s ≥ F(x, s) ≥ 0 for all (x, s) ∈ R3 ×R,

(ii) 1
4 fp(x, s)s ≥ Fp(x, s) ≥ 0 for all (x, s) ∈ R3 ×R.

Proof. The proof is similar to that of in [27], so we omitted here.

Lemma 2.4. I′ is weakly sequentially continuous. Namely if un ⇀ u in E, I′(un) ⇀ I′(u) in
E−1(R3).

Proof. The proof is similar to that of Lemma 2.3 in [45, 46], so we omitted here.

Lemma 2.5 ([24]). Suppose that ( f1), ( f2) and (i) of ( f5) hold. Assume that {un} is bounded in E
and un → 0 in Ls

loc(R
3), for any s ∈ [2, 6). Then up to a subsequence, one has∫

R3
(F(x, un)− Fp(x, un))dx = o(1). (2.5)

Lemma 2.6 ([24, 25]). Suppose that (V), (Q), ( f1), ( f2) and (i) of ( f5) hold. Assume that {un} is
bounded in E and |zn| → ∞. Then up to a subsequence, one has∫

R3
(Vp(x)−V(x))un ϕ(· − zn)dx = o(1), (2.6)∫

R3
( f (x, un)− fp(x, un))ϕ(· − zn)dx = o(1), (2.7)

and ∫
R3
(Q(x)−Qp(x))(u+

n )
5ϕ(· − zn)dx = o(1), (2.8)

where ϕ ∈ C∞
0 (R3).
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Lemma 2.7. Suppose that (K), ( f1) and ( f2) hold. Assume that un ⇀ 0 in E. Then up to a
subsequence, one has∫

R3
(K(x)φun un ϕ(· − zn)− Kp(x)φ̃un un ϕ(· − zn))dx = o(1), (2.9)

where |zn| → ∞ and ϕ ∈ C∞
0 (R3).

Proof. Set h(x) := K(x)− Kp(x). By (K), we have h(x) ∈ A0. Then for any ε > 0, there exists
Rε > 0 such that

m{x ∈ B1(y) : |h(x)| ≥ ε} < ε, for any |y| ≥ Rε.

We cover R3 by balls B1(yi), i ∈ N. In such a way that each point of R3 is contained in at
most N + 1 balls. Without any loss of generality, we suppose that |yi| < Rε, i = 1, 2, . . . , nε

and |yi| ≥ Rε, i = nε + 1, nε + 2, nε + 3, . . . ,+∞. Then,∫
R3
(K(x)φun un ϕ(· − zn)− Kp(x)φ̃un un ϕ(· − zn))dx

=
∫

R3

∫
R3

Kp(y)un(y)ϕ(y− zn)

|x− y| dyh(x)u2
n(x)dx

+
∫

R3

∫
R3

Kp(y)u2
n(y)

|x− y| dyh(x)un(x)ϕ(x− zn)dx

+
∫

R3

∫
R3

h(y)u2
n(y)

|x− y| dyh(x)un(x)ϕ(x− zn)dx

=: E1 + E2 + E3.

Like the argument of [45], we define

H(x) :=
∫

R3

Kp(y)un(y)ϕ(y− zn)

|x− y| dy

=
∫
{y:|x−y|≤1}

Kp(y)un(y)ϕ(y− zn)

|x− y| dy +
∫
{y:|x−y|>1}

Kp(y)un(y)ϕ(y− zn)

|x− y| dy.

By the Hölder inequality and the Sobolev embeddings, we have

|H(x)| ≤ |Kp|∞|un|3|ϕ|6
(∫
{y:|x−y|≤1}

1
|x− y|2 dy

) 1
2

+ |Kp|∞|un|2|ϕ|4
(∫
{y:|x−y|>1}

1
|x− y|4 dy

) 1
4

≤ C
(∫
{z:|z|≤1}

1
|z|2 dz

) 1
2

+ C
(∫
{z:|z|>1}

1
|z|4 dz

) 1
4

.

So, supx∈R3 |H(x)| < ∞. Then, we obtain

E1 =
∫

R3
H(x)h(x)u2

n(x)dx

≤
∫
{x:|h(x)|≥ε}

|H(x)h(x)u2
n(x)|dx +

∫
{x:|h(x)|<ε}

|H(x)h(x)u2
n(x)|dx

=: Q1 + Q2,
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Q1 =
∫
{x:|h(x)|≥ε}

|H(x)h(x)u2
n(x)|dx

≤
∫
{x:|h(x)|≥ε,|x|>Rε+1}

|H(x)h(x)u2
n(x)|dx +

∫
{x:|h(x)|≥ε,|x|≤Rε+1}

|H(x)h(x)u2
n(x)|dx

≤
∞

∑
nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|H(x)h(x)u2
n(x)|dx + 2 sup

x∈R3
|H(x)||Kp|∞

∫
BRε+1

|un(x)|2dx

=: Q11 + Q12,

Q11 =
∞

∑
nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|H(x)h(x)u2
n(x)|dx

≤ 2 sup
x∈R3
|H(x)||Kp|∞

∞

∑
nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|u2
n(x)|dx

≤ C
∞

∑
nε+1

(m{x ∈ B1(y) : |h(x)| ≥ ε}) 2
3

(∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

|u6
n(x)|dx

) 1
3

≤ C1ε
2
3

∞

∑
nε+1

∫
{x∈B1(yi):|h(x)|≥ε,|x|>Rε+1}

(|∇un|2 + u2
n)dx

≤ C1(N + 1)ε
2
3

∫
R3
(|∇un|2 + u2

n)dx

≤ C2ε
2
3 .

Let ε→ 0, we obtain Q11 → 0. By the condition un ⇀ 0, one has un → 0 in L2
loc(R

3). Therefore
Q12 → 0. So Q1 → 0.

Q2 =
∫
{x:|h(x)|<ε}

|H(x)h(x)u2
n(x)|dx

≤ ε sup
x∈R3
|H(x)|

∫
R3
|u2

n(x)|dx

≤ Cε.

Let ε→ 0, we have Q2 → 0. Then, we get E1 → 0. In the same way, we can prove E2 → 0 and
E3 → 0.

Let F = {u ∈ E : u+ 6= 0}, define

N := {u ∈ E \ {0} : 〈I′(u), u〉 = 0} = {u ∈ F : 〈I′(u), u〉 = 0}.

Then N is a Nehari type associate to I, and set c := infu∈N I.

Lemma 2.8. Suppose that (V), (K), (Q) and ( f1)–( f3) hold. For any u ∈ F, there is a unique tu > 0
such that tuu ∈ N . Moreover, the maximum of I(tu) for t ≥ 0 is achieved.

Proof. Fix u ∈ F, define g(t) := I(tu), t > 0. Using ( f1), ( f2), and ( f3), we can prove that
g(0) = 0, g(t) > 0 for t small and g(t) < 0 for t large.

In fact, by ( f1) and ( f2), ∀δ > 0 there exists a Cδ > 0 such that

| f (x, s)| ≤ δ|s|+ Cδ|s|5, |F(x, s)| ≤ δ

2
|s|2 + Cδ

6
|s|6 for any (x, s) ∈ (R3, R).
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So, we get that

g(t) =
t2

2
‖u‖2 +

t4

4

∫
R3

K(x)φuu2dx− t6

6

∫
R3

Q(x)(u+)6dx−
∫

R3
F(x, tu)dx

≥ t2

2
‖u‖2 − δt2

2

∫
R3
|u|2dx− Cδt6

6

∫
R3
|u|6dx− Ct6

∫
R3
|u|6dx

≥ t2

2
‖u‖2 − Cδt2‖u‖2 − CCδt6‖u‖6.

Hence, g(t) > 0 for t small.
On the other hand, let Θ = {x ∈ R3 : u(x) > 0}, we have that

g(t) =
t2

2
‖u‖2 +

t4

4

∫
R3

K(x)φuu2dx− t6

6

∫
R3

Q(x)(u+)6dx−
∫

R3
F(x, tu)dx

≤ t2

2
‖u‖2 +

t4

4

∫
R3

K(x)φuu2dx− t6

6

∫
Θ

Q(x)(u+)6dx.

Hence, it is easy to see that g(t)→ −∞ as t→ +∞.
Therefore, there exists a tu such that I(tuu) = maxt>0 I(tu) and tuu ∈ N . Suppose that

there exist t1 > t2 > 0 such that t1u, t2u ∈ N . Then, we have that

1
t2
1
‖u‖2 +

∫
R3

K(x)φuu2dx = t2
1

∫
Θ

Q(x)(u+)6dx +
∫

Θ

f (x, t1u)u
t3
1

dx,

1
t2
2
‖u‖2 +

∫
R3

K(x)φuu2dx = t2
2

∫
Θ

Q(x)(u+)6dx +
∫

Θ

f (x, t2u)u
t3
2

dx.

Therefore, one has that(
1
t2
1
− 1

t2
2

)
‖u‖2 = (t2

1 − t2
2)
∫

Θ
Q(x)(u+)6dx +

∫
Θ

(
f (x, t1u)
(t1u)3 −

f (x, t2u)
(t2u)3

)
u4dx,

which is absurd according to ( f3) and t1 > t2 > 0.

Remark 2.9. As in [31, 43], we have

c = inf
u∈N

I(u) = inf
u∈F

max
t>0

I(tu) = inf
γ(t)∈Γ

max
t∈[0,1]

I(γ(t)) > 0

where
Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0}.

Lemma 2.10. Suppose that (V), (K), (Q) and ( f1)–( f3) hold. Then there exists a bounded sequence
{un} ∈ E such that

I(un)→ c and ‖I′(un)‖E−1 → 0.

Proof. From the proof of Lemma 2.8, it is easy to see that I satisfies the mountain pass geom-
etry. By [33], there exists an {un} such that I(un) → c and (1 + ‖un‖)‖I′(un)‖E−1 → 0, so we
have 〈I′(un), un〉 = o(1). By ( f3), we can obtain

1
4

f (x, s)s ≥ F(x, s) for any (x, s) ∈ (R3, R).
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Then, we have that

c = I(un)−
1
4
〈I′(un), un〉

=
1
4
‖un‖2 +

1
12

∫
R3

Q(x)(u+
n )

6dx +
∫

R3
(

1
4

f (x, un)un − F(x, un))dx

≥ 1
4
‖un‖2.

Therefor, {un} is bounded and the proof is finished.

The proof of next lemma similar to that of [24, 26]. For easy reading, we give the proof.

Lemma 2.11. Suppose that (V), (K), (Q) and ( f1)–( f3) hold. If u ∈ N and I(u) = c, u is a solution
of Eq. (2.2).

Proof. Suppose by contradiction u is not a solution. Then there exists ϕ ∈ E such that

〈I′(u), ϕ〉 < −1.

Choose ε ∈ (0, 1) small enough such that for all |t− 1| ≤ 1 and |σ| ≤ ε,

〈I′(tu + σϕ), ϕ〉 ≤ −1
2

.

We define a smooth cut-off function ζ(t) ∈ [0, 1], which satisfies ζ(t) = 1 for|t− 1| ≤ ε
2 and

ζ(t) = 0 for |t − 1| ≥ ε. For t > 0 we introduce a curve γ(t) = tu for |t − 1| ≥ ε and
γ(t) = tu + εζ(t)ϕ for |t− 1| < ε. Obviously, γ(t) is a continuous curve and when ε small
enough, ‖γ(t)‖ > 0 for |t − 1| < ε. Next we prove I(γ(t)) < c, for t > 0. If |t − 1| ≥ ε,
I(γ(t)) = I(tu) < I(u) = c. If |t − 1| < ε, we define A : σ 7→ I(tu + σζ(t)ϕ). Obviously,
A ∈ C1. By the mean value therm, there exists σ ∈ (0, ε) such that

I(tu + εζ(t)ϕ) = I(tu) + 〈I′(tu + σζ(t)ϕ), εζ(t)ϕ〉 ≤ I(tu)− ε

2
ζ(t) < c.

Define ν(u) := 〈I′(u), u〉, then ν(γ(1− ε)) = ν((1− ε)u) > 0 and ν(γ(1 + ε)) = ν((1 + ε)u) <
0. By the continuity of t→ ν(γ(t)), there exists t′ ∈ (1− ε, 1 + ε) such that ν(γ(t′)) = 0. Thus
γ(t′) ∈ N and I(γ(t′)) < c, which is a contradiction.

Define

Np = {u ∈ F : 〈I′p(u), u〉 = 0} and cp = inf
u∈Np

Ip(u).

In fact, cp = infu∈F maxt>0 Ip(tu).

Remark 2.12. For any u ∈ F, by Lemma 2.8, there exists tu > 0 such that tuu ∈ N and then
I(tuu) ≥ c. Using V(x) ≤ Vp(x), Q(x) ≥ Qp(x) and F(x, s) ≥ Fp(x, s), we have c ≤ I(tuu) ≤
Ip(tuu) ≤ maxt>0 Ip(tu). Then we obtain c ≤ cp.
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3 Estimates

In this section, we will estimate the least energy c, and the method comes from the celebrated
paper [7].

Let

S = inf
u∈D1,2(R3)\{0}

|∇u|22
|u|26

.

In fact, S is the best constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3).
Without loss of generality, we assume that x0 = 0. For ε > 0, the function wε : R3 → R

defined by

wε(x) =
3

1
4 ε

1
4

(ε + |x|2) 1
2

is a family of functions on which S is attained. Let ϕ ∈ C∞
0 (R3, [0, 1]) be a cut-off function

satisfying ϕ = 1, for x ∈ B ρ
2

and ϕ = 0, for x ∈ R3 \ Bρ, where Bρ ⊂ Ω. Define the test
function by

vε =
uε

(
∫

R3 Q(x)u6
ε dx)

1
6

,

where uε = ϕwε. Then one has∫
R3
|∇vε|2dx ≤ |Q|−

1
3

∞ S + O(ε
1
2 ), as ε→ 0+, (3.1)

∫
R3
|vε|2dx = O(ε

1
2 ), as ε→ 0+, (3.2)∫

R3
|uε|6dx = K1 + O(ε

3
2 ), as ε→ 0+, where K1 is some positive constant, (3.3)∫

R3
Q(x)v6

ε dx = 1, (3.4)∫
R3
|vε|

12
5 dx = O(ε

3
5 ), as ε→ 0+. (3.5)

Lemma 3.1. Suppose (V), (K), (Q) and ( f1)–( f4) are satisfied. Then c < 1
3 |Q|

− 1
2

∞ S
3
2 .

Proof. For t > 0, define

g(t) := I(tvε)

=
t2

2

∫
R3
|∇vε|2dx +

t2

2

∫
R3

V(x)v2
ε dx +

t4

4

∫
R3

K(x)φvε v
2
ε dx

− t6

6

∫
R3

Q(x)v6
ε dx−

∫
R3

F(x, tvε)dx.

By Lemma 2.8, there exists a unique tε > 0 such that g(tε) = maxt>0 g(t) and g′(tε) = 0. We
claim that there exists C1, C2 such that C1 ≤ tε ≤ C2 for ε small enough. Indeed, if tε → 0
as ε → 0, one has g(tε) → 0, which is a contradiction. If tε → +∞ as ε → +∞, one has
g(tε)→ −∞, which is a contradiction. Thus the claim holds. For s > 0, define

ψ(s) :=
s2

2

∫
R3
|∇vε|2dx− s6

6
.
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Then there exists sε :=
( ∫

R3 |∇vε|2dx
) 1

4 such that

ψ(sε) = max
s>0

ψ(s) =
1
3

(∫
R3
|∇vε|2dx

) 3
2

.

By (3.1) and the inequality (a + b)α ≤ aα + α(a + b)α−1b, a > 0, b > 0, α ≥ 1, we have

ψ(sε) ≤
1
3
|Q|−

1
2

∞ S
3
2 + O(ε

1
2 ). (3.6)

We claim

lim
ε→0+

∫
R3 F(x, tεvε)dx

O(ε
1
2 )

= +∞. (3.7)

By (3.3), for ε small enough, one has |uε|6 ≤ 2K1 and then for |x| < ε
1
2 < ρ

2 ,

tεvε ≥
C1

2|Q|∞K1
uε =

C1

2|Q|∞K1
wε =

C1

2|Q|∞K1

3
1
4 ε

1
4

(ε + |x|2) 1
2
≥ Cε−

1
4 .

It follows from ( f4) that for any R > 0, there exists AR > 0 such that for all (x, s) ∈ Ω ×
[AR,+∞),

F(x, s) ≥ Rs4.

Thus for ε small enough, one has∫
{x:|x|<ε

1
2 }

F(x, tεvε)dx ≥ CR
∫
{x:|x|<ε

1
2 }

ε−1dx = CRε
1
2 .

Combining with F(x, s) ≥ 0 and the arbitrariness of R, we can obtain the claim. By (2.3) and
(3.5), we get ∣∣∣∣∫

R3
K(x)φvε v

2
ε dx
∣∣∣∣ ≤ C0|vε|412

5
≤ C2ε.

Hence for ε small enough, by (3.2), (3.6) and (3.7), we have

c ≤ max
t>0

I(tvε)

=
t2
ε

2

∫
R3
|∇vε|2dx +

t2
ε

2

∫
R3

V(x)v2
ε dx

+
t4
ε

4

∫
R3

K(x)φvε v
2
ε dx− t6

ε

6

∫
R3

Q(x)v6
ε dx−

∫
R3

F(x, tεvε)dx

≤ 1
3
|Q|−

1
2

∞ S
3
2 + O(ε) + O(ε

1
2 )−

∫
R3

F(x, tεvε)dx

≤ 1
3
|Q|−

1
2

∞ S
3
2 + O(ε

1
2 )−

∫
R3

F(x, tεvε)dx

<
1
3
|Q|−

1
2

∞ S
3
2 .

4 The proof of main result

The proof of Theorem 1.1. From Lemma 2.10, there exists a bounded sequence {un} ∈ E satisfy-
ing I(un) → c and ‖I′(un)‖E−1 → 0. Then there exists u ∈ E such that, up to a subsequence,
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un ⇀ u in E, un → u in L2
loc(R

3) and un(x) → u(x) a.e. in R3. By Lemma 2.4, for any v ∈ E,
we have

0 = 〈I′(un), v〉+ o(1) = 〈I′(u), v〉,

that is u is a solution of Eq. (2.2). Since

0 = 〈I′(u), u−〉 = ‖u−‖+
∫

R3
K(x)φu|u−|2dx ≥ ‖u−‖,

then u ≥ 0.
We next distinguish the following two case to prove Eq. (2.2) has a nonnegative ground

state solution.
Case 1. Suppose that u 6= 0. Then I(u) ≥ c. By the Fatou lemma, we obtain

c = lim inf
n→∞

(
I(un)−

1
4
〈I′(un), un〉

)
= lim inf

n→∞

(
1
4
‖un‖2 +

1
12

∫
R3

Q(x)(u+
n )

6dx +
∫

R3

(
1
4

f (x, un)un − F(x, un)

)
dx
)

≥ 1
4
‖u‖2 +

1
12

∫
R3

Q(x)(u+)6dx +
∫

R3

(
1
4

f (x, u)u− F(x, u)
)

dx

= I(u)− 1
4
〈I′(u), u〉

= I(u).

Therefore, I(u) = c and I′(u) = 0.
Case 2. Suppose that u = 0. Define

β := lim sup
n→∞

sup
z∈R3

∫
B1(z)

u2
ndx.

If β = 0, by using the Lions lemma [22,23], we have un → 0 in Lq(R3) for all q ∈ (2, 6). By the
condition of ( f1) and ( f2), ∀δ > 0 there exists a Cδ > 0 such that f (x, u)u ≤ δ(|u|2 + |u|6) +
Cδ|u|α and F(x, u) ≤ δ

2 |u|2 +
δ
6 |u|6 + Cδ|u|α for any (x, s) ∈ R3 ×R and α ∈ (2, 6). So∫

R3
f (x, un)undx → 0,

∫
R3

F(x, un)dx → 0.

Then
c =

1
2
‖un‖2 +

1
4

∫
R3

K(x)φun u2
ndx− 1

6

∫
R3

Q(x)(u+
n )

6dx + on(1), (4.1)

‖un‖2 +
∫

R3
K(x)φun u2

ndx =
∫

R3
Q(x)(u+

n )
6dx + on(1). (4.2)

By (4.2), we have

‖un‖2 ≤ |Q|∞|un|66 + on(1) ≤ |Q|∞S−3‖un‖6 + on(1), (4.3)

which deduces that (i) ‖un‖ → 0 or (ii) ‖un‖ ≥ |Q|
− 1

4
∞ S

3
4 + on(1).

If (i) holds, by (2.3), one has
∫

R3 K(x)φun u2
ndx → 0. It follows from (4.1) and (4.2) that

c = 0, which is a contradiction with c > 0.
If (ii) holds, by (4.2) we have∫

R3
Q(x)(u+

n )
6dx ≥ |Q|−

1
2

∞ S
3
2 + on(1). (4.4)
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From (4.1) and (4.2) we easily conclude that

c =
1
4
‖un‖2 +

1
12

∫
R3

Q(x)(u+
n )

6dx + on(1).

Then from (4.4) it follows that c ≥ 1
3 |Q|

− 1
2

∞ S
3
2 , contradicting the fact that c < 1

3 |Q|
− 1

2
∞ S

3
2 .

Thus β > 0. Up to a subsequence, there exist R > 0 and {zn} ⊂ Z3 such that∫
BR

un(x + zn)
2dx =

∫
BR(zn)

u2
ndx >

β

2
.

Define wn := un(x + zn). Thus there exists w ∈ E satisfying, up to a subsequence, wn ⇀ w in
E, wn → w in L2

loc(R
3) and wn(x) → w(x) a.e. in R3. Obviously, w 6= 0. If {zn} is bounded,

there exists R′ such that ∫
BR′

u2
ndx ≥

∫
BR(zn)

u2
ndx ≥ β

2
,

which contradicts with un → 0 in L2
loc(R

3). Thus {zn} is unbounded. Up to a subsequence,
we have zn → ∞. By Lemma 2.6 and Lemma 2.7, then

0 = 〈I′(un, ϕ(x− zn))〉+ o(1)

=
∫

R3
(∇un · ∇ϕ(x− zn) + V(x)un ϕ(x− zn))dx +

∫
R3

K(x)φun un ϕ(x− zn)dx

−
∫

R3
Q(x)(u+

n )
5ϕ(x− zn)dx−

∫
R3

f (x, un)ϕ(x− zn)dx + o(1)

=
∫

R3
(∇un · ∇ϕ(x− zn) + Vp(x)un ϕ(x− zn))dx +

∫
R3

Kp(x)φ̃un un ϕ(x− zn)dx

−
∫

R3
Qp(x)(u+

n )
5ϕ(x− zn)dx−

∫
R3

fp(x, un)ϕ(x− zn)dx + o(1)

=
∫

R3
(∇wn · ∇ϕ + Vp(x)wn ϕ)dx +

∫
R3

Kp(x)φ̃wn wn ϕdx

−
∫

R3
Qp(x)(w+

n )
5ϕdx−

∫
R3

fp(x, wn)ϕdx + o(1)

= 〈I′p(w), ϕ〉,

that is w is a solution of Eq. (2.2). Obviously, w ≥ 0. By Lemma 2.5, ( f5) and Fatou lemma,
we have

c = I(un)−
1
4
〈I′(un), un〉+ o(1)

=
1
4
‖un‖2 +

1
12

∫
R3

Q(x)(u+
n )

6dx +
∫

R3

(
1
4

f (x, un)un − F(x, un)

)
dx + o(1)

≥ 1
4
‖un‖2 +

1
12

∫
R3

Qp(x)(u+
n )

6dx +
∫

R3

(
1
4

fp(x, un)un − Fp(x, un)

)
dx + o(1)

=
1
4
‖wn‖2 +

1
12

∫
R3

Qp(x)(w+
n )

6dx +
∫

R3

(
1
4

fp(x, wn)wn − Fp(x, wn)

)
dx + o(1)

≥ 1
4
‖w‖2 +

1
12

∫
R3

Qp(x)(w+)6dx +
∫

R3

(
1
4

fp(x, w)w− Fp(x, w)

)
dx + o(1)

= Ip(w)− 1
4
〈I′p(w), w〉

= Ip(w)

≥ cp.
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Using Remark 2.12, Ip(w) = cp = c. By the properties of c and N , there exits tw > 0 such
that tww ∈ N . Thus, we obtain c ≤ I(tww) ≤ Ip(tww) ≤ Ip(w) = c. So c is achieved by tww.
By Lemma 2.11, we have I′(tww) = 0.

In a word, we obtain that Eq. (2.2) has a nonnegative ground state solution u ∈ E.
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