Ground states for a class of asymptotically periodic Schrödinger-Poisson systems with critical growth

Da-Bin Wang ${ }^{\boxtimes}$, Hua-Fei Xie and Wen Guan

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China

Received 7 August 2017, appeared 2 January 2018
Communicated by Dimitri Mugnai

Abstract

The purpose of this paper is to study the existence of ground state solution for the Schrödinger-Poisson systems:

$$
\begin{cases}-\Delta u+V(x) u+K(x) \phi u=Q(x)|u|^{4} u+f(x, u), & x \in \mathbb{R}^{3}, \\ -\Delta \phi=K(x) u^{2}, & x \in \mathbb{R}^{3},\end{cases}
$$

where $V(x), K(x), Q(x)$ and $f(x, u)$ are asymptotically periodic functions in x.
Keywords: Schrödinger-Poisson systems, ground state solution, variational methods.
2010 Mathematics Subject Classification: 35J20, 35J60, 35 J65.

1 Introduction

For past decades, much attention has been paid to the nonlinear Schrödinger-Poisson system

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \Psi+U(x) \Psi+\phi(x) \Psi-|\Psi|^{q-1} \Psi, x \in \mathbb{R}^{3}, t \in \mathbb{R} \tag{1.1}\\
-\Delta \phi=|\Psi|^{2}, x \in \mathbb{R}^{3}
\end{array}\right.
$$

where \hbar is the Planck constant. Equation (1.1) derived from quantum mechanics. For this equation, the existence of stationary wave solutions is often sought, that is, the following form of solution

$$
\Psi(x, t)=e^{i t} u(x), \quad x \in \mathbb{R}^{3}, t \in \mathbb{R}
$$

Therefore, the existence of the standing wave solution of the equation (1.1) is equivalent to finding the solution of the following system $\left(m=\frac{1}{2}, \hbar=1\right.$ and $\left.V(x)=U(x)+1\right)$

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u+\phi u=|u|^{q-1} u, x \in \mathbb{R}^{3} \tag{1.2}\\
-\Delta \phi=u^{2}, x \in \mathbb{R}^{3}
\end{array}\right.
$$

[^0]To the best of our knowledge, the first result on Schrödinger-Poisson system was obtained in [5]. Thereafter, using the variational method, there is a series of work to discuss the existence, non existence, radially symmetric solutions, non-radially symmetric solutions and ground state to Schrödinger-Poisson system (1.2) and similar problems [1,3-5,8-17,20,28,32, 34,37-39, 42, 44-47].

As far as we know, in [4], Azzollini and Pomponio firstly obtained the ground state solution to the Schrödinger-Poisson system (1.2). They obtained that system (1.2) has a ground state solution when V is a positive constant and $2<q<5$, or V is non-constant, possibly unbounded below and $3<q<5$. Since it's great physical interests, many scholars pay attention to study ground state solutions to the Schrödinger-Poisson system (1.2) and similar problems [1,8,11, 12, 14, 15, 20, 37,38, 45, 46].

In [1], Alves, Souto and Soares studied Schrödinger-Poisson system

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u+\phi u=f(u), x \in \mathbb{R}^{3}, \tag{1.3}\\
-\Delta \phi=u^{2}, x \in \mathbb{R}^{3},
\end{array}\right.
$$

where $f \in C\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and V is bounded, local Hölder continuous and satisfies:
(1) $V(x) \geq \alpha>0, x \in \mathbb{R}^{3}$,
(2) $V(x)=V(x+y), \forall x \in \mathbb{R}^{3}, \forall y \in \mathbb{Z}^{3}$,
(3) $\lim _{|x| \rightarrow \infty}\left|V(x)-V_{0}(x)\right|=0$,
(4) $V(x) \leq V_{0}(x), \forall x \in \mathbb{R}^{3}$, and there exists $\Omega \subset \mathbb{R}^{3}$ with $m(\Omega)>0$ such that

$$
V(x)<V_{0}(x), \quad \forall x \in \Omega
$$

where V_{0} satisfies (2). Alves et al. studied the ground state solutions to system (1.3) in case the periodic condition under (1)-(2) and in case the asymptotically periodic condition under (1), (3) and (4) respectively.

In [45], Zhang, Xu and Zhang considered existence of positive ground state solution for the following non-autonomous Schrödinger-Poisson system

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u+K(x) \phi u=f(x, u), x \in \mathbb{R}^{3}, \tag{1.4}\\
-\Delta \phi=K(x) u^{2}, x \in \mathbb{R}^{3} .
\end{array}\right.
$$

In some weaken asymptotically periodic sense compare with that of in [1], they obtained the positive ground state solution to system (1.4) when V, K and f are all asymptotically periodic in x.

More recently, Zhang, Xu , Zhang and Du [46] completed the results obtained in [45] to Schrödinger-Poisson system with critical growth

$$
\begin{cases}-\Delta u+V(x) u+K(x) \phi u=Q(x)|u|^{4} u+f(x, u), & x \in \mathbb{R}^{3}, \tag{1.5}\\ -\Delta \phi=K(x) u^{2}, & x \in \mathbb{R}^{3} .\end{cases}
$$

In [46], V, K, Q satisfy: $V, K, Q \in L^{\infty}\left(\mathbb{R}^{3}\right), \inf _{\mathbb{R}^{3}} V>0, \inf _{\mathbb{R}^{3}} K>0, \inf _{\mathbb{R}^{3}} Q>0$ and $V-V_{p}, K-K_{p}, Q-Q_{p} \in \mathcal{F}$, where V_{p}, K_{p} and Q_{p} are 1-periodic in $x_{i}, 1 \leq i \leq 3$, and $\mathcal{F}=\left\{g \in L^{\infty}\left(\mathbb{R}^{3}\right): \forall \varepsilon>0\right.$, the set $\left\{x \in \mathbb{R}^{3}:|g(x)| \geq \varepsilon\right\}$ has finite Lebesgue measure $\}$.

On the other hand, when $K=0$ the Schrödinger-Poisson system (1.4) becomes the standard Schrödinger equation (replace \mathbb{R}^{3} with \mathbb{R}^{N})

$$
\begin{equation*}
-\Delta u+V(x) u=f(x, u), \quad x \in \mathbb{R}^{N} \tag{1.6}
\end{equation*}
$$

The Schrödinger equation (1.6) has been widely investigated by many authors in the last decades, see $[2,6,19,24,25,29-31,40,41,43]$ and reference therein. Especially, in $[19,24,25$, $29,40,41$], they studied the nontrivial solution or ground state solution for problem (1.6) with subcritical growth or critical growth in which V, f satisfy the asymptotically periodic condition. Other context about asymptotically periodic condition, we refer the reader to [18, $21,35,36$] and reference therein.

Motivated by above results, in this paper, we will study ground state solutions to system (1.5) under reformative condition about asymptotically periodic case of V, K, Q and f at infinity.

To state our main results, we assume that:
(V) there exist $V_{p}: \mathbb{R}^{3} \rightarrow \mathbb{R}$, 1-periodic in $x_{i}, 1 \leq i \leq 3$, such that

$$
V_{0}:=\inf _{x \in \mathbb{R}^{3}} V_{p}>0, \quad 0 \leq V(x) \leq V_{p}(x) \in L^{\infty}\left(\mathbb{R}^{3}\right) \quad \text { and } \quad V(x)-V_{p}(x) \in A_{0}
$$

where

$$
A_{0}:=\left\{k(x): \text { for any } \varepsilon>0, m\left\{x \in B_{1}(y):|k(x)| \geq \varepsilon\right\} \rightarrow 0 \text { as }|y| \rightarrow \infty\right\}
$$

(K) there exist $K_{p}: \mathbb{R}^{3} \rightarrow \mathbb{R}$, 1-periodic in $x_{i}, 1 \leq i \leq 3$, such that

$$
K_{0}:=\inf _{x \in \mathbb{R}^{3}} V_{p}>0, \quad 0<K(x) \leq K_{p}(x) \in L^{\infty}\left(\mathbb{R}^{3}\right) \quad \text { and } \quad K(x)-K_{p}(x) \in A_{0}
$$

(Q) there exist $Q_{p} \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$, 1-periodic in $x_{i}, 1 \leq i \leq 3$, and point $x_{0} \in \mathbb{R}^{3}$ such that

$$
0<Q_{p}(x) \leq Q(x) \in C\left(\mathbb{R}^{3}, \mathbb{R}\right), \quad Q(x)-Q_{p}(x) \in A_{0}
$$

and

$$
Q(x)=|Q|_{\infty}+O\left(\left|x-x_{0}\right|\right), \quad \text { as } x \rightarrow x_{0}
$$

and $f \in C\left(\mathbb{R}^{3} \times \mathbb{R}^{+}, \mathbb{R}\right)$ satisfies
$\left(f_{1}\right) \lim _{s \rightarrow 0^{+}} \frac{f(x, s)}{s}=0$ uniformly for $x \in \mathbb{R}^{3}$,
$\left(f_{2}\right) \lim _{s \rightarrow+\infty} \frac{f(x, s)}{s^{5}}=0$ uniformly for $x \in \mathbb{R}^{3}$,
$\left(f_{3}\right) s \rightarrow \frac{f(x, s)}{s^{3}}$ is nondecreasing on $(0,+\infty)$,
$\left(f_{4}\right)$ there exists an open bounded set $\Omega \subset \mathbb{R}^{3}$, containing x_{0} given by (Q), satisfies

$$
\lim _{s \rightarrow+\infty} \frac{F(x, s)}{s^{4}}=+\infty \quad \text { uniformly for } x \in \Omega
$$

$\left(f_{5}\right)$ there exists $f_{p} \in C\left(\mathbb{R}^{3} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$, 1-periodic in $x_{i}, 1 \leq i \leq 3$, such that
(i) $f(x, s) \geq f_{p}(x, s)$ for all $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}^{+}$and $f(x, s)-f_{p}(x, s) \in A$, where

$$
\begin{aligned}
A:=\left\{h(x, s): \text { for any } \varepsilon>0, m\left\{x \in B_{1}(y):|h(x, s)| \geq \varepsilon\right\}\right. & \rightarrow 0 \\
& \text { as }|y| \rightarrow \infty \text { uniformly for }|s| \text { bounded }\},
\end{aligned}
$$

(ii) $s \rightarrow \frac{f_{p}(x, s)}{s^{3}}$ is nondecreasing on $(0,+\infty)$.

The next theorem is the main result of the present paper.
Theorem 1.1. Suppose that conditions $(V),(K),(Q)$ and $\left(f_{1}\right)-\left(f_{5}\right)$ are satisfied. Then the system (1.5) has a ground state solution.

Remark 1.2.
(i) Functional sets A_{0} in V, Q, K and A in $\left(f_{5}\right)$ were introduced by [24,25] in which Liu, Liao and Tang studied positive ground state solution to Schrödinger equation (1.6) with subcritical growth or critical growth.
(ii) Since $\mathcal{F} \subset A_{0}$, our assumptions on V, Q and K are weaker than [46]. Furthermore, $V(x) \geq 0$ in our paper but in [46] they assumed $V(x)>0$.
(iii) In [46], to obtained the ground state to system (1.5), they firstly consider the periodic system

$$
\begin{cases}-\Delta u+V_{p}(x) u+K_{p}(x) \phi u=Q_{p}(x)|u|^{4} u+f_{p}(x, u), & x \in \mathbb{R}^{3}, \tag{1.7}\\ -\Delta \phi=K_{p}(x) u^{2}, & x \in \mathbb{R}^{3} .\end{cases}
$$

Then a solution of system (1.5) was obtained by applying inequality between the energy of periodic system (1.7) and that of system (1.5). In this paper, we do not use methods of [46] and prove Theorem 1.1 directly.

2 The variational framework and preliminaries

To fix some notations, the letter C and C_{i} will be repeatedly used to denote various positive constants whose exact values are irrelevant. $B_{R}(z)$ denotes the ball centered at z with radius R. We denote the standard norm of L^{p} by $|u|_{p}=\left(\int_{\mathbb{R}^{3}}|u|^{p} d x\right)^{\frac{1}{p}}$ and $|u|_{\infty}=$ ess $\sup _{x \in \mathbb{R}^{3}}|u|$. Since we are looking for a nonnegative solution, we may assume that $f(x, s)=f_{p}(x, s)=0$ for all $(x, s) \in\left(\mathbb{R}^{3}, \mathbb{R}^{-}\right)$.

The Sobolev space $H^{1}\left(\mathbb{R}^{3}\right)$ endowed with the norm

$$
\|u\|_{H}^{2}:=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+u^{2}\right) d x .
$$

The space $D^{1,2}\left(\mathbb{R}^{3}\right)$ endowed with the standard norm

$$
\|u\|_{D^{1,2}}^{2}:=\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x .
$$

Let $E:=\left\{u \in L^{6}\left(\mathbb{R}^{3}\right):|\nabla u| \in L^{2}\left(\mathbb{R}^{3}\right)\right.$ and $\left.\int_{\mathbb{R}^{3}} V(x) u^{2} d x<\infty\right\}$ be the Sobolev space endowed with the norm

$$
\|u\|^{2}:=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x .
$$

Lemma 2.1 ([24]). Suppose (V) holds. Then there exists two positive constants C_{1} and C_{2} such that $C_{1}\|u\|_{H}^{2} \leq\|u\| \leq C_{2}\|u\|_{H}^{2}$ for all $u \in E$. Moreover, $E \hookrightarrow L^{p}\left(\mathbb{R}^{3}\right)$ for any $p \in[2,6]$ is continuous.

The system (1.5) can be transformed into a Schrödinger equation with a nonlocal term. In fact, for all $u \in E$ (then $u \in H^{1}\left(\mathbb{R}^{3}\right)$), considering the linear functional L_{u} defined in $D^{1,2}\left(\mathbb{R}^{3}\right)$ by

$$
L_{u}(v)=\int_{\mathbb{R}^{3}} K(x) u^{2} v d x
$$

By the Hölder inequality, we have

$$
\begin{equation*}
\left|L_{u}(v)\right| \leq|K|_{\infty}|u|_{\frac{12}{5}}^{2}|v|_{6} \leq C|u|_{\frac{12}{5}}^{2}\|v\|_{D^{1,2}} \tag{2.1}
\end{equation*}
$$

Therefor, the Lax-Milgram theorem implies that there exists a unique $\phi_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right)$ such that

$$
\int_{\mathbb{R}^{3}} \nabla \phi_{u} \cdot \nabla v d x=\left(\phi_{u}, v\right)_{D^{1,2}}=L_{u}(v)=\int_{\mathbb{R}^{3}} K(x) u^{2} v d x \quad \text { for any } v \in D^{1,2}\left(\mathbb{R}^{3}\right)
$$

Namely, ϕ_{u} is the unique solution of $-\Delta \phi=K(x) u^{2}$. Moreover, ϕ_{u} can be expressed as

$$
\phi_{u}=\int_{\mathbb{R}^{3}} \frac{K(y) u^{2}(y)}{|x-y|} d y
$$

Substituting ϕ_{u} into the systems (1.5), we obtain

$$
\begin{equation*}
-\Delta u+V(x) u+K(x) \phi_{u} u=Q(x)|u|^{4} u+f(x, u), \quad x \in \mathbb{R}^{3} \tag{2.2}
\end{equation*}
$$

By (2.1), we get

$$
\left\|\phi_{u}\right\|_{D^{1,2}}=\left\|L_{u}\right\| \leq C|u|_{\frac{12}{5}}^{2} \leq C\|u\|^{2}
$$

Then, we have

$$
\begin{align*}
\left|\int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x\right| & \leq|K(x)|_{\infty}\left|\phi_{u}\right|_{6}|u|_{\frac{12}{5}}^{2} \tag{2.3}\\
& \leq C|K(x)|_{\infty}\left\|\phi_{u}\right\|_{D^{1,2}}|u|_{\frac{12}{5}}^{2} \\
& \leq C|u|_{\frac{12}{5}}^{4} \\
& \leq C_{0}\|u\|^{4} .
\end{align*}
$$

So the energy functional $I: E \rightarrow \mathbb{R}$ corresponding to Eq. (2.2) is defined by

$$
I(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x+\frac{1}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\frac{1}{6} \int_{\mathbb{R}^{3}} Q(x)\left(u^{+}\right)^{6} d x-\int_{\mathbb{R}^{3}} F(x, u) d x
$$

where $F(x, s)=\int_{0}^{s} f(x, t) d t$.
Moreover, under our conditions, I belongs to C^{1}, so the Fréchet derivative of I is $\left\langle I^{\prime}(u), v\right\rangle=\int_{\mathbb{R}^{3}}(\nabla u \cdot \nabla v+V(x) u v) d x+\int_{\mathbb{R}^{3}} K(x) \phi_{u} u v d x-\int_{\mathbb{R}^{3}} Q(x)\left(u^{+}\right)^{5} v d x-\int_{\mathbb{R}^{3}} f(x, u) v d x$ and $(u, \phi) \in E \times D^{1,2}\left(\mathbb{R}^{3}\right)$ is a solution of system (1.5) if and only if $u \in E$ is a critical point of I and $\phi=\phi_{u}$.

For all $u \in E$, let $\tilde{\phi}_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right)$ is unique solution of the following equation

$$
-\Delta \phi=K_{p}(x) u^{2}
$$

Moreover, $\widetilde{\phi}_{u}$ can be expressed as

$$
\widetilde{\phi}_{u}=\int_{\mathbb{R}^{3}} \frac{K_{p}(y) u^{2}(y)}{|x-y|} d y .
$$

Let

$$
\begin{aligned}
I_{p}(u)= & \frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+V_{p}(x) u^{2}\right) d x+\frac{1}{4} \int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u} u^{2} d x \\
& -\frac{1}{6} \int_{\mathbb{R}^{3}} Q_{p}(x)\left(u^{+}\right)^{6} d x-\int_{\mathbb{R}^{3}} F_{p}(x, u) d x,
\end{aligned}
$$

where $F_{p}(x, s)=\int_{0}^{s} f_{p}(x, t) d t$. Then I_{p} is the energy functional corresponding to the following equation

$$
\begin{equation*}
-\Delta u+V_{p}(x) u+K_{p}(x) \widetilde{\phi}_{u} u=Q_{p}(x)|u|^{4} u+f_{p}(x, u), \quad x \in \mathbb{R}^{3} . \tag{2.4}
\end{equation*}
$$

It is easy to see that $(u, \phi) \in E \times D^{1,2}\left(\mathbb{R}^{3}\right)$ is a solution of periodic system (1.7) if and only if $u \in E$ is a critical point of I_{p} and $\phi=\widetilde{\phi}_{u}$.

Lemma 2.2. Suppose (K) holds. Then,

$$
\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u(\cdot+z)} u^{2}(\cdot+z) d x=\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u} u^{2} d x, \quad \forall z \in \mathbb{Z}^{3}, u \in E .
$$

Lemma 2.3. Suppose that $\left(f_{1}\right),\left(f_{3}\right)$ and $\left(f_{5}\right)$ hold. Then
(i) $\frac{1}{4} f(x, s) s \geq F(x, s) \geq 0$ for all $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}$,
(ii) $\frac{1}{4} f_{p}(x, s) s \geq F_{p}(x, s) \geq 0$ for all $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}$.

Proof. The proof is similar to that of in [27], so we omitted here.
Lemma 2.4. I^{\prime} is weakly sequentially continuous. Namely if $u_{n} \rightharpoonup u$ in $E, I^{\prime}\left(u_{n}\right) \rightharpoonup I^{\prime}(u)$ in $E^{-1}\left(\mathbb{R}^{3}\right)$.

Proof. The proof is similar to that of Lemma 2.3 in [45,46], so we omitted here.
Lemma 2.5 ([24]). Suppose that $\left(f_{1}\right),\left(f_{2}\right)$ and (i) of $\left(f_{5}\right)$ hold. Assume that $\left\{u_{n}\right\}$ is bounded in E and $u_{n} \rightarrow 0$ in $L_{\mathrm{loc}}^{s}\left(\mathbb{R}^{3}\right)$, for any $s \in[2,6)$. Then up to a subsequence, one has

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(F\left(x, u_{n}\right)-F_{p}\left(x, u_{n}\right)\right) d x=o(1) . \tag{2.5}
\end{equation*}
$$

Lemma 2.6 ([24,25]). Suppose that $(V),(Q),\left(f_{1}\right),\left(f_{2}\right)$ and (i) of $\left(f_{5}\right)$ hold. Assume that $\left\{u_{n}\right\}$ is bounded in E and $\left|z_{n}\right| \rightarrow \infty$. Then up to a subsequence, one has

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left(V_{p}(x)-V(x)\right) u_{n} \varphi\left(\cdot-z_{n}\right) d x & =o(1), \tag{2.6}\\
\int_{\mathbb{R}^{3}}\left(f\left(x, u_{n}\right)-f_{p}\left(x, u_{n}\right)\right) \varphi\left(\cdot-z_{n}\right) d x & =o(1), \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(Q(x)-Q_{p}(x)\right)\left(u_{n}^{+}\right)^{5} \varphi\left(\cdot-z_{n}\right) d x=o(1), \tag{2.8}
\end{equation*}
$$

where $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$.

Lemma 2.7. Suppose that $(K),\left(f_{1}\right)$ and $\left(f_{2}\right)$ hold. Assume that $u_{n} \rightharpoonup 0$ in E. Then up to a subsequence, one has

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(K(x) \phi_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)-K_{p}(x) \widetilde{\phi}_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)\right) d x=o(1) \tag{2.9}
\end{equation*}
$$

where $\left|z_{n}\right| \rightarrow \infty$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$.
Proof. Set $h(x):=K(x)-K_{p}(x)$. By (K), we have $h(x) \in A_{0}$. Then for any $\varepsilon>0$, there exists $R_{\varepsilon}>0$ such that

$$
m\left\{x \in B_{1}(y):|h(x)| \geq \varepsilon\right\}<\varepsilon, \quad \text { for any }|y| \geq R_{\varepsilon}
$$

We cover \mathbb{R}^{3} by balls $B_{1}\left(y_{i}\right), i \in \mathbb{N}$. In such a way that each point of \mathbb{R}^{3} is contained in at most $N+1$ balls. Without any loss of generality, we suppose that $\left|y_{i}\right|<R_{\varepsilon}, i=1,2, \ldots, n_{\varepsilon}$ and $\left|y_{i}\right| \geq R_{\varepsilon}, i=n_{\varepsilon}+1, n_{\varepsilon}+2, n_{\varepsilon}+3, \ldots,+\infty$. Then,

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}(& \left.K(x) \phi_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)-K_{p}(x) \widetilde{\phi}_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)\right) d x \\
= & \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y h(x) u_{n}^{2}(x) d x \\
& +\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{K_{p}(y) u_{n}^{2}(y)}{|x-y|} d y h(x) u_{n}(x) \varphi\left(x-z_{n}\right) d x \\
& +\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{h(y) u_{n}^{2}(y)}{|x-y|} d y h(x) u_{n}(x) \varphi\left(x-z_{n}\right) d x \\
= & E_{1}+E_{2}+E_{3} .
\end{aligned}
$$

Like the argument of [45], we define

$$
\begin{aligned}
H(x) & :=\int_{\mathbb{R}^{3}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y \\
& =\int_{\{y:|x-y| \leq 1\}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y+\int_{\{y:|x-y|>1\}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y .
\end{aligned}
$$

By the Hölder inequality and the Sobolev embeddings, we have

$$
\begin{aligned}
|H(x)| & \leq\left|K_{p}\right|_{\infty}\left|u_{n}\right|_{3}|\varphi|_{6}\left(\int_{\{y:|x-y| \leq 1\}} \frac{1}{|x-y|^{2}} d y\right)^{\frac{1}{2}}+\left|K_{p}\right|_{\infty}\left|u_{n}\right|_{2}|\varphi|_{4}\left(\int_{\{y:|x-y|>1\}} \frac{1}{|x-y|^{4}} d y\right)^{\frac{1}{4}} \\
& \leq C\left(\int_{\{z:|z| \leq 1\}} \frac{1}{|z|^{2}} d z\right)^{\frac{1}{2}}+C\left(\int_{\{z:|z|>1\}} \frac{1}{|z|^{4}} d z\right)^{\frac{1}{4}}
\end{aligned}
$$

So, $\sup _{x \in \mathbb{R}^{3}}|H(x)|<\infty$. Then, we obtain

$$
\begin{aligned}
E_{1} & =\int_{\mathbb{R}^{3}} H(x) h(x) u_{n}^{2}(x) d x \\
& \leq \int_{\{x:|h(x)| \geq \varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x+\int_{\{x:|h(x)|<\varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& =Q_{1}+Q_{2}
\end{aligned}
$$

$$
\begin{aligned}
Q_{1} & =\int_{\{x:|h(x)| \geq \varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& \leq \int_{\left\{x:|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x+\int_{\left\{x:|h(x)| \geq \varepsilon,|x| \geq R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& \leq \sum_{n_{\varepsilon}+1}^{\infty} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x+2 \sup _{x \in \mathbb{R}^{3}}|H(x)|\left|K_{p}\right|_{\infty} \int_{B_{R_{\varepsilon}+1}}\left|u_{n}(x)\right|^{2} d x \\
& =: Q_{11}+Q_{12}, \\
Q_{11} & =\sum_{n_{\varepsilon}+1}^{\infty} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& \leq 2 \sup _{x \in \mathbb{R}^{3}}|H(x)|\left|K_{p}\right| \infty \sum_{n_{\varepsilon}+1}^{\infty} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|u_{n}^{2}(x)\right| d x \\
& \leq C \sum_{n_{\varepsilon}+1}^{\infty}\left(m\left\{x \in B_{1}(y):|h(x)| \geq \varepsilon\right\}\right)^{\frac{2}{3}}\left(\int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|u_{n}^{6}(x)\right| d x\right)^{\frac{1}{3}} \\
& \leq C_{1} \varepsilon^{\frac{2}{3}} \sum_{n_{\varepsilon}+1}^{\infty} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \\
& \leq C_{1}(N+1) \varepsilon^{\frac{2}{3}} \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \\
& \leq C_{2} \varepsilon^{\frac{2}{3}} .
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$, we obtain $Q_{11} \rightarrow 0$. By the condition $u_{n} \rightharpoonup 0$, one has $u_{n} \rightarrow 0$ in $L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$. Therefore $Q_{12} \rightarrow 0$. So $Q_{1} \rightarrow 0$.

$$
\begin{aligned}
Q_{2} & =\int_{\{x:|h(x)|<\varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& \leq \varepsilon \sup _{x \in \mathbb{R}^{3}}|H(x)| \int_{\mathbb{R}^{3}}\left|u_{n}^{2}(x)\right| d x \\
& \leq C \varepsilon .
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$, we have $Q_{2} \rightarrow 0$. Then, we get $E_{1} \rightarrow 0$. In the same way, we can prove $E_{2} \rightarrow 0$ and $E_{3} \rightarrow 0$.

Let $F=\left\{u \in E: u^{+} \neq 0\right\}$, define

$$
\mathcal{N}:=\left\{u \in E \backslash\{0\}:\left\langle I^{\prime}(u), u\right\rangle=0\right\}=\left\{u \in F:\left\langle I^{\prime}(u), u\right\rangle=0\right\} .
$$

Then \mathcal{N} is a Nehari type associate to I, and set $c:=\inf _{u \in \mathcal{N}} I$.
Lemma 2.8. Suppose that $(V),(K),(Q)$ and $\left(f_{1}\right)-\left(f_{3}\right)$ hold. For any $u \in F$, there is a unique $t_{u}>0$ such that $t_{u} u \in \mathcal{N}$. Moreover, the maximum of $I(t u)$ for $t \geq 0$ is achieved.

Proof. Fix $u \in F$, define $g(t):=I(t u), t>0$. Using $\left(f_{1}\right),\left(f_{2}\right)$, and $\left(f_{3}\right)$, we can prove that $g(0)=0, g(t)>0$ for t small and $g(t)<0$ for t large.

In fact, by $\left(f_{1}\right)$ and $\left(f_{2}\right), \forall \delta>0$ there exists a $C_{\delta}>0$ such that

$$
|f(x, s)| \leq \delta|s|+C_{\delta}|s|^{5}, \quad|F(x, s)| \leq \frac{\delta}{2}|s|^{2}+\frac{C_{\delta}}{6}|s|^{6} \quad \text { for any }(x, s) \in\left(\mathbb{R}^{3}, \mathbb{R}\right)
$$

So, we get that

$$
\begin{aligned}
g(t) & =\frac{t^{2}}{2}\|u\|^{2}+\frac{t^{4}}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\frac{t^{6}}{6} \int_{\mathbb{R}^{3}} Q(x)\left(u^{+}\right)^{6} d x-\int_{\mathbb{R}^{3}} F(x, t u) d x \\
& \geq \frac{t^{2}}{2}\|u\|^{2}-\frac{\delta t^{2}}{2} \int_{\mathbb{R}^{3}}|u|^{2} d x-\frac{C_{\delta} t^{6}}{6} \int_{\mathbb{R}^{3}}|u|^{6} d x-C t^{6} \int_{\mathbb{R}^{3}}|u|^{6} d x \\
& \geq \frac{t^{2}}{2}\|u\|^{2}-C \delta t^{2}\|u\|^{2}-C C_{\delta} t^{6}\|u\|^{6} .
\end{aligned}
$$

Hence, $g(t)>0$ for t small.
On the other hand, let $\Theta=\left\{x \in \mathbb{R}^{3}: u(x)>0\right\}$, we have that

$$
\begin{aligned}
g(t) & =\frac{t^{2}}{2}\|u\|^{2}+\frac{t^{4}}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\frac{t^{6}}{6} \int_{\mathbb{R}^{3}} Q(x)\left(u^{+}\right)^{6} d x-\int_{\mathbb{R}^{3}} F(x, t u) d x \\
& \leq \frac{t^{2}}{2}\|u\|^{2}+\frac{t^{4}}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\frac{t^{6}}{6} \int_{\Theta} Q(x)\left(u^{+}\right)^{6} d x .
\end{aligned}
$$

Hence, it is easy to see that $g(t) \rightarrow-\infty$ as $t \rightarrow+\infty$.
Therefore, there exists a t_{u} such that $I\left(t_{u} u\right)=\max _{t>0} I(t u)$ and $t_{u} u \in \mathcal{N}$. Suppose that there exist $t_{1}>t_{2}>0$ such that $t_{1} u, t_{2} u \in \mathcal{N}$. Then, we have that

$$
\begin{aligned}
& \frac{1}{t_{1}^{2}}\|u\|^{2}+\int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x=t_{1}^{2} \int_{\Theta} Q(x)\left(u^{+}\right)^{6} d x+\int_{\Theta} \frac{f\left(x, t_{1} u\right) u}{t_{1}^{3}} d x \\
& \frac{1}{t_{2}^{2}}\|u\|^{2}+\int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x=t_{2}^{2} \int_{\Theta} Q(x)\left(u^{+}\right)^{6} d x+\int_{\Theta} \frac{f\left(x, t_{2} u\right) u}{t_{2}^{3}} d x
\end{aligned}
$$

Therefore, one has that

$$
\left(\frac{1}{t_{1}^{2}}-\frac{1}{t_{2}^{2}}\right)\|u\|^{2}=\left(t_{1}^{2}-t_{2}^{2}\right) \int_{\Theta} Q(x)\left(u^{+}\right)^{6} d x+\int_{\Theta}\left(\frac{f\left(x, t_{1} u\right)}{\left(t_{1} u\right)^{3}}-\frac{f\left(x, t_{2} u\right)}{\left(t_{2} u\right)^{3}}\right) u^{4} d x
$$

which is absurd according to $\left(f_{3}\right)$ and $t_{1}>t_{2}>0$.
Remark 2.9. As in [31,43], we have

$$
c=\inf _{u \in \mathcal{N}} I(u)=\inf _{u \in F} \max _{t>0} I(t u)=\inf _{\gamma(t) \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))>0
$$

where

$$
\Gamma:=\{\gamma \in C([0,1], E): \gamma(0)=0, I(\gamma(1))<0\}
$$

Lemma 2.10. Suppose that $(V),(K),(Q)$ and $\left(f_{1}\right)-\left(f_{3}\right)$ hold. Then there exists a bounded sequence $\left\{u_{n}\right\} \in E$ such that

$$
I\left(u_{n}\right) \rightarrow c \text { and }\left\|I^{\prime}\left(u_{n}\right)\right\|_{E^{-1}} \rightarrow 0
$$

Proof. From the proof of Lemma 2.8, it is easy to see that I satisfies the mountain pass geometry. By [33], there exists an $\left\{u_{n}\right\}$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left(1+\left\|u_{n}\right\|\right)\left\|I^{\prime}\left(u_{n}\right)\right\|_{E^{-1}} \rightarrow 0$, so we have $\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle=o(1)$. By $\left(f_{3}\right)$, we can obtain

$$
\frac{1}{4} f(x, s) s \geq F(x, s) \quad \text { for any }(x, s) \in\left(\mathbb{R}^{3}, \mathbb{R}\right)
$$

Then, we have that

$$
\begin{aligned}
c & =I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\frac{1}{4}\left\|u_{n}\right\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{6} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x \\
& \geq \frac{1}{4}\left\|u_{n}\right\|^{2} .
\end{aligned}
$$

Therefor, $\left\{u_{n}\right\}$ is bounded and the proof is finished.

The proof of next lemma similar to that of $[24,26]$. For easy reading, we give the proof.
Lemma 2.11. Suppose that $(V),(K),(Q)$ and $\left(f_{1}\right)-\left(f_{3}\right)$ hold. If $u \in \mathcal{N}$ and $I(u)=c, u$ is a solution of Eq. (2.2).

Proof. Suppose by contradiction u is not a solution. Then there exists $\varphi \in E$ such that

$$
\left\langle I^{\prime}(u), \varphi\right\rangle<-1 .
$$

Choose $\varepsilon \in(0,1)$ small enough such that for all $|t-1| \leq 1$ and $|\sigma| \leq \varepsilon$,

$$
\left\langle I^{\prime}(t u+\sigma \varphi), \varphi\right\rangle \leq-\frac{1}{2} .
$$

We define a smooth cut-off function $\zeta(t) \in[0,1]$, which satisfies $\zeta(t)=1$ for $|t-1| \leq \frac{\varepsilon}{2}$ and $\zeta(t)=0$ for $|t-1| \geq \varepsilon$. For $t>0$ we introduce a curve $\gamma(t)=t u$ for $|t-1| \geq \varepsilon$ and $\gamma(t)=t u+\varepsilon \zeta(t) \varphi$ for $|t-1|<\varepsilon$. Obviously, $\gamma(t)$ is a continuous curve and when ε small enough, $\|\gamma(t)\|>0$ for $|t-1|<\varepsilon$. Next we prove $I(\gamma(t))<c$, for $t>0$. If $|t-1| \geq \varepsilon$, $I(\gamma(t))=I(t u)<I(u)=c$. If $|t-1|<\varepsilon$, we define $A: \sigma \mapsto I(t u+\sigma \zeta(t) \varphi)$. Obviously, $A \in C^{1}$. By the mean value therm, there exists $\bar{\sigma} \in(0, \varepsilon)$ such that

$$
I(t u+\varepsilon \zeta(t) \varphi)=I(t u)+\left\langle I^{\prime}(t u+\bar{\sigma} \zeta(t) \varphi), \varepsilon \zeta(t) \varphi\right\rangle \leq I(t u)-\frac{\varepsilon}{2} \zeta(t)<c .
$$

Define $v(u):=\left\langle I^{\prime}(u), u\right\rangle$, then $v(\gamma(1-\varepsilon))=v((1-\varepsilon) u)>0$ and $v(\gamma(1+\varepsilon))=v((1+\varepsilon) u)<$ 0 . By the continuity of $t \rightarrow v(\gamma(t))$, there exists $t^{\prime} \in(1-\varepsilon, 1+\varepsilon)$ such that $v\left(\gamma\left(t^{\prime}\right)\right)=0$. Thus $\gamma\left(t^{\prime}\right) \in \mathcal{N}$ and $I\left(\gamma\left(t^{\prime}\right)\right)<c$, which is a contradiction.

Define

$$
\mathcal{N}_{p}=\left\{u \in F:\left\langle I_{p}^{\prime}(u), u\right\rangle=0\right\} \quad \text { and } \quad c_{p}=\inf _{u \in \mathcal{N}_{p}} I_{p}(u) .
$$

In fact, $c_{p}=\inf _{u \in F} \max _{t>0} I_{p}(t u)$.
Remark 2.12. For any $u \in F$, by Lemma 2.8, there exists $t_{u}>0$ such that $t_{u} u \in \mathcal{N}$ and then $I\left(t_{u} u\right) \geq c$. Using $V(x) \leq V_{p}(x), Q(x) \geq Q_{p}(x)$ and $F(x, s) \geq F_{p}(x, s)$, we have $c \leq I\left(t_{u} u\right) \leq$ $I_{p}\left(t_{u} u\right) \leq \max _{t>0} I_{p}(t u)$. Then we obtain $c \leq c_{p}$.

3 Estimates

In this section, we will estimate the least energy c, and the method comes from the celebrated paper [7].

Let

$$
S=\inf _{u \in D^{1,2}\left(\mathbb{R}^{3}\right) \backslash\{0\}} \frac{|\nabla u|_{2}^{2}}{|u|_{6}^{2}} .
$$

In fact, S is the best constant for the Sobolev embedding $D^{1,2}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{6}\left(\mathbb{R}^{3}\right)$.
Without loss of generality, we assume that $x_{0}=0$. For $\varepsilon>0$, the function $w_{\varepsilon}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
w_{\mathcal{\varepsilon}}(x)=\frac{3^{\frac{1}{4} \varepsilon^{\frac{1}{4}}}}{\left(\varepsilon+|x|^{2}\right)^{\frac{1}{2}}}
$$

is a family of functions on which S is attained. Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3},[0,1]\right)$ be a cut-off function satisfying $\varphi=1$, for $x \in B_{\frac{\rho}{2}}$ and $\varphi=0$, for $x \in \mathbb{R}^{3} \backslash B_{\rho}$, where $B_{\rho} \subset \Omega$. Define the test function by

$$
v_{\varepsilon}=\frac{u_{\varepsilon}}{\left(\int_{\mathbb{R}^{3}} Q(x) u_{\varepsilon}^{6} d x\right)^{\frac{1}{6}}},
$$

where $u_{\varepsilon}=\varphi w_{\varepsilon}$. Then one has

$$
\begin{gather*}
\int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x \leq|Q|_{\infty}^{-\frac{1}{3}} S+O\left(\varepsilon^{\frac{1}{2}}\right), \quad \text { as } \varepsilon \rightarrow 0^{+}, \tag{3.1}\\
\int_{\mathbb{R}^{3}}\left|v_{\varepsilon}\right|^{2} d x=O\left(\varepsilon^{\frac{1}{2}}\right), \quad \text { as } \varepsilon \rightarrow 0^{+}, \tag{3.2}\\
\int_{\mathbb{R}^{3}}\left|u_{\varepsilon}\right|^{6} d x=K_{1}+O\left(\varepsilon^{\frac{3}{2}}\right), \quad \text { as } \varepsilon \rightarrow 0^{+}, \text {where } K_{1} \text { is some positive constant, } \tag{3.3}\\
\int_{\mathbb{R}^{3}} Q(x) v_{\varepsilon}^{6} d x=1, \tag{3.4}\\
\int_{\mathbb{R}^{3}}\left|v_{\varepsilon}\right|^{\frac{12}{5}} d x=O\left(\varepsilon^{\frac{3}{5}}\right), \quad \text { as } \varepsilon \rightarrow 0^{+} . \tag{3.5}
\end{gather*}
$$

Lemma 3.1. Suppose $(V),(K),(Q)$ and $\left(f_{1}\right)-\left(f_{4}\right)$ are satisfied. Then $c<\frac{1}{3}|Q|_{\infty}^{-\frac{1}{2}} S^{\frac{3}{2}}$.
Proof. For $t>0$, define

$$
\begin{aligned}
g(t):= & I\left(t v_{\varepsilon}\right) \\
= & \frac{t^{2}}{2} \int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x+\frac{t^{2}}{2} \int_{\mathbb{R}^{3}} V(x) v_{\varepsilon}^{2} d x+\frac{t^{4}}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{v_{\varepsilon}} v_{\varepsilon}^{2} d x \\
& -\frac{t^{6}}{6} \int_{\mathbb{R}^{3}} Q(x) v_{\varepsilon}^{6} d x-\int_{\mathbb{R}^{3}} F\left(x, t v_{\varepsilon}\right) d x .
\end{aligned}
$$

By Lemma 2.8, there exists a unique $t_{\varepsilon}>0$ such that $g\left(t_{\varepsilon}\right)=\max _{t>0} g(t)$ and $g^{\prime}\left(t_{\varepsilon}\right)=0$. We claim that there exists C_{1}, C_{2} such that $C_{1} \leq t_{\varepsilon} \leq C_{2}$ for ε small enough. Indeed, if $t_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, one has $g\left(t_{\varepsilon}\right) \rightarrow 0$, which is a contradiction. If $t_{\varepsilon} \rightarrow+\infty$ as $\varepsilon \rightarrow+\infty$, one has $g\left(t_{\varepsilon}\right) \rightarrow-\infty$, which is a contradiction. Thus the claim holds. For $s>0$, define

$$
\psi(s):=\frac{s^{2}}{2} \int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x-\frac{s^{6}}{6} .
$$

Then there exists $s_{\varepsilon}:=\left(\int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x\right)^{\frac{1}{4}}$ such that

$$
\psi\left(s_{\varepsilon}\right)=\max _{s>0} \psi(s)=\frac{1}{3}\left(\int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x\right)^{\frac{3}{2}} .
$$

By (3.1) and the inequality $(a+b)^{\alpha} \leq a^{\alpha}+\alpha(a+b)^{\alpha-1} b, a>0, b>0, \alpha \geq 1$, we have

$$
\begin{equation*}
\psi\left(s_{\varepsilon}\right) \leq \frac{1}{3}|Q|_{\infty}^{-\frac{1}{2}} S^{\frac{3}{2}}+O\left(\varepsilon^{\frac{1}{2}}\right) \tag{3.6}
\end{equation*}
$$

We claim

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\int_{\mathbb{R}^{3}} F\left(x, t_{\varepsilon} v_{\varepsilon}\right) d x}{O\left(\varepsilon^{\frac{1}{2}}\right)}=+\infty . \tag{3.7}
\end{equation*}
$$

By (3.3), for ε small enough, one has $\left|u_{\varepsilon}\right|_{6} \leq 2 K_{1}$ and then for $|x|<\varepsilon^{\frac{1}{2}}<\frac{\rho}{2}$,

$$
t_{\varepsilon} v_{\varepsilon} \geq \frac{C_{1}}{2|Q|_{\infty} K_{1}} u_{\varepsilon}=\frac{C_{1}}{2|Q|_{\infty} K_{1}} w_{\varepsilon}=\frac{C_{1}}{2|Q|_{\infty} K_{1}} \frac{3^{\frac{1}{4}} \varepsilon^{\frac{1}{4}}}{\left(\varepsilon+|x|^{2}\right)^{\frac{1}{2}}} \geq C \varepsilon^{-\frac{1}{4}} .
$$

It follows from $\left(f_{4}\right)$ that for any $R>0$, there exists $A_{R}>0$ such that for all $(x, s) \in \Omega \times$ $\left[A_{R},+\infty\right)$,

$$
F(x, s) \geq R s^{4} .
$$

Thus for ε small enough, one has

$$
\int_{\left\{x:|x|<\varepsilon^{\frac{1}{2}}\right\}} F\left(x, t_{\varepsilon} v_{\varepsilon}\right) d x \geq C R \int_{\left\{x:|x|<\varepsilon^{\frac{1}{2}}\right\}} \varepsilon^{-1} d x=C R \varepsilon^{\frac{1}{2}} .
$$

Combining with $F(x, s) \geq 0$ and the arbitrariness of R, we can obtain the claim. By (2.3) and (3.5), we get

$$
\left|\int_{\mathbb{R}^{3}} K(x) \phi_{v_{\varepsilon}} v_{\varepsilon}^{2} d x\right| \leq C_{0}\left|v_{\varepsilon}\right|_{\frac{12}{5}}^{4} \leq C_{2} \varepsilon .
$$

Hence for ε small enough, by (3.2), (3.6) and (3.7), we have

$$
\begin{aligned}
c \leq & \max _{t>0} I\left(t v_{\varepsilon}\right) \\
= & \frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x+\frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{3}} V(x) v_{\varepsilon}^{2} d x \\
& +\frac{t_{\varepsilon}^{4}}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{v_{\varepsilon}} v_{\varepsilon}^{2} d x-\frac{t_{\varepsilon}^{6}}{6} \int_{\mathbb{R}^{3}} Q(x) v_{\varepsilon}^{6} d x-\int_{\mathbb{R}^{3}} F\left(x, t_{\varepsilon} v_{\varepsilon}\right) d x \\
\leq & \frac{1}{3}|Q|_{\infty}^{-\frac{1}{2}} S^{\frac{3}{2}}+O(\varepsilon)+O\left(\varepsilon^{\frac{1}{2}}\right)-\int_{\mathbb{R}^{3}} F\left(x, t_{\varepsilon} v_{\varepsilon}\right) d x \\
\leq & \frac{1}{3}|Q|_{\infty}^{-\frac{1}{2}} S^{\frac{3}{2}}+O\left(\varepsilon^{\frac{1}{2}}\right)-\int_{\mathbb{R}^{3}} F\left(x, t_{\varepsilon} v_{\varepsilon}\right) d x \\
< & \frac{1}{3}|Q|_{\infty}^{-\frac{1}{2}} S^{\frac{3}{2}} .
\end{aligned}
$$

4 The proof of main result

The proof of Theorem 1.1. From Lemma 2.10, there exists a bounded sequence $\left\{u_{n}\right\} \in E$ satisfying $I\left(u_{n}\right) \rightarrow c$ and $\left\|I^{\prime}\left(u_{n}\right)\right\|_{E^{-1}} \rightarrow 0$. Then there exists $u \in E$ such that, up to a subsequence,
$u_{n} \rightharpoonup u$ in $E, u_{n} \rightarrow u$ in $L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$ and $u_{n}(x) \rightarrow u(x)$ a.e. in \mathbb{R}^{3}. By Lemma 2.4, for any $v \in E$, we have

$$
0=\left\langle I^{\prime}\left(u_{n}\right), v\right\rangle+o(1)=\left\langle I^{\prime}(u), v\right\rangle
$$

that is u is a solution of Eq. (2.2). Since

$$
0=\left\langle I^{\prime}(u), u^{-}\right\rangle=\left\|u^{-}\right\|+\int_{\mathbb{R}^{3}} K(x) \phi_{u}\left|u^{-}\right|^{2} d x \geq\left\|u^{-}\right\|
$$

then $u \geq 0$.
We next distinguish the following two case to prove Eq. (2.2) has a nonnegative ground state solution.
Case 1. Suppose that $u \neq 0$. Then $I(u) \geq c$. By the Fatou lemma, we obtain

$$
\begin{aligned}
c & =\liminf _{n \rightarrow \infty}\left(I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right) \\
& =\liminf _{n \rightarrow \infty}\left(\frac{1}{4}\left\|u_{n}\right\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{6} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x\right) \\
& \geq \frac{1}{4}\|u\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q(x)\left(u^{+}\right)^{6} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f(x, u) u-F(x, u)\right) d x \\
& =I(u)-\frac{1}{4}\left\langle I^{\prime}(u), u\right\rangle \\
& =I(u)
\end{aligned}
$$

Therefore, $I(u)=c$ and $I^{\prime}(u)=0$.
Case 2. Suppose that $u=0$. Define

$$
\beta:=\limsup \sup _{z \rightarrow \mathbb{R}^{3}} \int_{B_{1}(z)} u_{n}^{2} d x
$$

If $\beta=0$, by using the Lions lemma [22,23], we have $u_{n} \rightarrow 0$ in $L^{q}\left(\mathbb{R}^{3}\right)$ for all $q \in(2,6)$. By the condition of $\left(f_{1}\right)$ and $\left(f_{2}\right), \forall \delta>0$ there exists a $C_{\delta}>0$ such that $f(x, u) u \leq \delta\left(|u|^{2}+|u|^{6}\right)+$ $C_{\delta}|u|^{\alpha}$ and $F(x, u) \leq \frac{\delta}{2}|u|^{2}+\frac{\delta}{6}|u|^{6}+C_{\delta}|u|^{\alpha}$ for any $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}$ and $\alpha \in(2,6)$. So

$$
\int_{\mathbb{R}^{3}} f\left(x, u_{n}\right) u_{n} d x \rightarrow 0, \quad \int_{\mathbb{R}^{3}} F\left(x, u_{n}\right) d x \rightarrow 0
$$

Then

$$
\begin{align*}
c= & \frac{1}{2}\left\|u_{n}\right\|^{2}+\frac{1}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}} u_{n}^{2} d x-\frac{1}{6} \int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{6} d x+o_{n}(1) \tag{4.1}\\
& \left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}} u_{n}^{2} d x=\int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{6} d x+o_{n}(1) \tag{4.2}
\end{align*}
$$

By (4.2), we have

$$
\begin{equation*}
\left\|u_{n}\right\|^{2} \leq|Q|_{\infty}\left|u_{n}\right|_{6}^{6}+o_{n}(1) \leq|Q|_{\infty} S^{-3}\left\|u_{n}\right\|^{6}+o_{n}(1) \tag{4.3}
\end{equation*}
$$

If (i) holds, by (2.3), one has $\int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}} u_{n}^{2} d x \rightarrow 0$. It follows from (4.1) and (4.2) that $c=0$, which is a contradiction with $c>0$.

If (ii) holds, by (4.2) we have

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{6} d x \geq|Q|_{\infty}^{-\frac{1}{2}} S^{\frac{3}{2}}+o_{n}(1) \tag{4.4}
\end{equation*}
$$

From (4.1) and (4.2) we easily conclude that

$$
c=\frac{1}{4}\left\|u_{n}\right\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{6} d x+o_{n}(1) .
$$

 Thus $\beta>0$. Up to a subsequence, there exist $R>0$ and $\left\{z_{n}\right\} \subset \mathbb{Z}^{3}$ such that

$$
\int_{B_{R}} u_{n}\left(x+z_{n}\right)^{2} d x=\int_{B_{R}\left(z_{n}\right)} u_{n}^{2} d x>\frac{\beta}{2} .
$$

Define $w_{n}:=u_{n}\left(x+z_{n}\right)$. Thus there exists $w \in E$ satisfying, up to a subsequence, $w_{n} \rightharpoonup w$ in $E, w_{n} \rightarrow w$ in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3}\right)$ and $w_{n}(x) \rightarrow w(x)$ a.e. in \mathbb{R}^{3}. Obviously, $w \neq 0$. If $\left\{z_{n}\right\}$ is bounded, there exists R^{\prime} such that

$$
\int_{B_{R^{\prime}}} u_{n}^{2} d x \geq \int_{B_{R}\left(z_{n}\right)} u_{n}^{2} d x \geq \frac{\beta}{2},
$$

which contradicts with $u_{n} \rightarrow 0$ in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3}\right)$. Thus $\left\{z_{n}\right\}$ is unbounded. Up to a subsequence, we have $z_{n} \rightarrow \infty$. By Lemma 2.6 and Lemma 2.7, then

$$
\begin{aligned}
0= & \left\langle I^{\prime}\left(u_{n}, \varphi\left(x-z_{n}\right)\right)\right\rangle+o(1) \\
= & \int_{\mathbb{R}^{3}}\left(\nabla u_{n} \cdot \nabla \varphi\left(x-z_{n}\right)+V(x) u_{n} \varphi\left(x-z_{n}\right)\right) d x+\int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}} u_{n} \varphi\left(x-z_{n}\right) d x \\
& -\int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{5} \varphi\left(x-z_{n}\right) d x-\int_{\mathbb{R}^{3}} f\left(x, u_{n}\right) \varphi\left(x-z_{n}\right) d x+o(1) \\
= & \int_{\mathbb{R}^{3}}\left(\nabla u_{n} \cdot \nabla \varphi\left(x-z_{n}\right)+V_{p}(x) u_{n} \varphi\left(x-z_{n}\right)\right) d x+\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u_{n}} u_{n} \varphi\left(x-z_{n}\right) d x \\
& -\int_{\mathbb{R}^{3}} Q_{p}(x)\left(u_{n}^{+}\right)^{5} \varphi\left(x-z_{n}\right) d x-\int_{\mathbb{R}^{3}} f_{p}\left(x, u_{n}\right) \varphi\left(x-z_{n}\right) d x+o(1) \\
= & \int_{\mathbb{R}^{3}}\left(\nabla w_{n} \cdot \nabla \varphi+V_{p}(x) w_{n} \varphi\right) d x+\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{w_{n}} w_{n} \varphi d x \\
& -\int_{\mathbb{R}^{3}} Q_{p}(x)\left(w_{n}^{+}\right)^{5} \varphi d x-\int_{\mathbb{R}^{3}} f_{p}\left(x, w_{n}\right) \varphi d x+o(1) \\
= & \left\langle I_{p}^{\prime}(w), \varphi\right\rangle,
\end{aligned}
$$

that is w is a solution of Eq. (2.2). Obviously, $w \geq 0$. By Lemma 2.5, (f_{5}) and Fatou lemma, we have

$$
\begin{aligned}
c & =I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle+o(1) \\
& =\frac{1}{4}\left\|u_{n}\right\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q(x)\left(u_{n}^{+}\right)^{6} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x+o(1) \\
& \geq \frac{1}{4}\left\|u_{n}\right\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q_{p}(x)\left(u_{n}^{+}\right)^{6} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f_{p}\left(x, u_{n}\right) u_{n}-F_{p}\left(x, u_{n}\right)\right) d x+o(1) \\
& =\frac{1}{4}\left\|w_{n}\right\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q_{p}(x)\left(w_{n}^{+}\right)^{6} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f_{p}\left(x, w_{n}\right) w_{n}-F_{p}\left(x, w_{n}\right)\right) d x+o(1) \\
& \geq \frac{1}{4}\|w\|^{2}+\frac{1}{12} \int_{\mathbb{R}^{3}} Q_{p}(x)\left(w^{+}\right)^{6} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f_{p}(x, w) w-F_{p}(x, w)\right) d x+o(1) \\
& =I_{p}(w)-\frac{1}{4}\left\langle I_{p}^{\prime}(w), w\right\rangle \\
& =I_{p}(w) \\
& \geq c_{p} .
\end{aligned}
$$

Using Remark 2.12, $I_{p}(w)=c_{p}=c$. By the properties of c and \mathcal{N}, there exits $t_{w}>0$ such that $t_{w} w \in \mathcal{N}$. Thus, we obtain $c \leq I\left(t_{w} w\right) \leq I_{p}\left(t_{w} w\right) \leq I_{p}(w)=c$. So c is achieved by $t_{w} w$. By Lemma 2.11, we have $I^{\prime}\left(t_{w} w\right)=0$.

In a word, we obtain that Eq. (2.2) has a nonnegative ground state solution $u \in E$.

Acknowledgements

The research was supported by the Natural Science Foundation of China (11561043).

References

[1] C. O. Alves, M. A. S. Souto, S. H. M. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl. 377(2011), No. 2, 584-592. MR2769159; https://doi.org/10.1016/j.jmaa.2010.11.031
[2] A. Ambrosetti, M. Badiale, S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 140(1997), No. 3, 285-300. MR1486895; https: //doi. org/10.1007/s002050050067
[3] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson equation, Commun. Contemp. Math. 10(2008), No. 3, 391-404. MR2417922; https://doi.org/10. 1142/S021919970800282X
[4] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear SchrödingerMaxwell equations, J. Math. Anal. Appl. 345(2008), No. 1, 90-108. MR2422637; https: //doi.org/10.1016/j.jmaa.2008.03.057
[5] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11(1998), No. 2, 283-293. MR1659454; https://doi.org/ 10.12775/TMNA. 1998.019
[6] H. Berestycki, P. L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82(1983), No. 4, 347-375. MR0695536; https: //doi.org/10.1007/BF00250555
[7] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Commun. Pure Appl. Math. 36(1983), No. 4, 437-477. MR0709644; https://doi.org/10.1002/cpa.3160360405
[8] G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations 248(2010), No. 3, 521-543. MR2557904; https ://doi. org/ 10.1016/j.jde.2009.06.017
[9] T. D'Aprile, D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud. 4(2004), No. 3, 307-322. MR2079817; https://doi.org/ 10.1515/ans-2004-0305
[10] T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134(2004), No. 5, 893906. MR2099569; https://doi.org/10.1017/S030821050000353X
[11] X. He, W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys. 53(2012), No. 2, 023702, 19 pp. MR2920489; https://doi.org/10.1063/1.3683156
[12] Y. He, L. Lu, W. Shuai, Concentrating ground-state solutions for a class of SchrödingerPoisson equations in \mathbb{R}^{3} involving critical Sobolev exponents, Commun. Pure Appl. Anal. 15(2016), No. 1, 103-125. MR3437536; https://doi.org/10.3934/cpaa.2016.15.103
[13] L. R. Huang, E. M. Rocha, J. Q. Chen, Two positive solutions of a class of SchrödingerPoisson system with indefinite nonlinearity, J. Differential Equations 255(2013), No. 8, 24632483. MR3082470; https://doi.org/10.1016/j.jde.2013.06.022
[14] W. Huang, X. H. Tang, Ground-state solutions for asymptotically cubic SchrödingerMaxwell equations, Mediterr. J. Math. 13(2016), No. 5, 3469-3481. MR3554320; https: //doi.org/10.1007/s00009-016-0697-5
[15] Y. Jiang, H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251(2011), No. 3, 582-608. MR2802025; https://doi.org/10.1016/j.jde. 2011.05.006
[16] G. Li, S. Peng, C. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys. 52(2011), No. 5, 053505, 19 pp. MR2839086; https://doi.org/10. 1063/1. 3585657
[17] G. Li, S. Peng, S. Yan, Infinitely many positive solutions for the nonlinear SchrödingerPoisson system, Commun. Contemp. Math. 12(2010), No. 6, 1069-1092. MR2748286; https : //doi.org/10.1142/S0219199710004068
[18] G. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math. 4(2002), No. 4, 763-776. MR1938493; https ://doi . org/10. 1142/S0219199702000853
[19] X. Y. Lin, X. H. Tang, An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comp. Math. Appl. 70(2015), No. 4, 726-736. MR3372054; https://doi.org/10.1016/j.camwa.2015.06.013
[20] Z. Liu, S. Guo, On ground state solutions for the Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl. 412(2014), No. 1, 435-448. MR3145812; https://doi. org/10.1016/j.jmaa.2013.10.066
[21] H. F. Lins, E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal. 71(2009), No. 7-8, 2890-2905. MR2532816; https://doi. org/10.1016/j.na.2009.01.171
[22] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1(1984), No. 2, 109-145. MR0778970
[23] P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1(1984), No. 4, 223-283. MR0778974
[24] J. Liv, J. Liao, C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comp. Math. Appl. 71(2016), No. 4, 965-976. MR3461272; https://doi.org/10.1016/j.camwa.2016.01.004
[25] J. Liu, J. Liao, C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations with critical exponent, Comp. Math. Appl. 72(2016), No. 7, 1851-1864. MR3547688; https://doi.org/10.1016/j.camwa.2016.08.010
[26] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Part. Diff. Eq. 29(2004), No. 5-6, 879-901. MR2059151; https: //doi.org/10.1081/PDE-120037335
[27] S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal. 73(2010), No. 3, 788-795. MR2653749; https://doi.org/10.1016/j.na. 2010. 04.016
[28] Z. Liu, S. Guo, Y. Fang, Multiple semiclassical states for coupled Schrödinger-Poisson equations with critical exponential growth, J. Math. Phys. 56(2015), No. 4, 041505. MR3390939; https://doi.org/10.1063/1.4919543
[29] R. de Marchi, Schrödinger equations with asymptotically periodic terms, Proc. Roy. Soc. Edinburgh Sect. A 145(2015), No. 4, 745-757. MR3371574; https : //doi. org/10.1017/ S0308210515000104
[30] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathematical Society, 1986. MR0845785; https://doi.org/10.1090/cbms/065
[31] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43(1992), No. 2, 270-291. MR1162728; https://doi.org/10.1007/BF00946631
[32] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237(2006), No. 2, 655-674. MR2230354; https://doi.org/10.1016/j.jfa. 2006.04.00
[33] M. Schechter, A variation of the mountain pass lemma and applications, J. Lond. Math. Soc. (2) 44(1991), No. 3, 491-502. MR1149010; https://doi.org/10.1112/jlms/s2-44.3. 491
[34] W. Shuai, Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in \mathbb{R}^{3}, Z. Angew. Math. Phys. 66(2015), No. 6, 3267-3282. MR3428464; https://doi.org/10.1007/s00033-015-0571-
[35] EAB. Silva, GF.Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calculus Var. Partial Differ. Equ. 39(2010), No.1-2, 1-33. MR2659677; https : //doi.org/10.1007/s00526-009-0299-1
[36] E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal. 72(2010), No. 6, 2935-2949. MR2580150; https: //doi.org/10.1016/j.na.2009.11.037
[37] J. Sun, S. Ma, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations 260(2016), No. 3, 2119-2149. MR3427661; https://doi.org/10.1016/j.jde.2015.09.057
[38] J. T. Sun, H. B. Chen, J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations 252(2012), No. 5, 3365-3380. MR2876656; https://doi.org/10.1016/j.jde.2011.12.007
[39] J. T. Sun, T. F. Wu, Z. S. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differential Equations 260(2016), No. 1, 586-627. MR3411683; https://doi.org/10.1016/j.jde.2015.09.002
[40] X. H. Tang, Non-Nehari manifold method for asymptotically linear Schrödinger equation, J. Aust. Math. Soc. 98(2015), No. 1, 104-116. MR3294310; https://doi .org/10.1017/ S144678871400041X
[41] X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math. 58(2015), No. 4, 715-728. MR3319307; https://doi.org/10.1007/ s11425-014-4957-1
[42] J. Wang, J. Xu, F. Zhang, X. Chen, Existence of multi-bump solutions for a semilinear Schrödinger-Poisson system, Nonlinearity 26(2013), No. 5, 1377-1399. MR3056130; https : //doi.org/10.1088/0951-7715/26/5/1377
[43] M. Willem, Minimax theorems, Birkhäuser, Boston, 1996. MR1400007; https ://doi .org/ 10.1007/978-1-4612-4146-1
[44] M. Yang, F. Zhao, Y. Ding, On the existence of solutions for Schrödinger-Maxwell systems in \mathbb{R}^{3}, Rocky Mountain J. Math. 42(2012), No. 5, 1655-1674. MR3001822; https: //doi.org/10.1216/RMJ-2012-42-5-1655
[45] H. Zhang, J. Xu, F. Zhang, Positive ground states for asymptotically periodic Schrödinger-Poisson systems, Math. Meth. Appl. Sci. 36(2013), No. 4, 427-439. MR3032356; https://doi.org/10.1002/mma. 2604
[46] H. Zhang, J. Xu, F. Zhang, M. Du, Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth, Cent. Eur. J. Math. 12(2014), No. 10, 1484-1499. MR3224013; https://doi.org/10.2478/s11533-014-0426-x
[47] L. Zhao, F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal. 70(2009), No. 6, 2150-2164. MR2498302; https://doi.org/10. 1016/j.na.2008.02.11

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email:wangdb96@163.com

