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Abstract. In a Banach space, assuming that a linear nonautonomous differential equa-
tion v′ = A(t)v admits a very general type of trichotomy, we establish conditions for
the existence of global Lipschitz invariant center manifold of the perturbed equation
v′ = A(t)v + f (t, v). Our results not only improve results already existing in the litera-
ture, as well include new cases.
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1 Introduction

Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators
acting on X. In this paper we are going to study the existence of global Lipschitz invariant
center manifolds for differential equations of the type

v′ = A(t)v + f (t, v),

where A : R → B(X) is continuous, the perturbation f : R× X → X is a continuous function
such that f (t, 0) = 0 for every t ∈ R, the function ft : X → X given by ft(v) = f (t, v) is
Lipschitz for every t ∈ R and the linear differential equation

v′ = A(t)v

admits a very general type of trichotomy.
Center manifolds are a powerful tool in the study of stability and in the study of bifur-

cations because in many cases allow the reduction of the dimension of the state space (see
Carr [9], Henry [19], Guckenheimer and Holmes [16], Hale and Koçak [17] and Haragus and
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Iooss [18]). The first results on the existence of center manifolds were obtained by Pliss [27]
in 1964 and by Kelley [20, 21] in 1967. After that many authors studied the problem and
proved results about center manifolds. A good expository paper for the case of autonomous
differential equations in finite dimension was written by Vanderbauwhede [31] (see also Van-
derbauwhede and Gils [32]) and for the case of autonomous differential equations in infi-
nite dimension we recommend Vanderbauwhede and Iooss [33]. For a good introduction to
nonautonomous invariant manifolds, and in particular to nonautonomous center manifolds,
we suggest the paper by Aulbach and Wanner [2]. For more details in the finite dimensional
case see Chow, Liu and Yi [11, 12] and for the infinite dimensional case see Sijbrand [30],
Mielke [24], Chow and Lu [13, 14] and Chicone and Latushkin [10].

For nonautonomous differential equations the concept of exponential trichotomy is an
important tool to obtain center manifolds theorems. This notion goes back to Sacker and
Sell [29], Aulbach [1] and Elaydi and Hajek [15] and is inspired by the notion of exponential
dichotomy that can be traced back to the work of Perron in [25, 26]. The definition of expo-
nential trichotomy given by Sacker and Sell [29] is inspired in the autonomous situation of a
matrix having (semisimple) eigenvalues on the imaginary axis and thus the solutions in the
central direction are only bounded. On the other hand, the exponential trichotomy notion of
Elaydi and Hayek [15] is intrinsically nonautonomous: the solutions in the central direction
decay exponentially in both time directions. The definition of trichotomy given in this pa-
per includes as a particular case both situations. Typical center manifold theorems are based
on Sacker–Sell trichotomies. The persistence of Elaydi–Hayek trichotomies under nonlinear
perturbations results in (strongly) central manifolds consisting of solutions decaying to zero
in both time directions. An elegant and short proof of this result using the implicit function
theorem can be found in Pötzsche [28, Proposition 4.11].

However, as in the case of exponential dichotomies, the notion of exponential trichotomy
is very demanding and several generalizations have appeared in the literature. Essentially we
can find two ways of generalization: on one hand replace the exponential growth rates by
nonexponential growth rates and on the other hand consider exponential trichotomies that
also depend on the initial time and hence are nonuniform. Trichotomies with nonexponential
growth rates have been introduced by Fenner and Pinto in [22] where the authors study the
so called (h, k)-trichotomies and the nonuniform exponential trichotomies have been consider
by Barreira and Valls in [3, 4].

Hence, it is natural to consider trichotomies that are both nonuniform and nonexponen-
tial. This was done by Barreira and Valls in [5, 6] where have been introduced the so-called
ρ-nonuniform exponential trichotomies, but these trichotomies do not include as a particular
case the (h, k)-trichotomies of Fenner and Pinto [22].

In this paper we are going to consider a very general type of trichotomies that includes
as particular cases all the types of trichotomies mentioned above, as well new types of tri-
chotomies. We only consider that the linear equation admits an invariant splitting in three
invariant subspaces and the norms of the linear evolution operator composed with the three
different projections are bounded by general functions that only depend on the initial and
on the final time (see (D1), (D2) and (D3)). Despite of that we were able to obtain invari-
ant manifolds provided that the Lipschitz constants of the perturbation are sufficiently small.
Note that for dichotomies this has already been done in [7] and in [8] for differential and for
difference equations, respectively.

The proof of the main theorem of this paper is based in the so-called classical Lyapunov–
Perron method (see [23, 25, 26]) that consists in the following:
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− the variation of constants formula that allows to relate the solutions of the linear equation
with the solutions of the perturbed equation;

− the construction of a suitable space of functions that is a complete metric space;

− the construction of a suitable contraction on the complete metric space mentioned above;

− the application of Banach’s fixed point theorem to the mentioned contraction gives a func-
tion that is the only fixed point of the contraction and whose graph is the invariant mani-
fold.

This method was used by many authors, namely [4, 5, 7, 8]. However, in this paper we have
introduced a novelty in the application of the method. In [4,5,7,8] are used two applications of
the Banach’s fixed point theorem, the first one to obtain the solutions of the perturbed equa-
tion along the stable/center direction and the other to obtain the solutions of the perturbed
equation in the other directions. Here, with only one application of the Banach’s fixed point
theorem, we obtain the solutions of the perturbed equation in all directions.

As particular cases of our main result we improve the results obtained by Barreira and
Valls [4,5] for the so-called ρ-nonuniform exponential trichotomies and nonuniform exponen-
tial trichotomies, respectively. Moreover, we also obtain as particular cases new results for
nonuniform (a, b, c, d)-trichotomies and for µ-nonuniform polynomial trichotomies, concepts
that have been introduced for the first time in this paper.

Another possibility to prove the main result of this paper is to obtain the center manifold
as the intersection of a center-stable and a center-unstable manifold. Using the results in [7] it
is possible to construct a stable manifold over Q+

s + Ps and in an analogous way an appropri-
ate unstable manifold over Q−s + Ps. The intersection of these two invariant manifolds gives
the desired center manifold. This method has the advantage that the center manifold is con-
structed by a geometrical argument (intersection of graphs in the state space), as opposed to a
functional analytical method. However, with this method it is not clear for the authors of this
paper how to obtain for the solutions on the center manifold the same decay that is imposed
to the solutions of the linear differential equation on the central direction (condition (D1)).
For that reason we have used the Lyapunov–Perron method.

The structure of the paper is as follows. In Section 2 we introduce the notation and pre-
liminaries. The main theorem of the paper is stated in Section 3 and in Section 4 we apply
our main result to particular cases of trichotomies. Finally, in Section 5, we prove the main
theorem.

2 Notation and preliminaries

Let X be a Banach space, let B(X) be the Banach algebra of all bounded linear operators acting
on X and let A : R→ B(X) be a continuous map. Consider the linear differential equation

v′ = A(t)v, v(s) = vs (2.1)

with s ∈ R and vs ∈ X and denote by Tt,s the linear evolution operator associated to equa-
tion (2.1), i.e.,

v(t) = Tt,sv(s)

for every t, s ∈ R.
We say that (2.1) admits an invariant splitting if, for every t ∈ R, there exist bounded

projections Pt, Q+
t , Q−t ∈ B(X) such that
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(S1) Pt + Q+
t + Q−t = Id for every t ∈ R;

(S2) PtQ+
t = 0 for every t ∈ R;

(S3) PtTt,s = Tt,sPs for every t, s ∈ R;

(S4) Q+
t Tt,s = Tt,sQ+

s for every t, s ∈ R.

From (S1) and (S2) we have

PtQ−t = Q+
t Pt = Q−t Pt = Q+

t Q−t = Q−t Q+
t = 0 for every t ∈ R

and from (S1), (S3) and (S4) it follows immediately that

Q−t Tt,s = Tt,sQ−s for every t, s ∈ R.

For each t ∈ R, we define the linear subspaces Et = Pt(X), F+
t = Q+

t (X) and F−t = Q−t (X),
and, as usual, we identify Et × F+

t × F−t and Et ⊕ F+
t ⊕ F−t = X as the same vector space.

Given functions α : R2 → R+, β+ : R2
> → R+ and β− : R2

6 → R+, where

R2
> =

{
(t, s) ∈ R2 : t > s

}
and R2

6 =
{
(t, s) ∈ R2 : t 6 s

}
,

and denoting α(t, s), β+(t, s) and β−(t, s) by αt,s, β+
t,s and β−t,s, respectively, we say that equa-

tion (2.1) admits a generalized trichotomy with bounds α = (αt,s)(t,s)∈R2 , β+ =
(

β+
t,s
)
(t,s)∈R2

>
and

β− =
(

β−t,s
)
(t,s)∈R2

6
, or simply with bounds αt,s, β+

t,s and β−t,s, if it admits an invariant splitting

such that

(D1) ‖Tt,sPs‖ 6 αt,s for every (t, s) ∈ R2;

(D2) ‖Tt,sQ+
s ‖ 6 β+

t,s for every (t, s) ∈ R2
>;

(D3) ‖Tt,sQ−s ‖ 6 β−t,s for every (t, s) ∈ R2
6.

Example 2.1. Let
a, b, c, d : R→ ]0,+∞[

be C1 functions and let
ea, eb, ec, ed : R→ [1,+∞[

be C1 functions in R \ {0} and with derivatives from the left and from the right at t = 0. In
R4, equipped with the maximum norm, consider the differential equation

u′ =
[
−a′(t)

a(t)
+ e∗a(t)

]
u,

v′ =
[
c′(t)
c(t)

+ e∗c (t)
]

v,

w′ =
[
−d′(t)

d(t)
+ e∗d(t)

]
w,

z′ =
[
b′(t)
b(t)

+ e∗b(t)
]

z.

(2.2)
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where

e∗i (t) =


e′i(t)
ei(t)

cos t− 1
2

− ln(ei(t))
sin t

2
if t 6= 0,

0 if t = 0,

for i = a, b, c, d. The evolution operator of this equation is given by

Tt,s(u, v, w, z) =
(
Ut,s(u, v), V+

t,sw, V−t,sz
)

where Ut,s : R2 → R2 is defined by

Ut,s(u, v) =

(
a(s)
a(t)

ea(t)(cos t−1)/2

ea(s)(cos s−1)/2
u,

c(t)
c(s)

ec(t)(cos t−1)/2

ec(s)(cos s−1)/2
v

)
and V+

t,s , V−t,s : R→ R are defined by

V+
t,sw =

d(s)
d(t)

ed(t)(cos t−1)/2

ed(s)(cos s−1)/2
w and V−t,sz =

b(t)
b(s)

eb(t)(cos t−1)/2

eb(s)(cos s−1)/2
z.

Using the projections Ps(u, v, w, z)=(u, v, 0, 0), Q+
s (u, v, w, z)=(0, 0, w, 0) and Q−s (u, v, w, z)=

(0, 0, 0, z) we obtain for every (t, s) ∈ R2,∥∥Tt,sQ+
s
∥∥ =

∥∥V+
t,s
∥∥ =

d(s)
d(t)

ed(t)(cos t−1)/2

ed(s)(cos s−1)/2
6

d(s)
d(t)

ed(s)

and ∥∥Tt,sQ−s
∥∥ =

∥∥V−t,s
∥∥ =

b(t)
b(s)

eb(t)(cos t−1)/2

eb(s)(cos s−1)/2
6

b(t)
b(s)

eb(s).

Moreover, assuming that

a(s)c(s)
a(t)c(t)

(
ea(t)
ec(t)

)(cos t−1)/2 (
ec(s)
ea(s)

)(cos s−1)/2

> 1 for every (t, s) ∈ R2
>, (2.3)

we have

‖Tt,sPs‖ =


a(s)
a(t)

ea(t)(cos t−1)/2

ea(s)(cos s−1)/2
for all (t, s) ∈ R2

>,

c(t)
c(s)

ec(t)(cos t−1)/2

ec(s)(cos s−1)/2
for all (t, s) ∈ R2

6,

6


a(s)
a(t)

ea(s) for all (t, s) ∈ R2
>,

c(t)
c(s)

ec(s) for all (t, s) ∈ R2
6.

Therefore, if (2.3) is satisfied, then equation (2.2) has a generalized trichotomy with bounds

αt,s =



a(s)
a(t)

ea(s)

min {ea(s), ec(s)}
c(t)
c(s)

ec(s)

for all (t, s) ∈ R2
> with t 6= s,

for all (t, s) ∈ R2 with t = s,

for all (t, s) ∈ R2
6 with t 6= s,

β+
t,s =

d(s)
d(t)

ed(s) for all (t, s) ∈ R2
>,

β−t,s =
b(t)
b(s)

eb(s) for all (t, s) ∈ R2
6.

(2.4)
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We call the trichotomies with bounds of this type nonuniform (a, b, c, d)-trichotomies.

Example 2.2. Let ρ : R→ R an odd increasing differentiable function such that

lim
t→+∞

ρ(t) = +∞.

In (2.4), making

a(t) = e−aρ(t), c(t) = e−cρ(t), b(t) = e−bρ(t), d(t) = e−dρ(t)

and
ea(t) = eb(t) = ec(t) = ed(t) = D eε|ρ(t)|,

with a, b, c, d, D, ε ∈ R such that D > 1 and ε > 0, we get

αt,s =

{
D ea[ρ(t)−ρ(s)]+ε|ρ(s)|

D ec[ρ(s)−ρ(t)]+ε|ρ(s)|

β+
t,s = D ed[ρ(t)−ρ(s)]+ε|ρ(s)|

β−t,s = D eb[ρ(s)−ρ(t)]+ε|ρ(s)|

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6,

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6.

(2.5)

These bounds for the trichotomy were consider by Barreira and Valls in [5, 6] and are called
ρ-nonuniform exponential trichotomies. Note that in this case condition (2.3) is equivalent to
a + c > 0.

When ρ(t) = t we obtain the nonuniform exponential trichotomies consider by Barreira and
Valls in [4] and [3] with the bounds of the form

αt,s =

{
D ea(t−s)+ε|s|

D ec(s−t)+ε|s|

β+
t,s = D ed(t−s)+ε|s|

β−t,s = D eb(s−t)+ε|s|

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6,

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6.

(2.6)

3 Main theorem

Suppose that equation (2.1) admits a generalized trichotomy. Consider the initial value prob-
lem

v′ = A(t)v + f (t, v), v(s) = vs (3.1)

where f : R× X → X is a continuous function such that

f (t, 0) = 0 for every t ∈ R (3.2)

and, for every t ∈ R,

Lip ( ft) := sup
{
‖ f (t, x)− f (t, y)‖

‖x− y‖ : x, y ∈ X, x 6= y
}

< +∞, (3.3)

i.e., the function ft : X → X given by ft(x) = f (t, x) is a Lipschitz function (in x). Clearly

‖ f (t, x)− f (t, y)‖ 6 Lip ( ft) ‖x− y‖ (3.4)
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for every x, y ∈ X and every t ∈ R and taking y = 0 in the last inequality, and by (3.2), we
have

‖ f (t, x)‖ 6 Lip ( ft) ‖x‖ (3.5)

for every x ∈ X and every t ∈ R.
When (2.1) admits a generalized trichotomy, we can write the only solution of (3.1) in the

form (
x(t, s, vs), y+(t, s, vs), y−(t, s, vs)

)
∈ Et × F+

t × F−t ,

where vs = (ξ, η+, η−) ∈ Es × F+
s × F−s , and then solving problem (3.1) is equivalent to solve

the following problem

x(t) = Tt,sPsξ +
∫ t

s
Tt,rPr f (r, x(r), y+(r), y−(r)) dr (3.6)

y+(t) = Tt,sQ+
s η+ +

∫ t

s
Tt,rQ+

r f (r, x(r), y+(r), y−(r)) dr (3.7)

y−(t) = Tt,sQ−s η− +
∫ t

s
Tt,rQ−r f (r, x(r), y+(r), y−(r)) dr (3.8)

for every t ∈ R.
For each τ ∈ R, we define the flow by

Ψτ(s, vs) =
(
s + τ, x(s + τ, s, vs), y+(s + τ, s, vs), y−(s + τ, s, vs)

)
. (3.9)

We are going to study the existence of invariant center manifolds for equation (3.1) when
(2.1) admits a generalized trichotomy. The invariant center manifolds that we are going to
obtain are given as the graph of a function belonging to a certain function space that we
define now.

Making
G =

⋃
t∈R
{t} × Et,

and choosing N ∈ ]0,+∞[, we denote by AN the space of all continuous functions ϕ : G → X
such that

ϕ(t, 0) = 0 for all t ∈ R; (3.10)

ϕ(t, ξ) ∈ F+
t ⊕ F−t for all (t, ξ) ∈ G; (3.11)

sup

{∥∥ϕ(t, ξ)− ϕ(t, ξ)
∥∥∥∥ξ − ξ

∥∥ : (t, ξ), (t, ξ) ∈ G, ξ 6= ξ

}
6 N. (3.12)

Note that from (3.12) it follows immediately that∥∥ϕ(t, ξ)− ϕ(t, ξ)
∥∥ 6 N

∥∥ξ − ξ
∥∥ for all (t, ξ), (t, ξ) ∈ G (3.13)

and making ξ = 0 in (3.13), we have

‖ϕ(t, ξ)‖ 6 N ‖ξ‖ for every (t, ξ) ∈ G. (3.14)

By (3.11), and identifying F+
t ⊕ F−t and F+

t × F−t as the same vector space, we can write
ϕ = (ϕ+, ϕ−), where ϕ+(t, ξ) = Q+

t ϕ(t, ξ) and ϕ−(t, ξ) = Q−t ϕ(t, ξ).
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Given ϕ ∈ AN , we define the graph of ϕ as

Vϕ = {(s, ξ, ϕ(s, ξ)) : (s, ξ) ∈ G}
=
{(

s, ξ, ϕ+(s, ξ), ϕ−(s, ξ)
)

: (s, ξ) ∈ G
}

⊆ R× X.

(3.15)

The global Lipschitz invariant center manifolds that we intend to obtain are given as the graph
of suitable functions ϕ belonging to some space AN .

Before state the main theorem we need to define the following quantities:

σ := sup
(t,s)∈R2

∣∣∣∣∫ t

s

αt,r Lip ( fr) αr,s

αt,s
dr
∣∣∣∣ (3.16)

and

ω := sup
s∈R

[∫ s

−∞
β+

s,r Lip ( fr) αr,s dr +
∫ +∞

s
β−s,r Lip ( fr) αr,s dr

]
(3.17)

that are supposed to be finite.

Theorem 3.1. Let X be a Banach space. Suppose that (2.1) admits a generalized trichotomy with
bounds αt,s, β+

t,s and β−t,s and let f : R× X → X be a continuous function such that (3.2) and (3.3) are
satisfied. If

lim
r→+∞

β−s,rαr,s = lim
r→−∞

β+
s,rαr,s = 0 for every s ∈ R (3.18)

and
2σ + 2ω < 1,

where σ and ω are given by (3.16) and (3.17), respectively, then there is N ∈ ]0, 1[ and a unique
ϕ ∈ AN such that

Ψτ(Vϕ) ⊆ Vϕ (3.19)

for every τ ∈ R, where Ψτ is given by (3.9) and Vϕ is given by (3.15).
Moreover, ∥∥Ψt−s(s, ξ, ϕ(s, ξ))−Ψt−s(s, ξ, ϕ(s, ξ))

∥∥ 6 N
ω

αt,s
∥∥ξ − ξ

∥∥
for all t ∈ R and all (s, ξ), (s, ξ) ∈ G.

The proof of last theorem will be given in Section 5.

4 Particular cases of the main theorem

Now we will apply the main result to nonuniform (a, b, c, d)-trichtomies.

Theorem 4.1. Let X be a Banach space. Suppose that equation (2.1) admits nonuniform (a, b, c, d)-
trichotomy and let f : R× X → X be a continuous function such that (3.2) and (3.3) are satisfied
and

Lip( fr) 6 δ min

{
1

c(r)d(r)ed(r)

[
c(r)d(r)
ec(r)

]′
,
a(r)b(r)
eb(r)

[
− 1
a(r)b(r)ea(r)

]′
, γ(r)

}
(4.1)

for every r ∈ R \ {0}, where δ < 1/6 and γ : R→ ]0,+∞[ is a function such that

max
{∫ +∞

−∞
ea(r)γ(r) dr,

∫ +∞

−∞
ec(r)γ(r) dr

}
6 1. (4.2)
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If

lim
r→−∞

c(r)d(r)ed(r) = lim
r→+∞

eb(r)
a(r)b(r)

= 0, (4.3)

then equation (3.1) admits a global Lipschitz invariant center manifold, i.e., there is N ∈ ]0, 1[ and a
unique ϕ ∈ AN such that

Ψτ(Vϕ) ⊆ Vϕ for every τ ∈ R

and ∥∥∥Ψt−s(ps,ξ)−Ψt−s(ps,ξ)
∥∥∥ 6


N
ω

a(s)
a(t)

ea(s)
∥∥ξ − ξ

∥∥ if t > s,

N
ω

c(t)
c(s)

ec(s)
∥∥ξ − ξ

∥∥ if t 6 s,

for all (s, ξ), (s, ξ) ∈ G and where ps,ξ = (s, ξ, ϕ(s, ξ)) and ps,ξ =
(
s, ξ, ϕ(s, ξ)

)
.

Proof. It is obvious that for this type of bounds (3.18) is equivalent to (4.3). Moreover, from (4.1)
and (4.2) we have

σ = sup
(t,s)∈R2

∣∣∣∣∫ t

s

αt,r Lip( fr)αr,s

αt,s
dr
∣∣∣∣

= max

 sup
(t,s)∈R2

>

∫ t

s
ea(r)Lip( fr) dr, sup

(t,s)∈R2
6

∫ s

t
ec(r)Lip( fr) dr


= max

{∫ +∞

−∞
ea(r)Lip( fr) dr,

∫ +∞

−∞
ec(r)Lip( fr) dr

}
6 δ max

{∫ +∞

−∞
ea(r)γ(r) dr,

∫ +∞

−∞
ec(r)γ(r) dr

}
6 δ.

From (4.1) and (4.3) it follows that

ω = sup
s∈R

[∫ s

−∞
β+

s,r Lip ( fr) αr,s dr +
∫ +∞

s
β−s,r Lip ( fr) αr,s dr

]
= sup

s∈R

[∫ s

−∞

d(r)ed(r)c(r)ec(s)
d(s)c(s)

Lip( fr) dr +
∫ +∞

s

b(s)eb(r)a(s)ea(s)
b(r)a(r)

Lip( fr) dr
]

6 δ

[
ec(s)

c(s)d(s)

∫ s

−∞

[
c(r)d(r)
ec(r)

]′
dr− a(s)b(s)ea(s)

∫ +∞

s

[
1

a(r)b(r)ea(r)

]′
dr

]
= 2δ.

Hence, since δ < 1/6 we have 2σ + 2ω 6 6δ < 1 and all hypothesis of Theorem 3.1 are
satisfied.

Remarks 4.2. a) From (4.1) it follows that for every r 6= 0 we must have[
c(r)d(r)
ec(r)

]′
=

c(r)d(r)
ec(r)

[
c′(r)
c(r)

+
d′(r)
d(r)

− e′c(r)
ec(r)

]
> 0

and [
− 1
a(r)b(r)ea(r)

]′
=

1
a(r)b(r)ea(r)

[
a′(r)
a(r)

+
b′(r)
b(r)

+
e′a(r)
ea(r)

]
> 0.
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b) Note that the function γ in the last theorem can be chosen as

γ(t) =

min

{
ec(s)

2c(s)d(s)

[
c(t)d(t)
ec(t)

]′
,
a(s)b(s)ea(s)

2

[
− 1
a(t)b(t)ea(t)

]′}
max {ea(t), ec(t)}

for t 6= 0 and where s is a fixed real number. In fact, from (4.3) we have∫ +∞

−∞
ea(r)γ(r) dr

=
∫ s

−∞
ea(r)γ(r) dr +

∫ +∞

s
ea(r)γ(r) dr

6
∫ s

−∞

ec(s)
2c(s)d(s)

[
c(r)d(r)
ec(r)

]′
dr +

∫ +∞

s

a(s)b(s)ea(s)
2

[
−1

a(r)b(r)ea(r)

]′
dr

= 1

and ∫ +∞

−∞
ec(r)γ(r) dr

=
∫ s

−∞
ec(r)γ(r) dr +

∫ +∞

s
ec(r)γ(r) dr

6
∫ s

−∞

ec(s)
2c(s)d(s)

[
c(r)d(r)
ec(r)

]′
dr +

∫ +∞

s

a(s)b(s)ec(s)
2

[
−1

a(r)b(r)ea(r)

]′
dr

= 1.

Theorem 4.3. Let X be a Banach space and suppose that equation (2.1) admits a trichotomy with
bounds of the form (2.5). Suppose that f : R× X → X is a continuous function that satisfies (3.2)
and (3.3) and

Lip ( fr) 6
δρ′(r)

D2 e2ε|ρ(r)| min
{
−c− d− ε sgn(r),−a− b + ε sgn(r),

Dγ

2
e(ε−γ)|ρ(r)|

}
, (4.4)

where δ < 1/6 and

γ = ε if ε > 0 and 0 < γ <
2
D

min {−c− d,−a− b} if ε = 0. (4.5)

If
a + b + ε < 0 and c + d + ε < 0, (4.6)

then (3.1) admits a global Lipschtiz invariant center manifold, i.e., there is N ∈ ]0, 1[ and a unique
ϕ ∈ AN such that

Ψτ(Vϕ) ⊆ Vϕ for every τ ∈ R

and ∥∥∥Ψt−s(ps,ξ)−Ψt−s(ps,ξ)
∥∥∥ 6


DN
ω

ea[ρ(t)−ρ(s)]+ε|ρ(s)| ∥∥ξ − ξ
∥∥ if t > s,

DN
ω

ec[ρ(s)−ρ(t)]+ε|ρ(s)| ∥∥ξ − ξ
∥∥ if t 6 s,

(4.7)

for all (s, ξ), (s, ξ) ∈ G and where ps,ξ = (s, ξ, ϕ(s, ξ)) and ps,ξ =
(
s, ξ, ϕ(s, ξ)

)
.
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Proof. We are going to apply Theorem 4.1. For this bounds condition (4.3) is equivalent to (4.6)
because

c(r)d(r)ed(r) = D e(−c−d)ρ(r)+ε|ρ(r)| and
eb(r)

a(r)b(r)
= D e(a+b)ρ(r)+ε|ρ(r)| .

Moreover, for r 6= 0 we have

1
c(r)d(r)ed(r)

[
c(r)d(r)
ec(r)

]′
=

1
ec(r)ed(r)

(
c′(r)
c(r)

+
d′(r)
d(r)

− e′c(r)
ec(r)

)
=

ρ′(r)
D2 e2ε|ρ(r)| (−c− d− ε sgn(r))

and

a(r)b(r)
eb(r)

[
− 1
a(r)b(r)ea(r)

]′
=

1
ea(r)eb(r)

(
a′(r)
a(r)

+
b′(r)
b(r)

+
e′a(r)
ea(r)

)
=

ρ′(r)
D2 e2ε|ρ(r)| (−a− b + ε sgn(r)) .

Making

γ(r) =
γ

2D
ρ′(r) e−(ε+γ)|ρ(r)|,

with γ given by (4.5), and observing that∫ +∞

−∞
D eε|ρ(r)| γ(r) dr =

∫ +∞

−∞

γ

2
ρ′(r) e−γ|ρ(r)| dr = 2

∫ +∞

0

γ

2
ρ′(r) e−γρ(r) dr = 1,

condition (4.1) becomes (4.4).

Note that Theorem 4.3 improves the result of Barreira and Valls [5] because our result has a
better asymptotic behavior. In fact, with our notation, in (4.7) where we have a and c, Barreira
and Valls [5] have a + 2δD and c + 2δD, respectively.

Making ρ(t) = t in last theorem we have the following result.

Corollary 4.4. Let X be a Banach space and suppose that equation (2.1) admits a trichotomy with
bounds of the form (2.6). Suppose that f : R × X → X is a continuous function such that (3.2)
and (3.3) are satisfied and

Lip ( fr) 6
δ

D2 e2ε|r| min
{
−c− d− ε sgn(r),−a− b + ε sgn(r),

Dγ

2
e(ε−γ)|r|

}
.

where γ is given by (4.5). If (4.6) is satisfied, then (3.1) admits a global Lipschtiz invariant center
manifold, i.e., there is N ∈ ]0, 1[ and a unique ϕ ∈ AN such that

Ψτ(Vϕ) ⊆ Vϕ for every τ ∈ R

and ∥∥∥Ψt−s(ps,ξ)−Ψt−s(ps,ξ)
∥∥∥ 6


DN
ω

ea(t−s)+ε|s| ∥∥ξ − ξ
∥∥ if t > s,

DN
ω

ec(s−t)+ε|s| ∥∥ξ − ξ
∥∥ if t 6 s,

for all (s, ξ), (s, ξ) ∈ G and where ps,ξ = (s, ξ, ϕ(s, ξ)) and ps,ξ =
(
s, ξ, ϕ(s, ξ)

)
.
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Again, as in last theorem, we improve the asymptotic behavior of the result obtained by
Barreira and Valls in [4].

Now we are going to assume that equation (2.1) admits a generalized trichotomy with
bounds of the form

αt,s =

{
D(µ(t)− µ(s) + 1)a(|µ(s)|+ 1)ε

D(µ(s)− µ(t) + 1)c(|µ(s)|+ 1)ε

β+
t,s = D(µ(t)− µ(s) + 1)d(|µ(s)|+ 1)ε

β−t,s = D(µ(s)− µ(t) + 1)b(|µ(s)|+ 1)ε

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6,

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6,

where µ : R→ R is a differentiable function with positive derivative and

lim
t→+∞

µ(t) = lim
t→−∞

−µ(t) = +∞,

a, b, c, d, D, ε are real constants with D > 1 and ε > 0. We call this type of trichotomy a
µ-nonuniform polynomial trichotomy.

Theorem 4.5. Let X be a Banach space. Suppose that equation (2.1) admits a µ-nonuniform polynomial
trichotomy and let f : R× X → X be a continuous function such that (3.2) and (3.3) are satisfied and

Lip( fr) 6 δµ′(r)(|µ(r)|+ 1)−γ

with γ > 0. If (4.6) is satisfied, δ is sufficiently small and

a, c 6 0, 2ε 6 γ and ε− γ + 1 < 0,

then (3.1) admits a global Lipschitz invariant center manifold, i.e., there is N ∈ ]0, 1[ and a unique
ϕ ∈ AN such that

Ψτ(Vϕ) ⊆ Vϕ for every τ ∈ R

and

∥∥∥Ψt−s(ps,ξ)−Ψt−s(ps,ξ)
∥∥∥ 6


DN
ω

(µ(t)− µ(s) + 1)a (|µ(s)|+ 1)ε ∥∥ξ − ξ
∥∥ if t > s,

DN
ω

(µ(s)− µ(t) + 1)c (|µ(s)|+ 1)ε ∥∥ξ − ξ
∥∥ if t 6 s,

for all (s, ξ), (s, ξ) ∈ G and where ps,ξ = (s, ξ, ϕ(s, ξ)) and ps,ξ =
(
s, ξ, ϕ(s, ξ)

)
.

To prove this theorem we need the following lemma.

Lemma 4.6. Let λ, ν < 0, ε > 0 and p ∈ R. If

λ + ε + ν + 1 < 0, λ + ε 6 0 and ν + ε 6 0,

then

∫ +∞

0
(1 + τ)λ (|τ + p|+ 1)ν (|p|+ 1)ε dτ 6


1

|λ + ε + ν + 1| if p > 0,

2ε+1 + 1
|λ + ε + ν + 1| if p < 0.
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Proof. If p > 0, since ε > 0, ν + ε 6 0 and λ + ε + ν + 1 < 0, we have

∫ +∞

0
(τ + 1)λ (|τ + p|+ 1)ν (|p|+ 1)ε dτ =

∫ +∞

0
(τ + 1)λ (τ + p + 1)ν (p + 1)ε dτ

6
∫ +∞

0
(τ + 1)λ (τ + p + 1)ν+ε dτ

6
∫ +∞

0
(τ + 1)λ+ν+ε dτ

=
1

|λ + ν + ε + 1| .

If p < 0, then

|τ + p|+ 1 =

{
|p| − τ + 1 if 0 6 τ 6 |p| ,
τ − |p|+ 1 if τ > |p| ,

and this implies

∫ |p|/2

0
(τ + 1)λ (|p| − τ + 1)ν (|p|+ 1)ε dτ

=
∫ |p|/2

0
(τ + 1)λ (|p| − τ + 1)ν+ε

(
|p|+ 1
|p| − τ + 1

)ε

dτ

6 2ε
∫ |p|/2

0
(τ + 1)λ+ν+ε dτ

6
2ε

|λ + ν + ε + 1| ,∫ |p|
|p|/2

(τ + 1)λ (|p| − τ + 1)ν (|p|+ 1)ε dτ

=
∫ |p|
|p|/2

(τ + 1)λ+ε (|p| − τ + 1)ν
(
|p|+ 1
τ + 1

)ε

dτ

6 2ε
∫ |p|
|p|/2

(|p| − τ + 1)λ+ν+ε dτ

6
2ε

|λ + ν + ε + 1|

and ∫ +∞

|p|
(τ + 1)λ (τ − |p|+ 1)ν (|p|+ 1)ε dτ 6

∫ +∞

|p|
(τ + 1)λ+ε (τ − |p|+ 1)ν dτ

6
∫ +∞

|p|
(τ − |p|+ 1)λ+ν+ε dτ

6
1

|λ + ν + ε + 1| .

Hence, if p < 0 we have

∫ +∞

0
(τ + 1)λ (|τ + p|+ 1)ν (|p|+ 1)ε dτ 6

2ε+1 + 1
|λ + ε + ν + 1| .
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Proof of Theorem 4.5. Since for r 6 s we have

β+
s,rαr,s = D2 (µ(s)− µ(r) + 1)c+d+ε

(
|µ(r)|+ 1

µ(s)− µ(r) + 1

)ε

(|µ(s)|+ 1)ε

and for r > s we have

β−s,rαr,s = D2 (µ(r)− µ(s) + 1)a+b+ε
(

|µ(r)|+ 1
µ(r)− µ(s) + 1

)ε

(|µ(s)|+ 1)ε ,

it follows that c + d + ε < 0 and a + b + ε < 0 are equivalent to

lim
r→−∞

β+
s,rαr,s = lim

r→+∞
β−s,rαr,s = 0.

Since for every t > r > s and every t 6 r 6 s we have

[µ(t)− µ(r) + 1] [µ(r)− µ(s) + 1] = [µ(t)− µ(r)] [µ(r)− µ(s)] + µ(t)− µ(s) + 1

> µ(t)− µ(s) + 1,

from a 6 0 it follows that

αt,rαr,s

αt,s
= D

(µ(t)− µ(r) + 1)a (µ(r)− µ(s) + 1)a

(µ(t)− µ(s) + 1)a (|µ(r)|+ 1)ε 6 D (|µ(r)|+ 1)ε

for t > r > s and from c 6 0 we also have

αt,rαr,s

αt,s
=

(µ(r)− µ(t) + 1)c (µ(s)− µ(r) + 1)c

(µ(s)− µ(t) + 1)c (|µ(r)|+ 1)ε 6 D (|µ(r)|+ 1)ε

for t 6 r 6 s. Then, since γ > ε + 1, it follows that

σ = sup
(t,s)∈R2

∣∣∣∣∫ t

s

αt,r Lip( fr)αr,s

αt,s
dr
∣∣∣∣

6 Dδ sup
(t,s)∈R2

∣∣∣∣∫ t

s
µ′(r) (|µ(r)|+ 1)ε−γ dr

∣∣∣∣
= Dδ

∫ +∞

−∞
µ′(r) (|µ(r)|+ 1)ε−γ dr

= Dδ
∫ +∞

−∞
(|τ|+ 1)ε−γ dτ

=
2Dδ

|ε− γ + 1| .

Here we made the substitution τ = µ(r).
Making the substitution τ = µ(s)− µ(r) we have∫ s

−∞
β+

s,r Lip ( fr) αr,s dr

6 D2δ
∫ s

−∞
µ′(r) (µ(s)− µ(r) + 1)c+d (|µ(r)|+ 1)ε−γ (|µ(s)|+ 1)ε dr

= D2δ
∫ +∞

0
(τ + 1)c+d (|τ − µ(s)|+ 1)ε−γ (|µ(s)|+ 1)ε dτ
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and with the substitution τ = µ(r)− µ(s) we obtain

∫ +∞

s
β−s,r Lip ( fr) αr,s dr

6 D2δ
∫ +∞

s
µ′(r) (µ(r)− µ(s) + 1)a+b (|µ(r)|+ 1)ε−γ (|µ(s)|+ 1)ε dr

= D2δ
∫ +∞

0
(τ + 1)a+b (|τ + µ(s)|+ 1)ε−γ (|µ(s)|+ 1)ε dτ.

Using Lemma 4.6 it follows that

ω = sup
s∈R

[∫ s

−∞
β+

s,r Lip ( fr) αr,s dr +
∫ +∞

s
β−s,r Lip ( fr) αr,s dr

]
6 D2δ

(
2ε+1 + 1

|max {a + b, c + d}+ 2ε− γ + 1| +
1

|min {a + b, c + d}+ 2ε− γ + 1|

)
.

Hence, if δ is sufficiently small we have 2σ + 2ω < 1 and the theorem is proved.

In the next corollary we will consider µ(t) = t, i.e.,

αt,s =

{
D(t− s + 1)a(|s|+ 1)ε

D(s− t + 1)c(|s|+ 1)ε

β+
t,s = D(t− s + 1)d(|s|+ 1)ε

β−t,s = D(s− t + 1)b(|s|+ 1)ε

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6,

for all (t, s) ∈ R2
>,

for all (t, s) ∈ R2
6,

and this type of trichotomies are called nonuniform polynomial trichotomies.

Corollary 4.7. Let X be a Banach space. Suppose that equation (2.1) admits a nonuniform polynomial
trichotomy and let f : R× X → X be a continuous function such that (3.2) and (3.3) are satisfied and

Lip( fr) 6 δ(|r|+ 1)−γ

with γ > 0. If (4.6) is satisfied, δ is sufficiently small and

a, c 6 0, 2ε 6 γ and ε− γ + 1 < 0,

then (3.1) admits a global Lipschtiz invariant center manifold, i.e., there is N ∈ ]0, 1[ and a unique
ϕ ∈ AN such that

Ψτ(Vϕ) ⊆ Vϕ for every τ ∈ R

and

∥∥∥Ψt−s(ps,ξ)−Ψt−s(ps,ξ)
∥∥∥ 6


DN
ω

(t− s + 1)a (|s|+ 1)ε ∥∥ξ − ξ
∥∥ if t > s,

DN
ω

(s− t + 1)c (|s|+ 1)ε ∥∥ξ − ξ
∥∥ if t 6 s,

for all (s, ξ), (s, ξ) ∈ G and where ps,ξ = (s, ξ, ϕ(s, ξ)) and ps,ξ =
(
s, ξ, ϕ(s, ξ)

)
.



16 A. J. G. Bento and C. Tomás da Costa

5 Proof of the main theorem

Before doing the proof of Theorem 3.1 we need to prove some lemmas.

Lemma 5.1. If σ and ω are positive numbers satisfying

2σ + 2ω < 1,

then there exist M ∈ ]1, 2[ and N ∈ ]0, 1[ such that

σ =
M− 1

M(1 + N)
and ω =

N
M(1 + N)

. (5.1)

Proof. Clearly, equalities (5.1) are equivalent to

M− 1
σ

=
N
ω

= M(1 + N). (5.2)

Hence making

M =
1− σ + ω−

√
1− 2σ− 2ω + (σ−ω)2

2ω
(5.3)

and

N =
1− σ−ω−

√
1− 2σ− 2ω + (σ−ω)2

2σ
(5.4)

we obtain immediately the first equality in (5.2). Taking into account that

(1− σ + ω)2 −
[
1− 2σ− 2ω + (σ−ω)2] = 4ω,

(1− σ−ω)2 −
[
1− 2σ− 2ω + (σ−ω)2] = 4σω

and σ + ω < 1− σ−ω, we have

M =
4ω

2ω
[
1− σ + ω +

√
1− 2σ− 2ω + (σ−ω)2

] <
2

1− σ + ω + |σ−ω| 6 2

and

N =
4σω

2σ
(

1− σ−ω +
√

1− 2σ− 2ω + (σ−ω)2
)

<
2ω

1− σ−ω + |σ−ω|

<
2ω

σ + ω + |σ−ω|
6 1.

Moreover, using the definition of N and M we can put

1 +
1
N

=
1− σ + ω +

√
1− 2σ− 2ω + (σ−ω)2

2ω
=

1
ωM

and this proves the second equality in (5.2). To finish the proof we note it is clear that N > 0
and since M = 1 + σN/ω we have M > 1.
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From now on the numbers M and N will be given by (5.3) and (5.4). Moreover, the number
N mentioned in Theorem 3.1 is also given by (5.4).

It is easy to see that AN is a complete metric space with the metric

d(ϕ, ψ) = sup
{
‖ϕ(t, ξ)− ψ(t, ξ)‖

‖ξ‖ : (t, ξ) ∈ G, ξ 6= 0
}

, (5.5)

for all ϕ, ψ ∈ AN .
Making

G′ =
⋃

s∈R
R× {s} × Es = R× G,

let BM be the set of all continuous functions x : G′ → X such that

x(t, s, 0) = 0 for all (t, s) ∈ R2, (5.6)

x(s, s, ξ) = ξ for all (s, ξ) ∈ G, (5.7)

x(t, s, ξ) ∈ Et for all (t, s, ξ) ∈ G′, (5.8)

sup

{∥∥x(t, s, ξ)− x(t, s, ξ)
∥∥

αt,s
∥∥ξ − ξ

∥∥ : (t, s, ξ), (t, s, ξ) ∈ G′, ξ 6= ξ

}
6 M (5.9)

where M is given by (5.3).
From (5.9), it follows that∥∥x(t, s, ξ)− x(t, s, ξ)

∥∥ 6 Mαt,s
∥∥ξ − ξ

∥∥ for all (t, s, ξ), (t, s, ξ) ∈ G′ (5.10)

and making ξ = 0 in (5.10), from (5.6) we have

‖x(t, s, ξ)‖ 6 Mαt,s ‖ξ‖ for all (t, s, ξ) ∈ G′. (5.11)

Defining, for every x, y ∈ BM,

d′(x, y) = sup
{
‖x(t, s, ξ)− y(t, s, ξ)‖

αt,s ‖ξ‖
: (t, s, ξ) ∈ G′, ξ 6= 0

}
, (5.12)

it is easy to see that (BM, d′) is a complete metric space.
Another complete metric space that we are going to need is CM,N = BM ×AN equipped

with the metric defined by

d′′ ((x, ϕ), (y, ψ)) = d′(x, y) + d(ϕ, ψ) for all (x, ϕ), (y, ψ) ∈ CM,N .

To prove (3.19) we need to prove that there is a solution of (3.1) in the form(
x(t, s, ξ), ϕ+(t, x(t, s, ξ)), ϕ−(t, x(t, s, ξ))

)
∈ Et × F+

t × F−t

for some (x, ϕ) ∈ CM,N . From (3.6), (3.7) and (3.8), this is equivalent to solving the equations

x(t, s, ξ) = Tt,sPsξ +
∫ t

s
Tt,rPr f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr, (5.13)

ϕ+(t, x(t, s, ξ)) = Tt,sQ+
s ϕ+(s, ξ) +

∫ t

s
Tt,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr, (5.14)

ϕ−(t, x(t, s, ξ)) = Tt,sQ−s ϕ−(s, ξ) +
∫ t

s
Tt,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr. (5.15)

Next we state a lemma where we obtain an equivalent form of equations (5.14) and (5.15).
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Lemma 5.2. Let (x, ϕ) ∈ CM,N such that (5.13) is satisfied. The following properties are equivalent:

a) for every (t, s, ξ) ∈ G′, equations (5.14) and (5.15) hold;

b) for every (s, ξ) ∈ G,

ϕ+(s, ξ) =
∫ s

−∞
Ts,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr (5.16)

and
ϕ−(s, ξ) = −

∫ +∞

s
Ts,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr. (5.17)

Proof. First we must prove that the integrals in (5.16) and (5.17) are convergent. From (3.5),
(3.14) and (5.11) we obtain

‖ f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))‖ 6 Lip( fr) ‖x(r, s, ξ) + ϕ(r, x(r, s, ξ))‖
6 Lip( fr) (‖x(r, s, ξ)‖+ ‖ϕ(r, x(r, s, ξ))‖)
6 Lip( fr) (‖x(r, s, ξ)‖+ N ‖x(r, s, ξ)‖)
6 M(1 + N)Lip( fr)αr,s ‖ξ‖

(5.18)

for every r, s ∈ R and using (D2), (5.18), (3.17) and (D3) we have∫ s

−∞

∥∥Ts,rQ+
r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))

∥∥ dr

6
∫ s

−∞

∥∥Ts,rQ+
r
∥∥ ‖ f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))‖ dr

6 M(1 + N) ‖ξ‖
∫ s

−∞
β+

s,r Lip( fr)αr,s dr

6 M(1 + N)ω ‖ξ‖

and ∫ +∞

s

∥∥Ts,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))
∥∥ dr

6
∫ +∞

s

∥∥Ts,rQ−r
∥∥ ‖ f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))‖ dr

6 M(1 + N) ‖ξ‖
∫ +∞

s
β−s,r Lip( fr)αr,s dr

6 M(1 + N)ω ‖ξ‖

for every (s, ξ) ∈ G. Thus the integrals (5.16) and (5.17) are convergent.
Now we prove that a)⇒ b). Suppose that (5.14) and (5.15) hold for all (t, s, ξ) ∈ G′. Then,

from (5.14) we have

ϕ+(s, ξ) = Ts,t ϕ+(t, x(t, s, ξ))−
∫ t

s
Ts,tTt,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

= Ts,tQ+
t ϕ(t, x(t, s, ξ))−

∫ t

s
Ts,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr.

Since by (D2), (3.14) and (5.11) we have∥∥Ts,tQ+
t ϕ(t, x(t, s, ξ))

∥∥ 6 β+
s,t ‖ϕ(t, x(t, s, ξ))‖

6 Nβ+
s,t ‖x(t, s, ξ)‖

6 MN ‖ξ‖ β+
s,tαt,s ,
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by (3.18), making t→ −∞, we conclude that

lim
t→−∞

Ts,tQ+
t ϕ(t, x(t, s, ξ)) = 0

and this implies

ϕ+(s, ξ) = −
∫ −∞

s
Ts,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

=
∫ s

−∞
Ts,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr,

i.e., (5.16) holds.
Similarly, from (5.15) we have

ϕ−(s, ξ) = Ts,t ϕ−(t, x(t, s, ξ))−
∫ t

s
Ts,tTt,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

= Ts,tQ−t ϕ(t, x(t, s, ξ))−
∫ t

s
Ts,tTt,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

and by (D3), (3.14) and (5.11) it follows that∥∥Ts,tQ−t ϕ(t, x(t, s, ξ))
∥∥ 6 β−s,t ‖ϕ(t, x(t, s, ξ))‖
6 Nβ−s,t ‖x(t, s, ξ)‖
6 MN ‖ξ‖ β−s,tαt,s.

Letting t→ +∞ we have
lim

t→+∞
Ts,tQ−t ϕ(t, x(t, s, ξ)) = 0

and we obtain

ϕ−(s, ξ) = −
∫ +∞

s
Ts,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

for every (s, ξ) ∈ G. Hence a)⇒ b).
Now we will prove that b) ⇒ a). Assuming that for every (s, ξ) ∈ G identities (5.16)

and (5.17) hold, applying Tt,s to both sides of equation (5.16) we have

Tt,s ϕ+(s, ξ) =
∫ s

−∞
Tt,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

and this implies

Tt,s ϕ+(s, ξ) +
∫ t

s
Tt,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

=
∫ t

−∞
Tt,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

=
∫ t

−∞
Tt,rQ+

r f (r, x(r, t, x(t, s, ξ)), ϕ(r, x(r, t, x(t, s, ξ)))) dr

= ϕ+(t, x(t, s, ξ))

for every (t, s, ξ) ∈ G′. In a similar way we have

Tt,s ϕ−(s, ξ) = −
∫ +∞

s
Tt,sTs,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr
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and thus

Tt,s ϕ−(s, ξ) +
∫ t

s
Tt,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

= −
∫ +∞

t
Tt,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

= −
∫ +∞

t
Tt,rQ−r f (r, x(r, t, x(t, s, ξ)), ϕ (r, x (r, t, x (t, s, ξ)))) dr

= ϕ−(t, x(t, s, ξ))

for every (t, s, ξ) ∈ G′. Therefore b)⇒ a) and this completes the proof of the lemma.

Consider in CM,N the operator J such that, to each (x, ϕ) ∈ CM,N , assigns a function
J(x, ϕ) : G′ → X defined, for every (t, s, ξ) ∈ G′, by

[J(x, ϕ)] (t, s, ξ) = Tt,sPsξ +
∫ t

s
Tt,rPr f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr.

Lemma 5.3. For every (x, ϕ) ∈ CM,N , we have

J(x, ϕ) ∈ BM.

Proof. Given (x, ϕ) ∈ CM,N , from (5.6), (3.10) and (3.2) it follows readily that J(x, ϕ)(t, s, 0) = 0
for every (t, s) ∈ R2 and by definition we have J(x, ϕ)(s, s, ξ) = ξ for all (s, ξ) ∈ G and
J(x, ϕ)(t, s, ξ) ∈ Et for all (t, s, ξ) ∈ G′.

Moreover, for all (t, s, ξ), (t, s, ξ) ∈ G′ and using (D1) it follows that

∥∥J(x, ϕ)(t, s, ξ)− J(x, ϕ)(t, s, ξ)
∥∥ 6 ‖Tt,sPs‖

∥∥ξ − ξ
∥∥+ ∣∣∣∣∫ t

s
‖Tt,rPr‖ · γr,s,ξ,ξ dr

∣∣∣∣
6 αt,s

∥∥ξ − ξ
∥∥+ ∣∣∣∣∫ t

s
αt,r · γr,s,ξ,ξ dr

∣∣∣∣ ,

where

γr,s,ξ,ξ :=
∥∥ f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))− f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))

∥∥ .

From (3.4), (3.13) and (5.10) we have

γr,s,ξ,ξ 6 Lip( fr)
(∥∥x(r, s, ξ)− x(r, s, ξ)

∥∥+ ∥∥ϕ(r, x(r, s, ξ))− ϕ(r, s, x(r, s, ξ))
∥∥)

6 Lip( fr)
(∥∥x(r, s, ξ)− x(r, s, ξ)

∥∥+ N
∥∥x(r, s, ξ))− x(r, s, ξ))

∥∥)
= (1 + N)Lip( fr)

∥∥x(r, s, ξ)− x(r, s, ξ)
∥∥

6 M(1 + N)
∥∥ξ − ξ

∥∥Lip( fr)αr,s

(5.19)

and so by (3.16) and Lemma 5.1 it follows that∥∥J(x, ϕ)(t, s, ξ)− J(x, ϕ)(t, s, ξ)
∥∥

6 αt,s
∥∥ξ − ξ

∥∥+ M(1 + N)
∥∥ξ − ξ

∥∥ ∣∣∣∣∫ t

s
αt,r Lip( fr)αr,s dr

∣∣∣∣
6 (1 + M(1 + N)σ) αt,s

∥∥ξ − ξ
∥∥

= Mαt,s
∥∥ξ − ξ

∥∥
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for every (x, ϕ) ∈ CM,N and every (t, s, ξ), (t, s, ξ) ∈ G′. Then considering ξ 6= ξ we have∥∥J(x, ϕ)(t, s, ξ)− J(x, ϕ)(t, s, ξ)
∥∥

αt,s
∥∥ξ − ξ

∥∥ 6 M.

Hence J(x, ϕ) satisfies (5.6), (5.7), (5.8) and (5.9) and this proves that J(x, ϕ) ∈ BM for all
(x, ϕ) ∈ CM,N .

In CM,N define the operator L that assigns to every (x, ϕ) ∈ CM,N a function

L(x, ϕ) : G → X

defined, for every (s, ξ) ∈ G, by

[L(x, ϕ)] (s, ξ) =
[
L+(x, ϕ)

]
(s, ξ) +

[
L−(x, ϕ)

]
(s, ξ),

where [
L+(x, ϕ)

]
(s, ξ) =

∫ s

−∞
Ts,rQ+

r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr

and [
L−(x, ϕ)

]
(s, ξ) = −

∫ +∞

s
Ts,rQ−r f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ))) dr.

Lemma 5.4. For every (x, ϕ) ∈ CM,N , we have

L(x, ϕ) ∈ AN .

Proof. From (5.6), (3.10) and (3.2) it follows that [L(x, ϕ)] (t, 0) = 0. Moreover, by definition we
have [L(x, ϕ)] (t, ξ) ∈ F+

t ⊕ F−t .
From (D2), (D3) and (5.19) it follows for every (s, ξ), (s, ξ) ∈ G that

‖L+(x, ϕ)(s, ξ)− L+(x, ϕ)(s, ξ)‖ 6
∫ s

−∞
‖Ts,rQ+

r ‖ γr,s,ξ,ξ dr

6 M(1 + N)
∥∥ξ − ξ

∥∥ ∫ s

−∞
β+

s,r Lip( fr)αr,s dr

and

‖L−(x, ϕ)(s, ξ)− L−(x, ϕ)(s, ξ)‖ 6
∫ +∞

s
‖Ts,rQ−r ‖ γr,s,ξ,ξ dr

6 M(1 + N)
∥∥ξ − ξ

∥∥ ∫ +∞

s
β−s,r Lip( fr)αr,s dr

and so, using (3.17) and Lemma 5.1 we have∥∥[L(x, ϕ)] (s, ξ)− [L(x, ϕ)] (s, ξ)
∥∥

6
∥∥[L+(x, ϕ)

]
(s, ξ)−

[
L+(x, ϕ)

]
(s, ξ)

∥∥+ ∥∥[L−(x, ϕ)
]
(s, ξ)−

[
L−(x, ϕ)

]
(s, ξ)

∥∥
6 M(1 + N)

∥∥ξ − ξ
∥∥(∫ s

−∞
β+

s,r Lip ( fr) αr,s dr +
∫ +∞

s
β−s,r Lip ( fr) αr,s dr

)
6 M(1 + N)ω

∥∥ξ − ξ
∥∥

= N
∥∥ξ − ξ

∥∥ ,

and the proof is complete.
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Lemma 5.5. For every (x, ϕ), (y, ψ) ∈ CM,N we have

d′ (J(x, ϕ), J(y, ψ)) 6 σ
[
(1 + N)d′(x, y) + Md(ϕ, ψ)

]
(5.20)

and
d (L(x, ϕ), L(y, ψ)) 6 ω

[
(1 + N)d′(x, y) + Md(ϕ, ψ)

]
. (5.21)

Proof. For every (r, s, ξ) ∈ G′, putting

γr,s,ξ := ‖ f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))− f (r, y(r, s, ξ), ψ(r, y(r, s, ξ)))‖,

and using (D1) we have

‖J(x, ϕ)(t, s, ξ)− J(y, ψ)(t, s, ξ)‖ 6
∣∣∣∣∫ t

s
‖Tt,rPr‖ γr,s,ξ dr

∣∣∣∣ 6 ∣∣∣∣∫ t

s
αt,r γr,s,ξ dr

∣∣∣∣ .

By (3.4), (3.13), (5.12), (5.5) and (5.11) we obtain

γr,s,ξ = ‖ f (r, x(r, s, ξ), ϕ(r, x(r, s, ξ)))− f (r, y(r, s, ξ), ψ(r, y(r, s, ξ)))‖
6 Lip( fr) [‖x(r, s, ξ)− y(r, s, ξ)‖+ ‖ϕ(r, x(r, s, ξ))− ψ(r, y(r, s, ξ))‖]
6 Lip( fr)

[
‖x(r, s, ξ)− y(r, s, ξ)‖+ ‖ϕ(r, x(r, s, ξ))− ϕ(r, y(r, s, ξ))‖

+ ‖ϕ(r, y(r, s, ξ))− ψ(r, y(r, s, ξ))‖
]

6 Lip( fr) [(1 + N) ‖x(r, s, ξ)− y(r, s, ξ)‖+ d(ϕ, ψ)‖y(r, s, ξ))‖]
6 Lip( fr)

[
d′(x, y)αr,s ‖ξ‖ (1 + N) + d(ϕ, ψ)Mαr,s ‖ξ‖

]
6 Lip( fr)αr,s ‖ξ‖

[
(1 + N)d′(x, y) + Md(ϕ, ψ)

]
,

(5.22)

it follows by (3.16) that

‖J(x, ϕ)(t, s, ξ)− J(y, ψ)(t, s, ξ)‖

6

∣∣∣∣∫ t

s
αt,r Lip( fr)αr,s dr

∣∣∣∣ ‖ξ‖ [(1 + N)d′(x, y) + Md(ϕ, ψ)
]

6 αt,sσ ‖ξ‖
[
(1 + N)d′(x, y) + Md(ϕ, ψ)

]
,

for every (t, s, ξ) ∈ G′. Thus from (5.12) we get (5.20).
On the other hand, using again (D2) and (5.22) we have

‖L+(x, ϕ)(s, ξ)− L+(y, ψ)(s, ξ)‖

6
∫ s

−∞
‖Ts,rQ+

r ‖ γr,s,ξ dr

6 ‖ξ‖
[
(1 + N)d′(x, y) + Md(ϕ, ψ)

] ∫ s

−∞
β+

s,r Lip( fr)αr,s dr

and also from (D3) and (5.22) it follows that

‖L−(x, ϕ)(s, ξ)− L−(s, ψ)(t, ξ)‖

6
∫ +∞

s
‖Ts,rQ−r ‖ γr,s,ξ dr

6 ‖ξ‖
[
(1 + N)d′(x, y) + Md(ϕ, ψ)

] ∫ +∞

s
β−s,r Lip( fr)αr,s dr

and thus from (3.17) we obtain

‖L(x, ϕ)(s, ξ)− L(s, ψ)(t, ξ)‖ 6 ‖ξ‖ω
[
(1 + N)d′(x, y) + Md(ϕ, ψ)

]
.

Therefore, from (5.5) we get (5.21).
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Now we define an operator on CM,N and we will prove that it is a contraction and this will
be essential in the proof of Theorem 3.1.

Define the operator T : CM,N → CM,N by

T(x, ϕ) = (J(x, ϕ), L(x, ϕ)) =
(

J(x, ϕ), L+(x, ϕ), L−(x, ϕ)
)

.

Lemma 5.6. The operator T : CM,N → CM,N is a contraction.

Proof. Let (x, ϕ), (y, ψ) ∈ CM,N . From the last lemma it follows that

d′′ (T(x, ϕ), T(y, ψ)) = d′′ ((J(x, ϕ), L(x, ϕ)), (J(y, ψ), L(y, ψ))

= d′ (J(x, ϕ), J(y, ψ)) + d (L(x, ϕ), L(y, ψ))

6 (σ + ω)
(
(1 + N)d′(x, y) + Md(ϕ, ψ)

)
6 (σ + ω)max {1 + N, M} d′′((x, ϕ), (y, ψ))

and, since σ + ω < 1/2, N < 1 and M < 2, we obtain

(σ + ω)max {1 + N, M} < 1

and this implies that T is a contraction.

Now we are going to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 5.6 the operator T is a contraction. Since CM,N is a complete
metric space, by Banach fixed point theorem, there is a unique point (x, ϕ) ∈ CM,N such that

T(x, ϕ) = (x, ϕ)

and this fixed point verifies (5.13), (5.16) and (5.17). By Lemma 5.2 we know that solve the last
two equations is equivalent to solve (5.14) and (5.15), if (5.13) holds. Therefore, from (3.6), (3.7)
and (3.8), we conclude the existence of the invariant manifold, i.e., the existence of a unique

ϕ = (ϕ+, ϕ−) ∈ AN such that Ψτ(Vϕ) ⊆ Vϕ

for every τ ∈ R. Moreover, for every t ∈ R and every (s, ξ), (s, ξ) ∈ G we have∥∥Ψt−s(s, ξ, ϕ(s, ξ))−Ψt−s(s, ξ, ϕ(s, ξ))
∥∥

=
∥∥(t, x(t, s, ξ), ϕ(t, x(t, s, ξ)))− (t, x(t, s, ξ), ϕ(t, x(t, s, ξ)))

∥∥
6
∥∥x(t, s, ξ)− x(t, s, ξ)

∥∥+ ∥∥ϕ(t, x(t, s, ξ))− ϕ(t, x(t, s, ξ))
∥∥

6 (1 + N)
∥∥x(t, s, ξ)− x(t, s, ξ)

∥∥
6 M(1 + N)αt,s

∥∥ξ − ξ
∥∥

=
N
ω

αt,s
∥∥ξ − ξ

∥∥
and this completes the proof.
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