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Abstract. We analyse the stability and attractivity of a class of n-dimensional Nichol-
son systems with constant coefficients and multiple time-varying delays. Delay-
independent sufficient conditions on the coefficients are given, for the existence and
absolute global exponential stability of a unique positive equilibrium N∗, generalizing
and improving known results for autonomous systems. We further establish delay-
dependent criteria for N∗ to be a global attractor of all positive solutions. In the latter
case, upper bounds on the size of the delays which do not require an a priori explicit
knowledge of the equilibrium N∗ are also derived.
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1 Introduction

This paper deals with a Nicholson system with autonomous coefficients and multiple time-
varying discrete delays of the form

N′i (t) = −diNi(t)+
n

∑
j=1,j 6=i

aijNj(t)+
m

∑
k=1

βikNi(t− τik(t))e−ci Ni(t−τik(t)), i = 1, . . . , n, t ≥ 0, (1.1)

where di > 0, ci > 0, aij ≥ 0, βik ≥ 0 with βi := ∑m
k=1 βik > 0, τik : [0, ∞) → [0, ∞) are

continuous and bounded, for i, j = 1, . . . , n and k = 1, . . . , m. For a biological interpretation of
model (1.1) and some applications, see Section 2 and e.g. [1, 2, 7, 11, 13].

Multi-dimensional Nicholson systems are a natural extension of the famous Nicholson’s
blowflies equation N′(t) = −dN(t) + βN(t − τ)e−N(t−τ) (d, β, τ > 0), for which it is well
known that the positive equilibrium N∗ = log(β/d) exists and is globally attractive if 1 <

β/d ≤ e2. Moreover, for this scalar Nicholson’s equation with β/d > e2, several criteria on the
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size of the delay τ have been established for the global attractivity of N∗ [8, 14, 16]. For a nice
survey on the subject and further references, see [1].

Only recently have Nicholson systems with patch structure and multiple delays deserved
some attention from researchers. Most studies are centred on autonomous systems (or at least
with constant coefficients), the main focus under investigation being the existence and global
attractivity of a positive equilibrium [5, 7, 10, 12, 13].

Here, we investigate the stability and global attractivity of a positive equilibrium N∗ for
(1.1). Most of the results will be proven for systems (1.1) with ci = 1 for all i, i.e.,

N′i (t) = −diNi(t) +
n

∑
j=1,j 6=i

aijNj(t) +
m

∑
k=1

βikNi(t− τik(t))e−Ni(t−τik(t)), i = 1, . . . , n, t ≥ 0, (1.2)

since, as we shall see, a simple scaling shows that the conclusions obtained for (1.2) hold
with small adjustments for the more general family (1.1). We start with a brief overview of
some recent and selected results regarding the global asymptotic behaviour of solutions to
Nicholson systems. Among them, emphasis is given to the papers of Faria and Röst [7] and
Jia et al. [10], which strongly motivated the present work.

In [12], Liu considered an autonomous Nicholson system of the form

N′i (t) = −dNi(t) +
n

∑
j=1

aijNj(t) + βNi(t− ri)e−Ni(t−ri), i = 1, . . . , n, t ≥ 0, (1.3)

with d, β, ri > 0, aij ≥ 0 for i 6= j, 1 ≤ i, j ≤ n, and [aij] an irreducible matrix. Moreover, it was
assumed in [12] that

n

∑
j=1

aij = 0, i = 1, . . . , n,

so that, when β > d,

N∗ =
(

log
β

d
, . . . , log

β

d

)
is the positive equilibrium of (1.3). Under these conditions, the global attractivity of N∗ was
proven in [12] for the case β/d ∈ [e, e2]. This result was later extended by the same author
[13] to more general systems with multiple time-dependent delays of the form (1.2), but again
with the same requirements on the coefficients, except that β was replaced by the constant
β := ∑k βik; note that d, β were still assumed to be independent of i and ∑j aij = 0. These
constraints were relaxed in [5, 7], however only the autonomous version,

N′i (t) = −diNi(t) +
n

∑
j=1,j 6=i

aijNj(t) +
m

∑
k=1

βikNi(t− τik)e−Ni(t−τik), i = 1, . . . , n, t ≥ 0, (1.4)

was treated. Here, as well as in [5, 7], without loss of generality we assume that aii = 0 for
i = 1, . . . , n, since each of these coefficients may be incorporated in di.

With the terms di − ∑j 6=i aij and ∑k βik depending naturally on i, a prime concern is to
ensure the existence of a positive equilibrium N∗, since it cannot be explicitly computed.
This was established in [7] by imposing that the ODE system x′i = −dixi + ∑n

j=1,j 6=i aijxj is
asymptotically stable (a natural requirement from a biological point of view) and the following
condition on the community matrix, defined here as M = diag (β1 − d1, . . . , βn − dn) + [aij]

where βi = ∑k βik (see Section 2 for further details): there exists a positive vector v such
that Mv > 0. In the case of [aij] an irreducible matrix (a constraint not imposed in [5, 7]), this



Nicholson systems with time-dependent delays 3

condition turns out to be equivalent to saying that the community matrix M has an eigenvalue
with positive real part, and is indeed a necessary and sufficient condition for the existence of
a positive equilibrium N∗; otherwise, the equilibrium 0 is a global attractor of all positive
solutions of (1.4). Furthermore, under the stronger condition

1 <
βi

di −∑j 6=i aij
≤ e2, i = 1, . . . , n, (1.5)

it was also shown in [7] that N∗ is globally asymptotically stable.

The first purpose of this paper is to recover and generalize the results on the existence
and global attractivity of the positive equilibrium N∗ given in [7], so that they apply to the
nonautonomous version (1.2), and more generally to (1.1). Note that, although this system
has autonomous coefficients, the delays τik(t) are time-dependent, and consequently known
results and techniques for autonomous Nicholson systems do not apply directly to (1.1); thus,
new arguments should be used.

On the other hand, it is well known that the introduction of large delays may induce insta-
bility, oscillations, unbounded solutions; contrarily, small delays are expected to be negligible.
Delay-dependent criteria for the global attractivity of equilibria are in general more difficult
to obtain, even for scalar delay differential equations (DDEs), for which several conjectures on
local stability implying global asymptotic stability remain open. For multi-dimensional DDEs,
clearly this topic is even harder to address, and only a few results have been produced. See
e.g. [17], for 3/2-criteria for the global attractivity of delayed Lotka–Volterra systems.

To the best of our knowledge, for Nicholson systems, criteria for the global attractivity of
the positive equilibrium N∗ depending on the size of the delays were established for the first
time in 2017, in two very recent papers [4,10]. In Jia et al. [10], the quite restrictive assumption

βi

di −∑j 6=i aij
= c > 1 for all 1 ≤ i ≤ n, (1.6)

was still imposed, and consequently the positive equilibrium N∗ = (N∗1 , . . . , N∗n ) exists and
has all its components equal to the same constant, N∗ = (log c, . . . , log c). On the other hand,
El-Morshedy and Ruiz-Herrera [4] gave a result for the global attractivity of the positive equi-
librium N∗ of the autonomous system (1.4) which does not depend on knowing N∗ explicitly;
nevertheless the authors had to assume that such an equilibrium exists.

This brings us to the second main task of this paper: to generalize the result in [10], by
establishing a more general criterion for the global attractivity of N∗ depending on the size of
the delays τik(t), which in particular not only does not require an a priori explicit knowledge
of the equilibrium N∗, much less that the components of N∗ are all equal.

The main lines of the work in this paper are as described above, and its organization is
as follows. In Section 2, we introduce some notation and recall some preliminary results on
persistence and existence of a positive equilibrium N∗ for (1.2). In Section 3, sufficient condi-
tions for the absolute global exponential stability of N∗ are given. In Section 4, we establish a
delay-dependent criterion for the global attractivity of N∗, without assuming condition (1.6),
which generalizes the result in [10]. A comparison with the criterion in [4] will also be given.
Two illustrative examples will be given at the end.
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2 Preliminaries

Consider a Nicholson system with patch structure of the form

N′i (t) = −diNi(t) +
n

∑
j=1,j 6=i

aijNj(t) +
m

∑
k=1

βikNi(t− τik(t))e−Ni(t−τik(t)), i = 1, . . . , n, t ≥ 0, (2.1)

under the following general assumption on the coefficients and delays:

(H0) di > 0, aij ≥ 0 (j 6= i), βik ≥ 0 with βi := ∑m
k=1 βik > 0, τik : [0, ∞) → [0, τ] (for some

τ > 0) are continuous, for i, j = 1, . . . , n, k = 1, . . . , m.

These systems are in general used in population dynamics or disease modelling, as they serve
as models for the growth of biological populations distributed over n classes or patches, with
migration among them: xi(t) denotes the density of the ith-population, aij is the rate of the
population moving from class j to class i, di is the coefficient of instantaneous loss for class
i (which integrates both the death rate and the dispersal rates of the population in class i
moving to the other classes), and βikNi(t − τik(t))e−Ni(t−τik(t)) are birth functions for class i;
as usual, delays are included in the “birth terms", and our model prescribes time-dependent
delays. Due to this biological interpretation, it is natural to assume that aii = 0 for all i;
however, for different settings, one may still suppose that aii = 0, since, for each i, the term
aiiNi(t) may be incorporated in the term −diNi(t). In biological terms, it is also natural to take
di = mi + ∑j 6=i aji, where mi > 0 is the death rate for class i, although here a weaker version
of this condition will be required.

Set τ = maxi,k supt≥0 τik(t) > 0. As the phase space for (1.1), take the Banach space
C := C([−τ, 0]; Rn) endowed with the norm ‖ϕ‖ = maxt∈[−τ,0] |ϕ(t)|, where the supremum
norm | · | in Rn is fixed, |v| = |(v1, . . . , vn)| = max1≤i≤n |vi|. A vector v ∈ Rn will be identified
with the constant function ϕ(t) ≡ v in C. System (1.1) can be written as an abstract DDE
in C, N′(t) = f (t, Nt), where Nt denotes the function in C given by Nt(θ) = N(t + θ) for
−τ ≤ θ ≤ 0. By C+ we denote the cone in C of nonnegative functions, and write ϕ ≥ 0 for
ϕ ∈ C+. By a positive vector v ∈ Rn, we mean a vector whose components are all positive,
and write v > 0. In a similar way, we denote ϕ > 0 for a function in C whose components are
positive for all t ∈ [−τ, 0].

Bearing in mind the biological interpretation of the family (1.1), the set

C+
0 := {ϕ ∈ C+ : ϕ(0) > 0}

is taken as the set of admissible initial conditions. For simplicity, here initial conditions are
given at time t = 0,

N0 = ϕ, (2.2)

with ϕ ∈ C+
0 , but it is clear that one may give initial conditions of the form Nt0 = ϕ ∈ C+

0
for any t0 ≥ 0. As usual, the solution of (2.1) with initial condition Nt0 = ϕ is denoted by
N(t, t0, ϕ). In what follows, even if not mentioned, only solutions of (2.1)–(2.2) with N0 = ϕ ∈
C+

0 will be considered.
Writing (2.1) in the form N′i (t) = −diNi(t) + gi(t, Nt), 1 ≤ i ≤ n, the functions gi are

bounded on bounded sets of R× C+ and satisfy gi(t, ϕ) ≥ 0 for t ≥ 0, ϕ ∈ C+, thus solutions
of (2.1) with initial conditions on C+

0 are defined and positive on [0, ∞).
Recall that a DDE in C = C([−τ, 0]; Rn) given by x′(t) = f (t, xt), t ≥ 0, is dissipative (in C+

0 )
if all its solutions are defined for all t ≥ 0 and are eventually bounded in norm by a common
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positive constant; in other words, there exists M > 0 such that lim supt→∞ |x(t, 0, ϕ)| ≤ M for
all ϕ ∈ C+

0 . The DDE x′(t) = f (t, xt), t ≥ 0, is said to be persistent (in C+
0 ) if all its solutions

are defined and bounded below away from zero on [0, ∞), i.e., lim inft→∞ xi(t, 0, ϕ) > 0 for
all 1 ≤ i ≤ n, ϕ ∈ C+

0 ; and (2.1) is uniformly persistent if all positive solutions are defined
on [0, ∞) and there is a uniform lower bound m > 0, i.e., lim inft→∞ xi(t, 0, ϕ) ≥ m for all
1 ≤ i ≤ n, ϕ ∈ C+

0 .
To simplify the notation, define the n× n matrices

A = [aij], B = diag (β1, . . . , βn), D = diag (d1, . . . , dn), (2.3)

where aii := 0 (1 ≤ i ≤ n), and the so-called community matrix

M = B− D + A. (2.4)

The properties of the matrices D−A and M play an important role in the global asymptotic
behaviour of solutions of (2.1). The following algebraic concept is timely.

Definition 2.1. A square matrix N = [nij] with nonpositive off-diagonal entries (i.e., nij ≤ 0
for i 6= j) is said to be a non-singular M-matrix if all its eigenvalues have positive real parts.

If nij ≤ 0 for i 6= j, it is well known that N = [nij] is a non-singular M-matrix if and only if
there exists a positive vector v such that Nv > 0 [3]. Hence, D− A is a non-singular M-matrix
if and only if (D− A)v > 0 for some vector v = (v1, . . . , vn) > 0, i.e.,

divi −
n

∑
j=1,j 6=i

aijvj > 0, i = 1, . . . , n.

Clearly, this is equivalent to saying that the ODE x′ = −(D− A)x is asymptotically stable.
Throughout this paper, we shall assume a stronger hypothesis:

(H1) there exists a vector v = (v1, . . . , vn) > 0 such that

γi(v) :=
βivi

divi −∑j 6=i aijvj
> 1, i = 1, . . . , n. (2.5)

Since βi > 0 for all i, note that (H1) is equivalent to saying that there is a positive vector v
that satisfies both (D− A)v > 0 and Mv > 0.

Remark 2.2. Since M is a cooperative matrix (also called a Metzler matrix), i.e., all its off-diagonal
entries are nonnegative, by using the theory of Perron–Frobenius one can show that, if Mc > 0
for some vector c > 0, then the spectral bound s(M) = max{Re λ : λ ∈ σ(M)} of M is positive;
in fact, the converse is also true when M is irreducible. Moreover, when D − A is a non-
singular M-matrix, (H1) is satisfied if and only if there exists a positive vector c such that
Mc > 0 (see [7]). This means that, if there are positive vectors u, w such that (D − A)u > 0
and Mw > 0, then there is a positive vector v for which both conditions (D − A)v > 0 and
Mv > 0 are satisfied.

Remark 2.3. From a biological viewpoint, it is quite natural to assume that D − A is a non-
singular M-matrix. In fact, as mentioned above, for models from population dynamics we take
di − ∑j 6=i aji = mi > 0 (1 ≤ i ≤ n), where mi is the death rate for the population in patch i.
Thus D− AT is diagonally dominant, i.e., [D− AT]1 > 0 where 1 := (1, . . . , 1). In particular,
the matrix D − AT is a non-singular M-matrix, which implies that D − A is a non-singular
M-matrix as well.
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The main purpose of this paper is to investigate the stability and global attractivity of a
positive equilibrium N∗, when it exists. Some standard definitions are given below.

Definition 2.4. A positive equilibrium N∗ of (2.1) is said to be globally attractive (in C+
0 ) if

N(t, 0, ϕ)→ N∗ as t→ ∞, for all solutions of (2.1) with initial conditions N0 = ϕ ∈ C+
0 ; N∗ is

globally asymptotically stable if it is stable and globally attractive. If there are K > 0, α > 0
such that |N(t, 0, ϕ) − N∗| ≤ Ke−αt‖ϕ − N∗‖, for all t ≥ 0, ϕ ∈ C+

0 , then N∗ is said to be
globally exponentially stable.

In what concerns the existence and uniqueness of an equilibrium N∗ > 0, observe that the
equilibria of (2.1) coincide with the equilibria of the autonomous ODE

N′i (t) = −diNi(t) +
n

∑
j=1,j 6=i

aijNj(t) + βiNi(t)e−Ni(t), i = 1, . . . , n. (2.6)

The nonlinearity h(x) = xe−x is bounded on [0, ∞), hence a simple use of the variation of
constants formula shows that, if the linear ODE x′ = −[D− A]x is exponentially stable, then
(2.6) is dissipative. Since Rn

+ is positively invariant for (2.6) and the system is dissipative,
by [9] there is at least a saturated equilibrium of (2.6) in Rn

+. Under the assumption (H1),
by exploiting the properties of the cooperative matrix M, it was shown in [7] that such an
equilibrium is forcefully positive and unique.

Some preliminary results on the global asymptotic behaviour of (2.1) are collected in the
theorem below. In spite of the situation with time-dependent delays, the statements are easily
deduced by repeating the arguments in [7], so the proofs are omitted (see also [5, 10]).

Theorem 2.5. For system (2.1), assume (H0) and that D− A is a non-singular M-matrix. Then:

(i) (2.1) is dissipative;

(ii) if s(M) ≤ 0, the equilibrium 0 is globally asymptotically stable;

(iii) if (H1) holds, (2.1) is uniformly persistent and there is a unique positive equilibrium N∗;

(iv) if (1.5) holds, the positive equilibrium N∗ is globally asymptotically stable.

Remark 2.6. One can check that the statements in Theorem 2.5 (i)–(iii) are valid with
h(x) = xe−x replaced in each equation by smooth functions hi(x) with hi(x) > 0 for x > 0,
hi(0) = 0, h′i(0) = 1, hi(∞) = 0 and hi(x)/x decreasing on (0, ∞). Nevertheless, good crite-
ria for the attractivity of the equilibrium N∗ > 0 would depend heavily on the shape of the
nonlinearities hi(x).

3 Absolute exponential stability of the positive equilibrium

If the coefficients γi(v) defined in (2.5) satisfy suitable upper bounds, the positive equilibrium
N∗ has its components in the interval (0, 2), where the nonlinearity h(x) = xe−x has very
specific properties. This allows us to derive the absolute global exponential stability of the
positive equilibrium N∗ of (2.1), where as usual the term ‘absolute’ refers to the fact that such
a stability holds regardless of the size of the delay functions τik(t), provided that they remain
bounded.

Before the main theorem of this section, we state two auxiliary results. The first lemma is a
simplified version of [6, Lemma 3.2], while the second refers to properties of the nonlinearity
xe−x.
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Lemma 3.1 ([6]). Let S ⊂ C be the set of initial conditions for a DDE x′(t) = f (t, xt) (t ≥ t0)

in C, where f : [t0, ∞)× S → Rn is continuous. For | · | the maximum norm in Rn, suppose that
f = ( f1, . . . , fn) satisfies

(H) for all t ≥ t0 and ϕ ∈ S, whenever |ϕ(θ)| < |ϕ(0)| for θ ∈ [−τ, 0), then ϕi(0) fi(t, ϕ) < 0 for
some i such that |ϕ(0)| = |ϕi(0)|.

Then the solutions x(t) of x′(t) = f (t, xt) with initial conditions xt0 = ϕ ∈ S are defined and bounded
for t ≥ t0 and, if xt ∈ S for all t ≥ t0, the solution satisfies |x(t)| ≤ ‖xt1‖ for all t ≥ t1 ≥ t0.

Lemma 3.2 ([5]). Fix x ∈ (0, 2]. Then |ye−y − xe−x| < e−x|y− x| for any y > 0, y 6= x.

Theorem 3.3. Consider system (2.1) under the general condition (H0). Further assume that

(H2) there exists a vector v = (v1, . . . , vn) > 0 such that

1 < γi(v) ≤ e
2 min

k,j
(vk/vj)

, i = 1, . . . , n, (3.1)

where γi(v) are defined as in (2.5).

Then, the positive equilibrium N∗ of (2.1) is uniformly stable. Moreover, if

(H2*) there exists a vector v = (v1, . . . , vn) > 0 such that

1 < γi(v) < e
2 min

k,j
(vk/vj)

i = 1, . . . , n, (3.2)

the positive equilibrium N∗ of (2.1) is globally exponentially stable. In particular, if

1 <
βi

di −∑j 6=i aij
< e2, i = 1, . . . , n, (3.3)

N∗ is globally exponentially stable.

Proof. Assume (H2). The existence and uniqueness of a positive equilibrium N∗ is guaranteed
by Theorem 2.5. The equilibrium N∗ = (N∗1 , . . . , N∗n ) is determined by the system

βiN∗i e−N∗i = diN∗i −∑
j 6=i

aijN∗j , 1 ≤ i ≤ n.

Fix i ∈ {1, . . . , n} such that N∗i /vi = maxj(N∗j /vj). Since βie−N∗i ≥ di − 1
vi

∑j 6=i aijvj, it follows
that

eN∗i ≤ γi(v).

Hence from (3.1) we have N∗i ≤ 2m0 where m0 = min
k,j

(vk/vj), implying that

N∗j ≤ vj
N∗i
vi
≤ 2m0

vj

vi
≤ 2, 1 ≤ j ≤ n. (3.4)

On the other hand, as all coordinates of N∗ lie in (0, 2], from Lemma 3.2 we have

|h(N∗i (1 + x))− h(N∗i )| < e−N∗i N∗i |x|, 1 ≤ i ≤ n, (3.5)

for all x > −1, x 6= 0, where as before h(x) = xe−x.
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Returning to (2.1), through the change of variables

xi(t) =
Ni(t)
N∗i
− 1, 1 ≤ i ≤ n, (3.6)

system (2.1) becomes

x′i(t) = −dixi(t) +
n

∑
j=1,j 6=i

âijxj(t) +
m

∑
k=1

βik
1

N∗i

[
h
(

N∗i
(
1 + xi(t− τik(t))

))
− h(N∗i )

]
=: fi(t, xt), 1 ≤ i ≤ n,

(3.7)

where âij =
N∗j
N∗i

aij, i 6= j. Note that S = {ϕ ∈ C : ϕ(θ) ≥ −1 for θ ∈ [−τ, 0) and ϕ(0) > −1} is
the set of admissible initial conditions for the transformed system (3.7).

We now apply Lemma 3.1 to show that N∗ is uniformly stable. For any t ≥ 0 and ϕ ∈ S
with |ϕ(θ)| < |ϕ(0)| for θ ∈ [−τ, 0), we need to verify that ϕi(0) fi(t, ϕ) < 0 for some i such
that |ϕ(0)| = |ϕi(0)|.

Let ϕ be as above and fix i such that |ϕ(0)| = |ϕi(0)|. We only consider the case ϕi(0) > 0,
since the case ϕi(0) < 0 is treated in a similar way. For t ≥ 0, the estimates in (3.5) yield∣∣∣h(N∗i

(
1 + ϕi(−τik(t))

))
− h(N∗i )

∣∣∣ < N∗i e−N∗i ϕi(0),

and consequently

fi(t, ϕ) = −di ϕi(0) + ∑
j 6=i

âij ϕj(0) + ∑
k

βik
1

N∗i

[
h
(

N∗i
(
1 + ϕi(−τik(t))

))
− h(N∗i )

]
< ϕi(0)

(
−di + ∑

j 6=i
âij + βie−N∗i

)
= 0.

(3.8)

From Lemma 3.1, it follows that, for any solution x(t) of (3.7) with initial condition in S, the
function t 7→ ‖xt‖ is non-increasing. This shows that the equilibrium N∗ of (2.1) is uniformly
stable.

Next, we assume the strict inequalities in (3.2). Proceeding as in (3.4), one obtains that all
the components N∗i of N∗ are in the interval (0, 2). From the boundedness and persistence of
solutions to (2.1), one may fix m, L > 0 such that the components of the solution x(t) of (3.7)
satisfy −1 + m ≤ xi(t) ≤ L for t sufficiently large. On the other hand, since |h′(N∗i )| < e−N∗i

for 0 < N∗i < 2, the estimates (3.5) lead to

max
x∈[−1+m,L]

|gi(x)| < e−N∗i , 1 ≤ i ≤ n,

where gi(x) is the continuous function given by gi(x) =
h(N∗i (1+x))−h(N∗i )

N∗i x if x 6= 0, gi(0) =

h′(N∗i ). Hence, one can choose a small δ > 0 such that

|h(N∗i (1 + x))− h(N∗i )| ≤ e−δri(e−N∗i −
√

δ)N∗i |x|, 1 ≤ i ≤ n,

for all x ∈ [−1 + m, L], where ri = max1≤k≤m supt≥0 τik(t).
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Now, effect a second change of variables by setting x̄i(t) = eδtxi(t). System (3.7) becomes

x̄′i(t) = −(di − δ)x̄i(t) +
n

∑
j=1,j 6=i

âij x̄j(t)

+
m

∑
k=1

βik
eδt

N∗i

[
h
(

N∗i
(
1 + e−δ(t−τik(t)) x̄i(t− τik(t))

))
− h(N∗i )

]
=: f̄i(t, x̄t), 1 ≤ i ≤ n,

(3.9)

with S̄ = {ϕ ∈ C : ϕ(θ)eδθ ≥ −1 for θ ∈ [−τ, 0) and ϕ(0) > −1} as the set of initial conditions.
Arguing as in (3.8), for t ≥ 0 and ϕ ∈ S̄ with |ϕ(θ)| < |ϕ(0)| = ϕi(0) for θ ∈ [−τ, 0) and some
i ∈ {1, . . . , n}, we obtain

f̄i(t, ϕ) = −(di − δ)ϕi(0) + ∑
j 6=i

âij ϕj(0) + ∑
k

βik
eδt

N∗i

[
h
(

N∗i
(
1 + e−δteδτik(t)ϕi(−τik(t))

))
− h(N∗i )

]
≤ ϕi(0)

(
−(di − δ) + ∑

j 6=i
âij + βi(e−N∗i −

√
δ)

)
= ϕi(0)

√
δ(
√

δ− βi),

hence f̄i(t, ϕ) < 0 if δ is sufficiently small. From Lemma 3.1, t 7→ ‖x̄t‖ is non-increasing. This
implies that the solutions N(t) of (2.1) satisfy

|N(t)− N∗| ≤ e−δt max
i

(N∗i )‖N0‖,

thus N∗ is globally exponentially stable.

Analysis of the above proof shows that, under the existence of the positive equilibrium
N∗, hypotheses (H2) and (H2*) were used only to derive that all its components N∗i are in the
interval (0, 2], respectively (0, 2). Therefore, a weaker version of Theorem 3.3 is obtained as
follows.

Theorem 3.4. For system (2.1), suppose (H0), (H1). If the positive equilibrium N∗ = (N∗1 , . . . , N∗n )
(whose existence is given in Theorem 2.5) satisfies max1≤i≤n N∗i ≤ 2, respectively max1≤i≤n N∗i < 2,
then N∗ of (2.1) is uniformly stable, respectively globally exponentially stable.

For the more general Nicholson system (1.1), we obtain the following generalization of
Theorem 3.3. Clearly, Theorem 3.4 can be generalized in a similar way.

Theorem 3.5. Consider system (1.1), where ci > 0 (1 ≤ i ≤ n) and the other coefficients and delay
functions satisfy (H0). For any positive vector v = (v1, . . . , vn), let γi(v), i = 1, . . . , n, be as in (2.5).

(i) If there exists v > 0 such that

1 < γi(v) ≤ e
2 min

k,j
(

vkcj
vjck

)
, i = 1, . . . , n, (3.10)

the positive equilibrium N∗ of (1.1) is uniformly stable.

(ii) If

1 < γi(v) < e
2 min

k,j
(

vkcj
vjck

)
, i = 1, . . . , n, (3.11)

the positive equilibrium N∗ of (1.1) is globally exponentially stable.
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Proof. Effect the scalings Ñi(t) = ciNi(t), i = 1, . . . , n. System (1.1) is transformed into a system
of the form (2.1), with the coefficients aij replaced by

ãij :=
ci

cj
aij, i, j = 1, . . . , n, j 6= i.

For v = (v1, . . . , n) > 0, note that

γ̃i(v) :=
βivi

divi −∑j 6=i ãijvj
= γi(ṽ), i = 1, . . . , n, (3.12)

where ṽ = ( v1
c1

, . . . , vn
cn
). The result now follows from Theorem 3.3.

Remark 3.6. For the case of (2.1) with autonomous discrete delays τik(t) ≡ τik, the global
asymptotic stability (but not the exponential stability) of the positive equilibrium was proven
in [7] under (H2) with v = 1 := (1, . . . , 1):

1 < γi(1) :=
βi

di −∑j 6=i aij
≤ e2, i = 1, . . . , n.

However, the arguments in [7] do not carry out for the present situation, since properties of
ω-limit sets for autonomous DDEs were employed to derive the result. Although Theorem 3.3
and Theorem 3.5 address the more general situation of Nicholson systems with time-varying
discrete delays, with γi(1) replaced by γi(v) for some positive vector v, the global attractivity
of N∗ cannot be derived when γi(1) = e2 for some i. On the other hand, combining the
techniques above with the ones in [7], for the autonomous case of (1.1) with τik(t) ≡ τik it
follows that (3.10) is a sufficient condition for the global asymptotic stability of N∗.

4 Global attractivity under small delays

In this section, the goal is to prove that a condition on the size of the delays, together with
(H1), implies that the positive equilibrium is a global attractor. Here, some ideas in So and Yu
[16] (for the scalar case) and Jia et al. [10] (for the n-dimensional case) are followed. However,
significant adjustments to the arguments in [10] have to be performed, in order to eliminate
the quite restrictive assumption (1.6). We emphasize that, without imposing (1.6), not only are
the components of N∗ in general different from each other, but also N∗ cannot be computed
explicitly.

To simplify some arguments, we write (2.1) as

N′i (t) = −diNi(t) + ∑
j 6=i

aijNj(t) +
mi

∑
k=1

βikNi(t− τik(t))e−Ni(t−τik(t)), i = 1, . . . , n, (4.1)

where m1, . . . , mn ∈ N, all the coefficients and delays are as in (2.1) and moreover we now
demand that βik > 0 for all i = 1, . . . , n, k = 1, . . . , mi. In what follows, as before we always
assume aii = 0, and denote

βi =
mi

∑
k=1

βik, ri = max
1≤k≤mi

sup
t≥0

τik(t), τ = max
1≤i≤n

ri for i = 1, . . . , n.
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Assume (H0), (H1), and effect again the change of variables (3.6), which transforms system
(2.1) into (3.7), also written as

x′i(t) = −di(xi(t) + 1) + ∑
j 6=i

âij(xj(t) + 1)

+
mi

∑
k=1

βik(xi(t− τik(t)) + 1)e−N∗i (xi(t−τik(t)+1), 1 ≤ i ≤ n, (4.2)

with âij =
N∗j
N∗i

aij, i 6= j. In this way, the global attractivity of the equilibrium N∗ for (2.1) is
equivalent to the global attractivity of the trivial solution for (4.2).

We start with a useful lemma, whose elementary proof can be checked by the reader or
found in [11, p. 122] or [16].

Lemma 4.1. Let u ≥ 0, v ≥ 0 be such that u ≤ ev − 1 and v ≤ 1− e−u. Then u = v = 0.

To prove that solutions x(t) of (4.2) satisfy x(t)→ 0 as t→ ∞, we will ask for the following
condition on the size of the delays:

(H3) (ediri − 1)
βi

di
N∗i e−N∗i ≤ 1, for all i = 1, . . . , n.

Theorem 4.2. Assume (H0), (H1) and (H3). Then, the positive equilibrium N∗ of the Nicholson
system (4.1) is a global attractor of all positive solutions; i.e., all solutions of (2.1) with initial conditions
N0 ∈ C+

0 satisfy
lim
t→∞

N(t) = N∗.

Proof. For solutions x(t) = (x1(t), . . . , xn(t)) of (4.2), define

λ = min
1≤i≤n

lim inf
t→∞

xi(t), µ = max
1≤i≤n

lim sup
t→∞

xi(t).

Observe that, from Theorem 2.5, −1 < λ ≤ µ < ∞. Our aim is to show that max(µ,−λ) = 0,
since this implies that µ = λ = 0.

For the sake of contradiction, assume that max(µ,−λ) > 0 holds. Suppose that µ =

max(µ,−λ) > 0 (the case −λ = max(µ,−λ) > 0 is analogous).
Fix i1 such that µ = lim supt→∞ xi1(t). To simplify the notation, denote µ = µ and λ =

lim inft→∞ xi1(t).
By the fluctuation lemma [15], there exists an increasing sequence (tq) such that tq → ∞,

xi1(tq) > 0 with xi1(tq)→ µ, x′i1(tq)→ 0. We divide the rest of the proof into several steps.

Step 1. We first prove that there exists q0 ∈ N such that, whenever q ≥ q0, there is
lq ∈ [tq − ri1 , tq) such that xi1(lq) = 0 and xi1(t) > 0, for t ∈ (lq, tq).

Suppose the assertion is false. Then there is a subsequence of tq, which we also denote by
tq, such that xi1(t) > 0, for all t ∈ [tq − ri1 , tq). We have

x′i1(tq) = − di1(xi1(tq) + 1) +
n

∑
j=1

âi1 j(xj(tq) + 1)

+

mi1

∑
k=1

βi1k
(
xi1(tq − τi1k(tq)) + 1

)
e−Ni1

(
xi1 (tq−τi1k(tq))+1

)
< − di1(xi1(tq) + 1) +

n

∑
j=1

âi1 j(xj(tq) + 1) + e−N∗i1

mi1

∑
k=1

βi1k
(
xi1(tq − τi1k(tq)) + 1

)
,

(4.3)
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as by assumption xi1(tq − τi1k(tq)) > 0. Now we claim that, for all k, lim xi1(tq − τi1k(tq)) = µ.
On the one hand, lim sup xi1(tq − τi1k(tq)) ≤ µ. On the other hand, taking lim inf on (4.3),
observing again that xi1(tq − τi1k(tq)) > 0 and with αk := lim inf xi1(tq − τi1k(tq)), we get

0 ≤ (µ + 1)

(
−di1 + ∑

j 6=i1

âi1 j

)
+ e−N∗i1

mi1

∑
k=1

βi1k(αk + 1)

= −(µ + 1)e−N∗i1 βi1 + e−N∗i1

mi1

∑
k=1

βi1k(αk + 1)

= −µe−N∗i1 βi1 + e−N∗i1

mi1

∑
k=1

βi1kαk,

which implies µ ≤ 1
βi1

mi

∑
k=1

βi1kαk. However, since αk ≤ µ, one also has
1

βi1

mi

∑
k=1

βi1kαk ≤ µ, so

that

µ ≤ 1
βi1

mi

∑
k=1

βi1kαk ≤ µ.

This is only possible with αk = µ, for all k. Therefore, for every k = 1, ..., mi1 ,

µ = lim inf xi1(tq − τi1k(tq)) ≤ lim sup xi1(tq − τi1k(tq)) ≤ µ,

and consequently lim xi1(tq − τi1k(tq)) exists and is equal to µ, for all k. Taking limits in (4.3)
yields

0 ≤ (µ + 1)
(
− di1 + ∑

j 6=i1

âi1 j

)
+ (µ + 1)βi1 e−N∗i1 (µ+1)

= (µ + 1)
(
− di1 + ∑

j 6=i1

âi1 j

) (
1− e−N∗i1 µ

)
< 0,

which is not possible. This finishes Step 1.

Step 2. Next, we show that λ, µ satisfy{
N∗i1 λ ≥ e−N∗i1 µ − 1,

N∗i1 µ ≤ e−N∗i1 λ − 1.

Let ε > 0 be given so that λ− ε ≥ λ− ε > −1. By the definition of λ and µ, there exists
q1 > q0 such that

λ− ε < xi1(t), xj(t) < µ + ε, 1 ≤ j ≤ n

whenever t > min{tq1 , sq1} − 2τ. Considering separately the cases xi1(t − τi1k(t)) ≤ 0 and
xi1(t− τi1k(t)) > 0, it is clear that

xi1(t− τi1k(t))e
−N∗i1 xi1 (t−τi1k(t)) < µ + ε, (4.4)

for all i, k and t sufficiently large.
For lq as in Step 1, multiplying the i1-equation of (4.2) by edi1 t and integrating over the

interval [lq, tq] gives
(1 + xi1(tq))edi1 tq − edi1 lq = Aq + Bq, (4.5)
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where

Aq = ∑
j 6=i1

âi1 j

∫ tq

lq
(xj(t) + 1)edi1 tdt ≤ (µ + ε + 1)

(
∑
j 6=i1

âi1 j

)
edi1 tq − edi1 lq

di1
,

and

Bq =

mi1

∑
k=1

βi1k

∫ tq

lq
(xi1(t− τi1k(t)) + 1)e−N∗i1 (xi1 (t−τi1k(t))+1)edi1 tdt .

From (4.4), we obtain

Bq ≤
mi1

∑
k=1

βi1k

∫ tq

lq

(
(µ + ε)e−N∗i1 + e−N∗i1 (xi1 (t−τi1k(t))+1)

)
edi1 tdt

≤
mi1

∑
k=1

βi1k

(
(µ + ε)e−N∗i1 + e−N∗i1 (1+λ−ε)

) ∫ tq

lq
edi1 tdt

= βi1 e−N∗i1
(

µ + ε + e−N∗i1 (λ−ε)
) edi1 tq − edi1 lq

di1
.

Inserting these upper bounds for Aq and Bq in (4.5), we derive

xi1(tq)edi1 tq

≤ − (edi1 tq − edi1 lq) + Aq + Bq

≤
[
−di1 + (µ + ε + 1)

(
∑
j 6=i1

âi1 j

)
+ βi1 e−N∗i1

(
µ + ε + e−N∗i1 (λ−ε)

)] edi1 tq − edi1 lq

di1

=

[
− di1 + (µ + ε + 1)

(
−βi1 e−N∗i1 + di1

)
+ βi1 e−N∗i1

(
µ + ε + e−N∗i1 (λ−ε)

) ] edi1 tq − edi1 lq

di1

=
[
(µ + ε)di1 + βi1 e−N∗i1

(
e−N∗i1 (λ−ε) − 1

)] edi1 tq − edi1 lq

di1
,

so that

xi1(tq) ≤
[
(µ + ε)di1 + βi1 e−N∗i1

(
e−N∗i1 (λ−ε) − 1

)] 1− e−di1 ri1

di1
.

Letting q→ ∞ and ε→ 0+ yields

µ ≤ µ(1− e−di1 ri1 ) + βi1 e−N∗i1
(
e−N∗i1 λ − 1

) 1− e−di1 ri1

di1
,

hence

0 < µ ≤ (edi1 ri1 − 1)
βi1
di1

e−N∗i1
(
e−N∗i1 λ − 1

)
. (4.6)

In particular, this implies that λ < 0.
Reasoning as above, we take an increasing sequence (sq) such that sq → ∞ and xi1(sq)→ λ,

x′i1(sq)→ 0. Next, as in Step 1, we can find q2 > q1 such that, if q ≥ q2, there is pq ∈ [sq− ri1 , sq)

such that xi1(pq) = 0 and xi1(t) < 0, for t ∈ (pq, sq). As above in this step, similar arguments
now show that

xi1(sq) ≥
[
(λ− ε)di1 + βi1 e−N∗i1

(
e−(µ+ε)N∗i1 − 1

)] 1− e−di1 ri1

di1
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and consequently, taking limits as q→ ∞ and ε→ 0+,

λ ≥ (edi1 ri1 − 1)
βi1
di1

e−N∗i1
(
e−N∗i1 µ − 1

)
. (4.7)

We finally apply hypothesis (H3). With (H3), the estimates (4.6) and (4.7) lead to

N∗i1 µ ≤ e−N∗i1 λ − 1 and N∗i1 λ ≥ e−N∗i1 µ − 1, (4.8)

which proves the claim.

Step 3. Define u = N∗i1 µ, v = N∗i1 λ, and note that u, v > 0. From (4.8), we obtain{
v ≤ 1− e−u,

u ≤ ev − 1.

From Lemma 4.1, we have u = v = 0. Consequently µ = λ = 0, which contradicts the
assumption of µ > 0. This finishes the proof.

As in Section 3, the above theorem is easily extended to more general Nicholson systems
(1.1) by effecting the scalings Ni(t) 7→ ciNi(t), i = 1, . . . , n. For such systems, Theorem 4.2
reads as follows.

Theorem 4.3. For system (1.1), assume (H0), (H1), ci > 0 and

(ediri − 1)
βi

di
ciN∗i e−ci N∗i ≤ 1, for all i = 1, . . . , n.

Then, the positive equilibrium N∗ of (1.1) is a global attractor (in C+
0 ).

Condition (H3) is a condition on the size of the delays, as limri→∞(ediri − 1) = ∞,
limri→0+(ediri − 1) = 0, thus (H3) fails to be true if the delays are too large. On the other
hand, (H3) involves the a priori knowledge of N∗, therefore it is relevant to obtain criteria that
do not depend on it.

Corollary 4.4. For system (1.1), assume (H0), (H1), ci > 0 and

(ediri − 1)
βi

di
≤ e, for all i = 1, . . . , n. (4.9)

Then, the positive equilibrium N∗ of (1.1) is a global attractor (in C+
0 ).

Proof. Since xe−x ≤ e−1 for x ≥ 0, condition (4.9) implies (H3).

Corollary 4.5. Assume that (H1) holds, for some v > 0 for which

(H3*) (ediri − 1) max
1≤j,k≤n

(
vj

vk
log γk(v)

)
≤ 1, for all i = 1, . . . , n,

where γi(v) are as in (2.5). Then there is a positive equilibrium N∗ of (2.1), which is a global attractor
(in C+

0 ).
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Proof. Let N∗k
vk

= max
i

N∗i
vi

. Proceeding as in the proof of Theorem 3.3, we obtain eN∗k ≤ γk(v),

hence
N∗k ≤ log γk(v).

Moreover, βi
di

e−N∗i =
di−∑ âij

di
≤ 1, where âij = aijN∗j /N∗i for j 6= i. Finally note that, for any

given j,

N∗j =
N∗j
vj

vj ≤
N∗k
vk

vj ≤
vj

vk
log γk(v),

and thus for any i = 1, . . . , n we have

(ediri − 1)
βi

di
N̄∗i e−N∗i ≤ (ediri − 1) max

1≤j,k≤n

(
vj

vk
log γk(v)

)
≤ 1.

The statement is now a consequence of Theorem 4.2.

When (H1), (H3*) hold with v = (1, . . . , 1), we obtain a simpler version of the above
statement.

Corollary 4.6. Assume (H0),

γi :=
βi

di −∑j 6=i aij
> 1 and (ediri − 1) log

(
max
1≤j≤n

γj

)
≤ 1, for all i = 1, . . . , n.

Then there is a positive equilibrium N∗ of (2.1), which is a global attractor (in C+
0 ).

We now adapt e.g. Corollary 4.6 to more general systems (1.1).

Corollary 4.7. Assume that (H0) holds, ci > 0 and

(ediri − 1) log
(

max
1≤j≤n

γj(c−1)

)
≤ 1, for all i = 1, . . . , n, (4.10)

where γi(c−1) := βic−1
i

dic−1
i −∑j 6=i aij

c−1
j > 1 (1 ≤ i ≤ n). Then there is a positive equilibrium N∗ of (1.1),

which is a global attractor (in C+
0 ).

Proof. As before, effect the change of variables Ñi(t) = ciNi(t), i = 1, . . . , n, and recall that (1.1)
is transformed into a system of the form (2.1), with the coefficients aij replaced by ãij := ci

cj
aij.

With the notation in (3.12), we have

γ̃i(1) = γi(c−1), i = 1, . . . , n.

Hence, the result follows from the above corollary.

Remark 4.8. In [10], the authors considered (2.1) but, instead of assuming aii = 0 and incorpo-
rating this coefficient in di, for each i, they assumed that ∑n

j=1 aij = 0. Changing accordingly
to the notation followed here, it was assumed in [10] that γi = γi(1) is the same constant
c > 1 for all i, i.e., condition (1.6) is satisfied, so that N∗ = (log c, . . . , log c) is the positive
equilbrium. With this notation, Jia et al. [10] proved the global attractivity of N∗ under the
additional condition

(ediτ − 1)
di −∑j 6=i aij

di
log c ≤ 1, i = 1, . . . , n, (4.11)
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where τ = max1≤i≤n ri. Note however that, in this situation, (4.11) is equivalent to

(ediτ − 1)
βi

di
c−1 log c ≤ 1, i = 1, . . . , n,

and c−1 log c = e−N∗i N∗i for i = 1, . . . , n. This shows that the criterion in [10] is just a particular
case of our Theorem 4.2.

Remark 4.9. In the recent paper [4], El-Morshedy and Ruiz-Herrera considered an abstract
setting, in which they developed a geometric method to prove the global attractivity of non-
trivial equilibria for systems of autonomous DDEs. They also gave an application to an au-
tonomous Nicholson system of the form (1.4), where τik(t) ≡ τik ≥ 0 for all i, k. However,
two major constraints are imposed in [4]: first, the authors assume the existence of a positive
equilibrium N∗ of (1.4); secondly, the matrix D− A is assumed to be not only a non-singular
M-matrix, but diagonally dominant, i.e., di −∑j 6=i aij > 0 for i = 1, . . . , n. For γi as above, and
denoting ρ = max1≤i,k≤m(τikdi), it was shown in [4] that N∗ is a global attractor for (1.4) if

log(γi) ≤ 1 +
eρ

eρ − 1
, i = 1, . . . , n. (4.12)

This criterion is not always comparable with the ones presented in Theorem 4.2 and its corol-
laries, in the sense that for different concrete values of the coefficients and delays our results
might provide better criteria than the one in [4], and vice-versa. On the other hand, con-
dition (4.12) provides both a delay-independent and a delay-dependent criterion for global
attractivity. In fact, observe that the function g(ρ) = 1 + eρ

eρ−1 is decreasing on (0, ∞) with
g(0+) = ∞, g(∞) = 2, thus (4.12) is always satisfied if 1 < γi ≤ e2 for i = 1, . . . , n. This
means that the nice result in [4] in particular recovers the requirement in [7] for the absolute
global attractivity of N∗ (see also Remark 3.6); at the same time, (4.12) is clearly satisfied if
τ = max1≤i,k≤m τik is small.

5 Examples

Example 5.1. In (1.1), let n = 2, m = 1, a12 = a21 = 1, d1 = 3, d2 = 2, c1 = c2 = 1 :

N′1(t) = −3N1(t) + N2(t) + β1N1(t− τ1(t))e−N1(t−τ1(t))

N′2(t) = −2N2(t) + N1(t) + β2N2(t− τ2(t))e−N2(t−τ2(t)),
(5.1)

where βi > 0, τi(t) are continuous, nonnegative and bounded, i = 1, 2. Below, we shall use
the notation γi(v) as in (2.5) for v ∈ R2

+, and γi = γi(1), i = 1, 2.
Now, choose β1 = 1, β2 = 3. For 1 = (1, 1), we get γ1(1) = 1

2 , hence (H1) is not satisfied
with v = 1. With the notation in (2.3)–(2.4),

D− A =

[
3 −1
−1 2

]
, M =

[
−2 1
1 1

]
.

One easily verifies that the eigenvalues of D − A are real and positive and that s(M) > 0.
Hence, (H1) is satisfied (see Remark 2.2). We look for some v > 0 for which (2.5) holds true.

For a vector of the form v = (1, v2) > 0, we have γ1(v)= 1/(3− v2), γ2(v)= 3v2/(2v2 − 1),
hence v satisfies (2.5) if and only if v = (1, 2+ ε) with ε ∈ (0, 1). In order to have (H2) satisfied
as well, we must find ε ∈ (0, 1) such that

1
1− ε

< e
2

2+ε ,
6 + 3ε

3 + 2ε
< e

2
2+ε ,
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which is clearly possible if ε > 0 is sufficiently small. From Theorem 3.3, (5.1) has a globally
exponentially stable positive equilibrium N∗.

Next, we consider the same system (5.1) with β1 = 1, but choose β2 = 5. We still have that
(H1) is satisfied with v of the form v = (1, 2 + ε) =: vε with ε ∈ (0, 1). Note however that

Γ2(ε) := γ2(vε) =
10 + 5ε

3 + 2ε
> Γ2(1−) = 3 > e

2
2+ε , for ε ∈ (0, 1),

and therefore it is not possible to find v > 0 such that (H2) holds. In this way, we cannot
guarantee that the equilibrium N∗ > 0 is globally attractive for large delays τ1(t), τ2(t). We
now try to find conditions on the size of ri = supt≥0 τi(t), i = 1, 2, so that (H3*) is satisfied.
For e.g. ε = 0.001, we obtain max{γ1(vε), γ2(vε)} = 10.005

3.002 and 2.001× log( 10.005
3.002 ) ≈ 2.4088.

For this choice,

` := log
(

1 +
[
2.001× log

(
10.005
3.002

) ]−1
)
≈ 0.34723

and condition (H3*) reads as 3r1 ≤ `, 2r2 ≤ `. In this case, Corollary 4.5 allows us to conclude
that the equilibrium N∗ is globally attractive.

Alternatively, the use of Corollary 4.4 gives less restrictive conditions on the size of the
delays: 3r1 ≤ `1 and 2r2 ≤ `2, where `1 = log(1+ 3e) ≈ 2.21428, `1 = log(1+ 2e/5) ≈ 0.73588.

Example 5.2. Consider

N′1(t) = −2N1(t) + N2(t) + 3N1(t− τ1(t))e−N1(t−τ1(t))

N′2(t) = −2N2(t) + N1(t) + 15N2(t− τ2(t))e−N2(t−τ2(t)),
(5.2)

with τi(t) continuous, nonnegative and bounded, i = 1, 2.
For a vector v = (1, v2) > 0, assumption (H1) is satisfied if and only if 1/2 < v2 < 2. In

particular, there exists a positive equilibrium N∗ for (5.2). Write γ1(v) = 3
2−v2

, γ2(v) = 15v2
2v2−1 .

Define m0 = max(1/v2, v2). Separating the cases 1/2 < v2 ≤ 1 and 1 ≤ v2 < 2, one can verify
that

e
2

m0 ≤ e2.

On the other hand, γ2(v) > γ2(v)|v2=2 = 10 > e2, which implies that (H2) is never satisfied.
Observe however that γ1 = 3, γ2 = 15. With τ = supt≥0 max{τ1(t), τ2(t)}, from Corol-

lary 4.6 the assumption

2τ ≤ log
(

1 + (log 15)−1
)
≈ 0.31428, (5.3)

implies the global attractivity of N∗. For instance, with τ1(t) = 1
10 arctan t, τ2(t) = cos2 t

8 , the
positive equilibrium N∗ is always a global attractor.
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[8] I. Győri, S. Trofimchuk, Global attractivity in dx/dt = −δx + p f (x(t − τ)), Dynam.
Systems Appl. 8(1999), No. 2, 197–210. MR1695779

[9] J. Hofbauer, An index theorem for dissipative systems, Rocky Mountain J. Math. 20(1990),
No. 4, 1017–1031. MR1096568; url

[10] R. Jia, Z. Long, M. Yang, Delay-dependent criteria on the global attractivity of Nichol-
son’s blowflies model with patch structure, Math. Meth. Appl. Sci. 40(2017), 4222–4232.
url

[11] Y. Kuang, Delay differential equations with applications in population dynamics, Academic
Press, New York. 1993. MR1218880

[12] B. Liu, Global stability of a class of delay differential systems, J. Comput. Appl. Math.
233(2009), No. 2, 217–223. MR2568519; url

[13] B. Liu, Global stability of a class of Nicholson’s blowflies model with patch structure and
multiple time-varying delays, Nonlinear Anal. Real World Appl. 11(2010), No. 4, 2557–2562.
MR2661922; url

[14] E. Liz, V. Tkachenko, S. Trofimchuk, A global stability criterion for scalar functional
differential equation, SIAM J. Math. Anal. 35(2003), No. 3, 596–622. MR2048402; url

[15] H. L. Smith, An introduction to delay differential equations with applications to life sciences,
Texts in Applied Mathematics, Vol. 57, Springer, Berlin, 2011. MR2724792

http://www.ams.org/mathscinet-getitem?mr=2592579
https://doi.org/10.1016/j.apm.2009.08.027
http://www.ams.org/mathscinet-getitem?mr=2729031
https://doi.org/10.1016/j.nonrwa.2010.06.028
http://www.ams.org/mathscinet-getitem?mr=0544666
http://www.ams.org/mathscinet-getitem?mr=3688438
https://doi.org/10.1016/j.jde.2017.07.001
http://www.ams.org/mathscinet-getitem?mr=2833692
https://doi.org/10.1016/j.na.2011.07.024
http://www.ams.org/mathscinet-getitem?mr=2389058
https://doi.org/10.1016/j.jde.2007.12.005
http://www.ams.org/mathscinet-getitem?mr=3274439
https://doi.org/10.1007/s10884-014-9381-2
http://www.ams.org/mathscinet-getitem?mr=1695779
http://www.ams.org/mathscinet-getitem?mr=1096568
https://doi.org/10.1216/rmjm/1181073059
https://doi.org/10.1002/mma.4299
http://www.ams.org/mathscinet-getitem?mr=1218880
http://www.ams.org/mathscinet-getitem?mr=2568519
https://doi.org/10.1016/j.cam.2009.07.024
http://www.ams.org/mathscinet-getitem?mr=2661922
https://doi.org/10.1016/j.nonrwa.2009.08.011
http://www.ams.org/mathscinet-getitem?mr=2048402
https://doi.org/10.1137/S0036141001399222
http://www.ams.org/mathscinet-getitem?mr=2724792


Nicholson systems with time-dependent delays 19

[16] J. So, J. S. Yu, Global attractivity and uniform persistence in Nicholson’s blowflies, Differ-
ential Equations Dynam. Systems 2(1994), No. 1, 11–18. MR1386035

[17] X. H. Tang, X. Zou, Global attractivity of non-autonomous Lotka–Volterra competition
system without instantaneous negative feedback, J. Differential Equations 192(2003), No. 2,
502–535. MR1990850; url

http://www.ams.org/mathscinet-getitem?mr=1386035
http://www.ams.org/mathscinet-getitem?mr=1990850
https://doi.org/10.1016/S0022-0396(03)00042-1

	Introduction
	Preliminaries
	Absolute exponential stability of the positive equilibrium
	Global attractivity under small delays
	Examples

