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Abstract. This paper is concerned with the qualitative analysis of a financial system.
We focus our interest on the stability and cyclicity of the equilibria. Based on some
previous results, some notes are given for a class of systems concerning focus quan-
tities, center manifolds and Hopf bifurcations. The analysis of Hopf bifurcations on
the center manifolds is carried out based on the computation of focus quantities and
other analytical techniques. For each equilibrium, the structure of the bifurcation set is
explored in depth. It is proved through the study of Bautin bifurcations that the system
can have at most four small limit cycles (on the center manifolds) in two nests and this
bound is sharp.
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1 Introduction

Hopf bifurcation is the simplest way in which limit cycles can emerge from an equilibrium
point. This phenomenon is an attractive subject of analysis for mathematicians as well as for
economists, see [2, 5, 8, 10, 13, 18, 19, 21, 23, 26, 31] and the references therein. It occurs when a
pair of complex conjugate eigenvalues of an equilibrium point cross the imaginary axis as the
bifurcation parameter is varied. We recall that a limit cycle is a periodic orbit isolated in the
set of all the periodic oribits of the system.

Hopf bifurcations have been studied in many business models, see, for instance, [14, 18,
28]. For three-dimensional autonomous systems, Asada and Semmler [1] provided rigorous
treatments on the analysis of Hopf bifurcations; Makovínyiová [20] proved the existence and
stability of business cycles; Guirao, García-Rubio and Vera [7] studied the stability and the
Hopf bifurcations of a generalized IS-LM macroeconomic model; Přibylová [23] investigated
the Hopf bifurcations in an idealized macroeconomic model with foreign capital investment.
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The Hopf bifurcations of a 3-dimensional financial system were firstly discussed in a se-
ries of two papers by Ma and Chen [16, 17], which were far from complete because the fo-
cus quantities that characterize the criticality of the bifurcations were not obtained, and the
Bautin bifurcations (also known as the generalized Hopf bifurcations) were not taken into
account. The same model was later considered in [15] based on computing Lyapunov coef-
ficients (which are equilivalent to focus quantities, see [24, Theorem 6.2.3 (page 261)]) by the
method of Kuznetsov [9]. However the results in [15] were still far from complete because
some parameters were kept fixed. Thus, a more complete mathematical treatment of Hopf
bifurcations and Bautin bifurcations in this model is necessary and important.

Consider the model proposed in [16, 17], i.e.,

dx
dt

= z + (y− a)x,

dy
dt

= 1− by− x2,

dz
dt

= −x− cz,

(1.1)

describing the development of interest rate x, investment demand y and price index z. The
parameters a > 0, b > 0 and c > 0 denote the saving amount, the per-investment cost, and the
demand elasticity of commercials, respectively. This system is invariant under the transfor-
mation (x, y, z) → (−x, y,−z). Despite its simplicity the system exhibits mathematically rich
dynamics: from stable equilibria to periodic and even chaotic oscillations depending on the
parameter values, see [15–17, 27].

The rest of the paper is organized as follows. In order to acquaint the reader with the focus
quantities, center manifolds and Hopf bifurcations in three dimensional systems, in section
2, we gives some notes on these topics based on some works [3, 4, 6, 9, 11, 12, 24, 26, 29–31].
In section 3 the linear stability analysis is performed for the equilibria. In sections 4 and 5,
the Hopf and Bautin bifurcations are studied for the equilibrium on the axis and two interior
equilibria, respectively. Finally the concluding remarks are presented.

2 Focus quantities, center manifolds and Hopf bifurcations in R3

Consider the following 3-dimensional differential system

dx
dt

= ε x−ω y + P1(x, y, z) = Xε(x, y, z),

dy
dt

= ω x + ε y + P2(x, y, z) = Yε(x, y, z),

dz
dt

= −δ z + Q(x, y, z) = Zε(x, y, z),

(2.1)

where ω, δ are positive constants, Pj, Q are real analytical functions without constant and
linear terms, defined in a neighborhood of the origin, j = 1, 2, and ε is considered as a real
parameter. When ε = 0, the Jacobian matrix at the origin has a pair of purely imaginary
eigenvalues λ1,2 = ±iω and a negative eigenvalue λ3 = −δ, so the origin is a Hopf point
(see [3]) associated to the simple Hopf bifurcation. The simple Hopf bifurcation is a special
type of Hopf bifurcations, where a pair of complex conjugate eigenvalues of the Jacobian
matrix passes through the imaginary axis while all other eigenvalues have negative real parts,
see [11].



Bautin bifurcations of a financial system 3

For later use, let us write

P1(x, y, z) =
∞

∑
|p|+q=2

c(1)p1,p2,qxp1 yp2 zq,

P2(x, y, z) =
∞

∑
|p|+q=2

c(2)p1,p2,qxp1 yp2 zq,

Q(x, y, z) =
∞

∑
|p|+q=2

dp1,p2,qxp1 yp2 zq,

where p = (p1, p2) and |p| = p1 + p2.
By introducing the transformation

x =
1
2
(u + v), y =

i
2
(v− u), z = w, (2.2)

system (2.1)
∣∣
ε=0 can be transformed into the following form:

du
dt

= iω u + R1(u, v, w) = U(u, v, w),

dv
dt

= −iω v + R2(u, v, w) = V(u, v, w),

dw
dt

= −δ w + S(u, v, w) = W(u, v, w),

(2.3)

where
R2(u, u, w) = R1(u, u, w);

S(u, u, w) is real-valued for all u ∈ C and w ∈ R; and

R1(u, v, w) =
∞

∑
|p|+q=2

a(1)p1,p2,qup1 vp2 wq,

R2(u, v, w) =
∞

∑
|p|+q=2

a(2)p1,p2,qup1 vp2 wq,

S(u, v, w) =
∞

∑
|p|+q=2

bp1,p2,qup1 vp2 wq,

with
a(1)p1,p2,q = a(2)p2,p1,q, bp1,p2,q = bp2,p1,q. (2.4)

2.1 Focus quantities

Before we introduce the concept of focus quantities, we need a theorem, which is a general-
ization of [26, Theorem 3.1].

Theorem 2.1. For system (2.3), we can derive successively the terms of the following formal series:

F(u, v, w) = uv +
∞

∑
|p|+q=3

Cp1,p2,qup1 vp2 wq

4
=

∞

∑
|p|+q=2

Cp1,p2,qup1 vp2 wq, (2.5)
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such that
dF
dt

∣∣∣∣
(2.3)

=
∂F
∂u

U +
∂F
∂v

V +
∂F
∂w

W =
∞

∑
n=1

Vn(uv)n+1. (2.6)

For (p1, p2, q) 6= (p1, p1, 0), where |p|+ q ≥ 3, the coefficients Cp1,p2,q in (2.5) are determined by
the recursive formula

Cp1,p2,q =
1

−iω(p1 − p2) + δq

|p|+q

∑
|j|+s=3

[
(p1 − j1 + 1)a(1)j1,j2−1,s + (p2 − j2 + 1)a(2)j1−1,j2,s

+ (q− s)bj1−1,j2−1,s+1

]
Cp1−j1+1,p2−j2+1,q−s, (2.7)

where |j| = j1 + j2.
For (p1, p2, q) = (p1, p1, 0), where p1 ≥ 2, we set

Cp1,p1,0 = 0. (2.8)

The Vn in (2.6) are determined by

Vn =
2(n+1)

∑
j1+j2=3

[
(n− j1 + 2)a(1)j1,j2−1,0 + (n− j2 + 2)a(2)j1−1,j2,0

]
Cn−j1+2,n−j2+2,0. (2.9)

Proof. By direct computation, we find that

dF
dt

∣∣∣∣
(2.3)

=
∂F
∂u

U +
∂F
∂v

V +
∂F
∂w

W

=
∞

∑
|p|+q=3

up1 vp2 wq
{
[iω(p1 − p2)− δq]Cp1,p2,q

+
|p|+q

∑
|j|+s=3

[
(p1 − j1 + 1)a(1)j1,j2−1,s + (p2 − j2 + 1)a(2)j1−1,j2,s

+ (q− s)bj1−1,j2−1,s+1

]
Cp1−j1+1,p2−j2+1,q−s

}
.

Comparing the above power series with the right side of (2.6), we can obtain the recursive
formulas (2.7) and (2.9). This completes the proof.

Remark 2.2. From (2.6), we can see that in order to compute Vn, we only need to find a
polynomial in the following form

F2n+2(u, v, w) = uv +
2n+2

∑
|p|+q=3

Cp1,p2,qup1 vp2 wq,

which is an approximation of (2.5) up to (2n + 2)-th order.

The following result can be proved using an argument similar to the proof of Theorem 2.1.
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Corollary 2.3. For (p2, p1, q) 6= (p1, p1, 0), where |p|+ q ≥ 3, the coefficients Cp2,p1,q in (2.5) are
determined by the recursive formula

Cp2,p1,q =
1

−iω(p2 − p1) + δq

|p|+q

∑
|j|+s=3

[
(p2 − j2 + 1)a(1)j2,j1−1,s + (p1 − j1 + 1)a(2)j2−1,j1,s

+ (q− s)bj2−1,j1−1,s+1

]
Cp2−j2+1,p1−j1+1,q−s, (2.10)

where |j| = j1 + j2.

Using the structure of F in Theorem 2.1, we obtain the following result.

Corollary 2.4. F(u, u, w) is real-valued for u ∈ C and w ∈ R.

Proof. In order to prove the conclusion, we only need to show that

Cp1,p2,q = Cp2,p1,q.

We use induction on |p|+ q = p1 + p2 + q. The statement is obviously true for |p|+ q = 2,
because we have already set C1,1,0 = 1 and C2,0,0 = C1,0,1 = C0,1,1 = C0,2,0 = C0,0,2 = 0.

Assume that the statement holds true for (p1, p2, q) : 2 ≤ |p|+ q < N.
By the induction hypothesis and in view of (2.4), (2.7), (2.8) and (2.10), the statement holds

true for |p|+ q = N. This completes the proof of Corollary 2.4.

Let
u = x + iy, v = x− iy, w = z,

be the inverse of the transformation (2.2) and F be the formal series in Theorem 2.1, then
G := F(u, v, w) is in the following form:

G(x, y, z) = (x2 + y2) +
∞

∑
|p|+q=3

gp1,p2,qxp1 yp2 zq, (2.11)

and satisfies

dG
dt

∣∣∣
(2.1)|ε=0

=
∂G
∂x

X0 +
∂G
∂y

Y0 +
∂G
∂z

Z0

=

(
∂F
∂u

∂u
∂x

+
∂F
∂v

∂v
∂x

)
X0 +

(
∂F
∂u

∂u
∂y

+
∂F
∂v

∂v
∂y

)
Y0 +

∂F
∂w

dw
dz

Z0

=
∂F
∂u

(
∂u
∂x

X0 +
∂u
∂y

Y0

)
+

∂F
∂v

(
∂v
∂x

X0 +
∂v
∂y

Y0

)
+

∂F
∂w

W

=
∂F
∂u

U +
∂F
∂v

V +
∂F
∂w

W

=
∞

∑
n=1

Vn(uv)n+1

=
∞

∑
n=1

Vn(x2 + y2)n+1. (2.12)
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Definition 2.5. The functions Vn in (2.12), which can be expressed as polynomials in the
coefficients of (2.1)

∣∣
ε=0, i.e.,

c(1)p1,p2,q, c(2)p1,p2,q, dp1,p2,q,

are called the n-th order focus quantities of system (2.1)
∣∣
ε=0.

Remark 2.6. The definition is a natural extension of the focus quantities for two-dimensional
systems. For the latter case, see [12, Definition 2.2.3] and [24, Definition 3.3.3].

In Theorem 2.1, if we try any other choice of Cp1,p1,0 for p1 ≥ 2, we may get different focus
quantities V ′n. However using the same idea (based on normal form theory) as in [6, 24], we
can prove that: for any s ≥ 1, we have

〈V1, V2, · · · , Vs〉 = 〈V ′1, V ′2, · · · , V ′s 〉,

i.e., these two ideals are the same. Thus our definition for focus quantities is well-defined.

2.2 Focus quantities, center manifolds and Hopf bifurcations

Returning to system (2.1)
∣∣
ε=0, for every r ∈ N, according to the center manifold theorem

[4, Theorem 1, Theorem 2, Theorem 3], there exists, in a sufficiently small neighborhood of
the origin, a Cr−1 center manifold z = h(x, y) (which need not to be unique) such that

h(0, 0) = 0, Dh(0, 0) = 0

and
∂h
∂x

X0(x, y, h) +
∂h
∂y

Y0(x, y, h) = Z0(x, y, h). (2.13)

Moreover, system (2.1)
∣∣
ε=0 is locally topologically equivalent near the origin to the system



dx
dt

= X0(x, y, h),

dy
dt

= Y0(x, y, h),

dz
dt

= −δz.

In general the closed-form solution h(x, y) of (2.13) is very difficult to be found. However
using formal Taylor series method, we can compute an approximate cener manifold to any
desired degree of accuracy.

Let

w = h̃(u, v) = h
(

u + v
2

,
i (v− u)

2

)
,

where the function h is the center manifold of system (2.1)
∣∣
ε=0. In view of (2.13), we obtain by
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direct computation that

∂h̃
∂u

U +
∂h̃
∂v

V =

(
∂h
∂x

∂x
∂u

+
∂h
∂y

∂y
∂u

)
U +

(
∂h
∂x

∂x
∂v

+
∂h
∂y

∂y
∂v

)
V

=
∂h
∂x

(
∂x
∂u

U +
∂x
∂v

V
)
+

∂h
∂y

(
∂y
∂u

U +
∂y
∂v

V
)

=
∂h
∂x

X0(x, y, h) +
∂h
∂y

Y0(x, y, h)

= Z0(x, y, h)

= W(u, v, h̃),

which implies that w = h̃(u, v) is the center manifold of system (2.3). Using similar arguments,
we can prove that: if w = h̃(u, v) is a center manifold of system (2.3), then z = h(x, y) :=
h̃(x + iy, x− iy) is a center manifold of system (2.1)

∣∣
ε=0.

Now we consider the restriction of system (2.1)
∣∣
ε=0 to the center manifold, i.e.,

dx
dt

= X0(x, y, h),

dy
dt

= Y0(x, y, h).
(2.14)

From (2.11), we can construct

G̃(x, y) = G(x, y, h) = (x2 + y2) +
∞

∑
|p|+q=3

gp1,p2,qxp1 yp2 hq.

In view of (2.12), (2.13), we obtain by direct computation that

dG̃
dt

∣∣∣
(2.14)

=
∂G̃
∂x

X0 +
∂G̃
∂y

Y0

=

(
∂G
∂x

+
∂G
∂z

∂h
∂x

)
X0 +

(
∂G
∂y

+
∂G
∂z

∂h
∂y

)
Y0

=
∂G
∂x

X0 +
∂G
∂y

Y0 +
∂G
∂z

Z0

=
∞

∑
n=1

Vn(x2 + y2)n+1.

From the identity above and [12, Definition 2.2.3] we know that Vn are also the n-th focus
quantities of the restriction system (2.14).

Remark 2.7. From the above discussion, we know that the focus quantities of system (2.1)
∣∣
ε=0

and system (2.14) are the same. This conclusion is of great importance: on the one hand,
we can compute the focus quantities without recourse to center manifold reduction; on the
other hand, just as in the 2-dimensional case, we can use focus quantities to analysis the Hopf
bifurcations occurring on the center manifolds.

Focus quantities indicate the level of degeneration of the system (2.1)
∣∣
ε=0. When V1 6= 0,

on a two-dimensional center manifold of the origin, the Hopf bifurcation occurring at ε = 0
is non-degenerate. If V1 < 0 then there is a stable limit cycle on the center manifold for ε > 0;
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the Hopf bifurcation is then called supercritical. If V1 > 0 then there is an unstable limit cycle
on the center manifold for ε < 0; the Hopf bifurcation is then called subcritical.

In order to describe the occurrence of Bautin bifurcation (the co-dimensional two Hopf
bifurcation), we need to consider a special type of system (2.1), i.e.,

dx
dt

= ε x−ω y + P1,a(x, y, z) = Xε,a(x, y, z),

dy
dt

= ω x + ε y + P2,a(x, y, z) = Yε,a(x, y, z),

dz
dt

= −δ z + Qa(x, y, z) = Za(x, y, z),

(2.15)

where ω, δ are positive constants, Pj,a, Qa (a is a parameter) are real analytical functions with-
out constant and linear terms, defined in a neighborhood of the origin, j = 1, 2, and ε, a ∈ R

are considered as two parameters. Let V1(a), V2(a) be the first two focus quantities of system
(2.15)

∣∣
ε=0. Suppose that V1(a0) = 0, V2(a0) 6= 0 and the map (ε, a) 7→ (ε, V1(a)) is regular (see

[9,31]), then a Bautin bifurcation occurs at ε = 0, a = a0 on a two-dimensional center manifold
of the origin. Moreover, if V2(a0) < 0 then the Bautin bifurcation is supercritical; if V2(a0) > 0
then the Bautin bifurcation is subcritical. In both cases, at most two limit cycles (on the local
center manifold of the origin) can be found for the system by varying the parameters.

3 Linear stability of the equilibria

For convenience we define some test functions of the three positive parameters by

k1 = abc + b− c, k2 = ab + bc− 1,

k3 = bc + c2 − 1, k4 = bc4 + b2c3 − 2 ab2c2 +
(

2 ab− 3 b2 − 2
)

c + 3 b,
(3.1)

which are needed hereafter.
If k1 ≥ 0, then (1.1) has a unique equilibrium at E1 = (0, 1/b, 0); if k1 < 0, then besides E1

it has two other equilibria E2 = (x0, (ac + 1)/c,−x0/c) and E3 = (−x0, (ac + 1)/c, x0/c) in the
fifth octant and second octant respectively, where x0 =

√
−k1/c.

Proposition 3.1. If k1 > 0, k2 > 0, then E1 is asymptotically stable and no other equilibrium exists
for the system.

Proof. The Jacobian matrix evaluated at E1 is

J1 :=


−a + 1/b 0 1

0 −b 0

−1 0 −c

 .

Let us denote the corresponding characteristic polynomial by

g1(λ) = λ3 + p1,1λ2 + p1,2λ + p1,3

= (λ + b)
(

λ2 +
(ab + bc− 1)

b
λ +

abc + b− c
b

)
= (λ + b)

(
λ2 +

k2

b
λ +

k1

b

)
. (3.2)
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If k1 > 0, k2 > 0, then this polynomial has three roots with negative real parts, which implies
that the equilibrium is asymptotically stable. Because k1 > 0, the system has a unique equi-
librium at E1 = (0, 1/b, 0), and thus the presence of E2 and E3 is impossible. This completes
the proof.

Proposition 3.2. If k3 > 0, k4 > 0, then the equilibria E2 and E3 are asymptotically stable.

Proof. Due to the symmetry, we only consider the stability of E2.
The Jacobian matrix evaluated at this equilibrium is

J2 :=


1/c x0 1

−2 x0 −b 0

−1 0 −c

 .

Let us denote the corresponding characteristic polynomial by

g2(λ) = λ3 + p2,1λ2 + p2,2λ + p2,3, (3.3)

where the coefficients are defined by

p2,1 =
bc + c2 − 1

c
, p2,2 =

bc2 + 2cx0
2 − b

c
, p2,3 = 2cx0

2. (3.4)

By the Routh–Hurwitz criteria, this polynomial has three roots with negative real parts if
and only if

p2,1 > 0, p2,3 > 0, p2,1 p2,2 − p2,3 > 0.

It can be easily checked that these inequalities are equivalent to k3 > 0, k4 > 0. Thus if
k3 > 0, k4 > 0, then E2 is asymptotically stable. This completes the proof.

4 Hopf and Bautin bifurcations of the system at E1

In this section we study the Hopf and Bautin bifurcations at E1. Taking a as the bifurcation
parameter, that is, the coefficients in (3.2) can be rewritten as follows:

p1,1 = p1,1(a), p1,2 = p1,2(a), p1,3 = p1,3(a).

According to the criterion [1, Proposition], a Hopf bifurcation occurs at a certain value of a,
say a = a0 > 0, if

p1,1(a0) 6= 0, p1,2(a0) > 0, p1,1(a0)p1,2(a0)− p1,3(a0) = 0,
d[p1,1 p1,2 − p1,3

]
da

∣∣∣∣
a=a0

6= 0.

More specifically, by solving this semi-algebraic system, we can concluded that a Hopf bifur-
cation occurs at E1 for a = a0, where a0 = −c + 1/b > 0 with b > 0, 0 < c < 1.

For a near a0, the Jacobian matrix at E1 has a pair of complex conjugate eigenvalues
λ1,2(a) = δ(a)±ω(a)i and a negative eigenvalue λ3(a) = −b, where δ(a0) = 0, ω(a0) > 0 and
dδ
da (a0) 6= 0. This claim implies that the bifurcation at a = a0 is the simple Hopf bifurcation,
see [11] or Section 2 of this paper for the definition.
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In order to determine the sign of dδ
da (a0) and the value of ω(a0), we consider the quadratic

factor of (3.2), i.e.,

g1,1(λ) := λ2 +
(ab + bc− 1)

b
λ +

abc + b− c
b

.

Since g1,1(λ1,2) = 0, we have δ(a) = −(ab + bc− 1)/(2b), so

dδ

da
(a0) =

dδ

da
(a) = −1

2
; (4.1)

and

λ1(a0)λ2(a0) = ω2(a0) =

(
abc + b− c

b

)∣∣∣∣
a=a0

,

which implies that ω(a0) =
√

1− c2.

Proposition 4.1. For a near a0, where a0 = −c + 1/b > 0 with b > 0, 0 < c < 1 , system (1.1)
has a unique equilibrium E1, implying that Hopf bifurcation occurs at E1 in the absence of any other
equilibrium.

Proof. From the discussion above, we know that a Hopf bifurcation occurs at E1 for a0 =

−c + 1/b > 0 with b > 0, 0 < c < 1.
Recall from (3.1) that k1 = abc + b− c, thus k1|a=a0 = b(1− c2) > 0. Let us think of k1 as a

function of a, which is continuous for all a > 0. From the continuity of this function at a = a0,
we have k1 > 0 for a near a0. In this case, system (1.1) has a unique equilibrium E1, and thus
the presence of the other equilibria E2 and E3 is impossible for a near a0.

This completes the proof.

By introducing the transformation
x =

(
−c− i

√
1− c2

)
u +

(
−c + i

√
1− c2

)
v,

y = w + 1/b,

z = u + v,

(4.2)

the system (1.1) with a = a0 becomes

du
dt

= iω0u +
i (iω0 − c)

2ω0
vw− i (c + iω0)

2ω0
uw,

dv
dt

= −iω0v− i (iω0 − c)
2ω0

vw +
i (c + iω0)

2ω0
uw,

dw
dt

= −bw− i
(
2 iω0

2 − 2 ω0c− i
)

v2 − 2 uv− i
(
2 iω0

2 + 2 ω0c− i
)

u2,

(4.3)

where ω0 := ω(a0) =
√

1− c2.
By performing computation on the first focus quantity V1(b, c) at (u, v, w) = (0, 0, 0) of

system (4.3), we get

V1(b, c) =
8 c2 + 2 bc− 3 b2 − 8

b (−4 c2 + b2 + 4)
. (4.4)
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Let S =
⋃3

j=1 Sj be a subset of {(b, c) : b > 0, 0 < c < 1}, where

S1 =

{
(b, c) : 0 < b < 2/3, 0 < c <

−b +
√

25b2 + 64
8

}
,

S2 = {(b, c) : 2/3 ≤ b ≤ 1, 0 < c < 1} ,

S3 = {(b, c) : b > 1, 0 < c < 1/b} ,

and let U =
{
(b, c) : 0 < b < 2/3, −b+

√
25b2+64
8 < c < 1

}
.

Before we discuss the Hopf and Bautin bifurcations of system (1.1) at E1, we should know
that these bifurcations occur on a center manifold of E1. Due to the complexity of the ex-
pression, we only give the approximate center manifold of system (4.3) up to third order,
i.e.,

w = −

(
2 ic2 − 2

√
− (c− 1) (c + 1)c− i

)
ib− 2

√
− (c− 1) (c + 1)

u2 − 2
b

uv

−

(
2 ic2 + 2

√
− (c− 1) (c + 1)c− i

)
ib + 2

√
− (c− 1) (c + 1)

v2 + O(|u, v|4),

where the cubic terms are all zero.

Theorem 4.2. On a center manifold of system (1.1) at E1, a supercritical Hopf bifurcation occurs at
a = a0 = −c + 1/b with (b, c) ∈ S, leading to a stable limit cycle on the center manifold for a < a0

and near a0; and a subcritical Hopf bifurcation occurs at a = a0 with (b, c) ∈ U, leading to an unstable
limit cycle on the center manifold for a > a0 and near a0.

Proof. Since we have assumed that b > 0 and 0 < c < 1, the denominator of V1(b, c) is
positive, thus the sign of V1(b, c) is only determined by its numerator. Under the constraints
a0 = −c + 1/b > 0, b > 0 and 0 < c < 1, the solving of V1(b, c) < 0 and V1(b, c) > 0 yield
the two sets of parameters: S and U, respectively. Thus the conclusion of this theorem follows
from the Hopf bifurcation theorem [22, Theorem 3.15] along with the transversality condition
(4.1). This completes the proof.

By performing the computation on the second focus quantity V2(b, c), we get

V2(b, c) =
27 b3 − 54 b2c + 120 b− 64 c

16 (b2 − 4c2 + 4)2 (1− c2)
, (4.5)

where the numerator of V2(b, c) is reduced w.r.t. that of V1(b, c). For further simplification
of this quantity, we solve V1(b, c) = 0 for c and obtain a unique solution c = c0 := −b/8 +

1/8
√

25 b2 + 64, with 0 < b < 2/3(this constraint is to make 0 < c0 < 1). By substituting it
into V2(b, c), we get

Ṽ2(b, c0) = −
7 b
√

25 b2 + 64 + 35 b2 + 64
4 b3 < 0. (4.6)

Hence a supercritical Bautin bifurcation may occur at E1 for (a, c) = (a(1)0 , c0), where a(1)0 =

−c0 + 1/b with 0 < b < 2/3. It can easily be checked that a(1)0 > 0.
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Theorem 4.3. On a center manifold of system (1.1) at E1 , a supercritical Bautin bifurcation occurs at
(a, c) = (a(1)0 , c0) with 0 < b < 2/3. This bifurcation generates two small amplitude limit cycles on
the center manifold for the fixed parameters in the set {(a, b, c) : 0 < a− a(1)0 � c− c0 � 1, 0 < b <

2/3}, with the outermost cycle stable and the inner cycle unstable. Moreover in this case the equilibria
E2, E3 don’t exist.

Proof. Since 0 < b < 2/3, we have 0 < c0 < 1, thus from 0 < c− c0 � 1, we also have 0 < c <
1. Moreover since 0 < b < 2/3, we have a(1)0 = −c0 + 1/b > 0, thus from 0 < a− a(1)0 � 1, we
find that a > 0.

To facilitate the proof, the real part of the eigenvalues λ1,2 = δ±ωi, i.e., δ , will be treated
as a function of a, b and c.

A simple computation gives

δ(a(1)0 , b, c0) = V1(b, c0) = 0, (4.7)

∂δ

∂a
(a(1)0 , b, c0) = −1/2 < 0,

∂V1

∂c
(b, c0) =

5 b
√

25 b2 + 64 + 25 b2 + 64
4 b2 > 0. (4.8)

Recall from (4.6) that Ṽ2(b, c0) < 0.
It follows from (4.8) that the Jacobian determinant∣∣∣∣∣ ∂δ

∂a (a(1)0 , b, c0)
∂δ
∂c (a(1)0 , b, c0)

∂V1
∂a (b, c0)

∂V1
∂c (b, c0)

∣∣∣∣∣ =
∣∣∣∣∣ ∂δ

∂a (a(1)0 , b, c0)
∂δ
∂c (a(1)0 , b, c0)

0 ∂V1
∂c (b, c0)

∣∣∣∣∣ < 0,

i.e., the map (a, c) 7→ (δ(a, b, c), V1(b, c)) is regular at a = a(1)0 , c = c0.
Thus all the conditions of Bautin bifurcation are satisfied (see [9, Theorem 8.2] or [31,

Theorem 2.3]), so that the conclusion on the limit cycles is proved.

For any b ∈ (0, 2/3), we have k1(a(1)0 , b, c0) =
b2(
√

25b2+64−13b)
32 > 0. Thus by the continuity of

k1(a, b, c) in a and c, we also have k1(a, b, c) > 0 for (a, b, c) in the set {(a, b, c) : 0 < a− a(1)0 �
c− c0 � 1, 0 < b < 2/3}, which implies that the equilibria E2 and E3 don’t exist.

In summary, we complete the proof.

5 The Hopf and Bautin bifurcations at E2

Let us choose a as the bifurcation parameter, that is, the coefficients of (3.3) can be rewritten
as follows:

p2,1 = p2,1(a), p2,2 = p2,2(a), p2,3 = p2,3(a).

According to the criterion [1, Proposition], a Hopf bifurcation occurs at E2 for a certain value
of a, say a = a1 > 0, if

p2,1(a1)p2,2(a1)− p2,3(a1) = 0, p2,1(a1) 6= 0, p2,2(a1) > 0,
d
[
p2,1 p2,2 − p2,3

]
da

∣∣∣∣
a=a1

6= 0.

More specifically, by solving this semi-algebraic system for the critical value a1, we can con-
cluded that a Hopf bifurcation occurs at E2 for a = a1 with h1 > 0, h2 > 0, h3 > 0, where

a1 =
b2c3 + bc4 − 3 b2c + 3 b− 2 c

2 (bc− 1) bc
(5.1)
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and

h1 = (bc− 1)
(
1− c2) , h2 = bc + c2 − 1, h3 = (b2c3 + bc4 − 3 b2c + 3 b− 2 c)(bc− 1). (5.2)

The condition h1 > 0 follows from p2,2(a1) > 0. The condition h2 > 0 follows from the
presence of E2. The condition h3 > 0 follows from the fact that the critical value a1 must be
positive.

Proposition 5.1. The Hopf bifurcation occurs at E2 for a = a1 is a simple Hopf bifurcation.

Proof. For a near a1, let λ1,2(a) = δ1(a)±ω1(a)i and λ3(a) denote the three roots of (3.3). From
(3.4) we know that p2,3(a) > 0. According to Vieta’s formulas, this implies λ1(a)λ2(a)λ3(a) =
−p2,3(a) < 0. Furthermore we note that λ1(a)λ2(a) = δ2

1(a) + ω2
1(a) > 0 for a near a1, so that

λ3(a) < 0 for a near a1. This claim implies that the bifurcation at a = a1 is a simple Hopf
bifurcation. Thus we end the proof.

With the same notations for the roots as in the proof of Proposition 5.1. If we set a = a1 in
(3.3), then the characteristic polynomial becomes

g2(λ)
∣∣

a=a1
= λ3 +

(
bc + c2 − 1

)
c

λ2 −
bc
(
c2 − 1

)
bc− 1

λ−
b
(
bc3 + c4 − bc− 2 c2 + 1

)
bc− 1

=

(
−1 + c2 + (b + λ) c

) (
bc3 +

(
−λ2 − 1

)
bc + λ2)

c (1− bc)
.

Thus

δ1(a1) = 0, ω1(a1) =

√
bc(c2 − 1)

1− bc
, λ3(a1) =

1− c2 − bc
c

.

Let

h3,0 = b2c3 + bc4 − 3 b2c + 3 b− 2 c

= c
(
c2 − 3

)
b2 +

(
c4 + 3

)
b− 2 c, (5.3)

which is a factor of h3, seen in (5.2). Before checking the sign of δ′1(a1), we need the following
lemma.

Lemma 5.2. If h1 > 0, h3 > 0, then c > 1, bc < 1 and h3,0 < 0.

Proof. Since h1 > 0, c 6= 1. Suppose that 0 < c < 1. Since h1 > 0, bc− 1 > 0.
According to the Taylor expansion formula, we rewrite h3,0 in the following way:

h3,0 = c3 − c +
(

c4 + 2 c2 − 3
) (

b− c−1
)
+
(
c3 − 3 c

) (
b− c−1

)2
.

It follows from h3 > 0 and bc− 1 > 0 that h3,0 > 0 . However, b− c−1 > 0 and c3 − c < 0,
c4 + 2 c2 − 3 < 0, c3 − 3 c < 0 for 0 < c < 1, which makes h3,0 < 0. Thus we have reached a
contradiction and so that c > 1.

Since c > 1 and h1 > 0, bc < 1. Thus it follows from h3 > 0 that h3,0 < 0.
In summary, we end the proof of this lemma.



14 B. Sang and B. Huang

Corollary 5.3. The conditions h1 > 0, h3 > 0 imply h2 > 0.

Proof. Assume h1 > 0, h3 > 0, it follows from Lemma 5.2 that c > 1. Recalling from (5.2) the
expression of h2, we have h2 > 0. This completes the proof.

As a direct consequence of Corollary 5.3, we have the following result.

Corollary 5.4. The Hopf bifurcation set is

S := {(a, b, c) : a = a1, h1 > 0, h3 > 0} . (5.4)

With the same notations for the roots as in the proof of Proposition 5.1, we have the
following result.

Corollary 5.5. The conditions h1 > 0, h3 > 0 imply δ′1(a1) < 0.

Proof. Suppose that h1 > 0, h3 > 0. Then, by Lemma 5.2 and Corallary 5.4, we know that c > 1
and a Hopf bifurcation occurs at a = a1.

Recalling (3.3), the occurrence of Hopf bifurcation implies that

[
p2,1 p2,2 − p2,3

]′
(a1) =

2 b (1− bc)
c

6= 0. (5.5)

Since c > 1 and h1 > 0, we have 1 − bc > 0 and (5.5) is positive. From the proof of
[1, Proposition], we know that the sign of δ′1(a1) is different from that of (5.5), so we complete
the proof.

Remark 5.6. If we treat δ1 as a function of a, b and c, then by Corollary 5.5, we have
∂δ1
∂a (a1, b, c) < 0. This fact will be used in the future.

The following result is the converse of Lemma 5.2.

Lemma 5.7. If c > 1, bc < 1 and h3,0 < 0, then h1 > 0, h3 > 0.

Proof. Since c > 1 and bc < 1, h1 > 0. Since bc < 1 and h3,0 < 0, h3 > 0. In summary, we
complete the proof of this lemma.

As a direct consequence of Lemma 5.2, Lemma 5.7 and Corallary 5.4, we have the following
result.

Corollary 5.8. The Hopf bifurcation set S defined by (5.4) can be implicitly rewritten as follows:

S = {(a, b, c) : a = a1, c > 1, bc < 1, h3,0 < 0} . (5.6)

For later use, let
S∗ := {(b, c) : c > 1, bc < 1, h3,0 < 0} . (5.7)

We now seek to find the explicit representation of the bifurcation set S, which is described
by (5.6). To achieve this goal, we need the following lemmas, which are related to the roots of
polynomial h3,0 in b, seen in (5.3).

For c > 1 and c 6=
√

3, let ∆ be the discriminant of h3,0 with respect to b, i.e.,

∆ = (c4 + 3)2 + 8c2(c2 − 3). (5.8)
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Lemma 5.9. For c > 1, we have ∆ > 0.

Proof. This inequality can be proved by noting that c2 > 1 and (5.8) can be rewritten as follows:

∆ = (c2 − 1)[(c2 − 1)(c4 + 2c2 + 17) + 8],

which is positive when c > 1. So that ∆ > 0. Thus we complete the proof of this lemma.

For c > 1 and c 6=
√

3, according to Lemma 5.9, the quadratic polynomial h3,0 has two
distinct roots for b. By the direct computations, these roots can be represented by

τ1 :=
−c4 − 3 +

√
∆

2c(c2 − 3)
, τ2 :=

−c4 − 3−
√

∆
2c(c2 − 3)

.

It can be easily checked that τ1 > 0 for c > 1 and c 6=
√

3. The sign of τ2 is positive for
1 < c <

√
3 and negative for c >

√
3.

Lemma 5.10. For 1 < c <
√

3, we have

τ1 <
1
c
< τ2.

Proof. Since 1 < c <
√

3, the left inequality is equivalent to

c4 + 3− 2(3− c2) <
√
(c4 + 3)2 + 8c2(c2 − 3). (5.9)

Note that c4 + 3− 2(3− c2) = (c2 − 1)(c2 + 3) > 0. By squaring and rearranging, the desired
inequality (5.9) can be reduced to c2 > 1, which is obviously true.

Since 1 < c <
√

3, the right inequality is equivalent to√
(c4 + 3)2 + 8c2(c2 − 3) > 2(3− c2)− (c4 + 3).

This is obviously true because the right hand side equals to (−c2 + 1)(c2 + 3), which is nega-
tive for 1 < c <

√
3.

In summary, we complete the proof of this lemma.

Lemma 5.11. For c >
√

3, we have

τ1 <
1
c

.

Proof. Since c >
√

3, the inequality is equivalent to

c4 + 3− 2(3− c2) >
√
(c4 + 3)2 + 8c2(c2 − 3), (5.10)

Both sides are positive. By squaring and rearranging, the desired inequality (5.10) can be
reduced to c2 > 1 which is obviously true. This completes the proof.

Theorem 5.12. The Hopf bifurcation set S defined by (5.4) can be rewritten as follows:

S = {(a, b, c) : a = a1, (b, c) ∈ S1 ∪ S2 ∪ S3} , (5.11)

where

S1 =
{
(b, c) : 0 < b < τ1, 1 < c <

√
3
}

,

S2 =

{
(b, c) : 0 < b <

√
3

6
, c =

√
3

}
,

S3 =
{
(b, c) : 0 < b < τ1, c >

√
3
}

.
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Proof. According to Corollary 5.8, it suffices to get the solution set of the following inequalities:

c > 1, bc < 1, h3,0 < 0. (5.12)

To prove (5.11), we consider three cases.

(1) Assume that 1 < c <
√

3. Then according to Lemma 5.10, the solving of bc < 1, h3,0 < 0
for b yields 0 < b < τ1.

(2) Assume that c =
√

3. Then h3,0 = 12b− 2
√

3, and the solving of bc < 1, h3,0 < 0 for b
yields 0 < b <

√
3

6 .

(3) Assume that c >
√

3. Then according to Lemma 5.11, the solving of bc < 1, h3,0 < 0 for b
yields 0 < b < τ1.

Summing up these conclusions, we complete the proof.

If a = a1, then

E2 =

(√
2

2
m,

b2c3 + bc4 − b2c + b− 2 c
2 c (bc− 1) b

,−
√

2m
2 c

)
,

where

m =

√
b (c2 − 1) (bc + c2 − 1)

c (1− bc)
.

By introducing the transformation

x = (s1 + s2i)u + (s1 − s2i)v + s3w +

√
2

2
m,

y = (s4 + s5i)u + (s4 − s5i)v + s6w +
b2c3 + bc4 − b2c + b− 2 c

2 c (bc− 1) b

z = u + v + w−
√

2m
2 c

,

where

s1 = −c, s2 = −ω1 (a1, b, c) , s3 =
bc− 1

c
,

s4 =

√
2c2m

bc + c2 − 1
, s5 =

√
2 (bc− 1)mω1 (a1, b, c)

b (bc + c2 − 1)
, s6 =

√
2 (bc− 1)m

c2 − 1

and the notation ω1, which appeared in the proof of Proposition 5.1, is now considered as a
function of a, b and c, system (1.1)|a=a1 becomes

du
dt

= iω1(a1, b, c)u + P1(u, v, w),

dv
dt

= −iω1(a1, b, c)v + P2(u, v, w),

dw
dt

= λ3(a1, b, c)w + P3(u, v, w),

(5.13)

where Pj(u, v, w), j = 1, 2, 3 are homogeneous quadratic polynomials, which are too compli-
cated to be presented here.
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By performing computation on the first two focus quantities for system (5.13), we get

V1(b, c) =
2 bc3n11

n12n13
, (5.14)

V2(b, c) = − c4n21

3 n22
, (5.15)

where

n11 = 3 b5c4 + 13 b4c5 − 15 b3c6 − 5 b2c7 + 4 bc8 − 21 b4c3 − 23 b3c4 + 37 b2c5 − 7 bc6 − 2 c7

+ 45 b3c2 + 5 b2c3 − 10 bc4 + 8 c5 − 39 b2c + bc2 − 10 c3 + 12 b + 4 c,

n12 = b4c4 + 3 b3c5 − b2c6 − 3 bc7 − 4 b3c3 − 5 b2c4 + 2 bc5 − c6 + 6 b2c2

+ 5 bc3 + 3 c4 − 4 bc− 3 c2 + 1,

n13 = b3c3 + 2 b2c4 − 3 b2c2 − 3 bc3 − c4 + 3 bc + 2 c2 − 1,

n22 = (c− 1) (c + 1)
(

b3c3 + 2 b2c4 − 8 bc5 − 3 b2c2 + 5 bc3 − c4 + 3 cb + 2 c2 − 1
)

×
(

b3c3 + 2 b2c4 − 3 bc5 − 3 b2c2 − c4 + 3 cb + 2 c2 − 1
)2 (

cb + c2 − 1
)3

×
(

b3c3 + 2 b2c4 − 3 b2c2 − 3 bc3 − c4 + 3 cb + 2 c2 − 1
)3

,

and the expression of n21 is somewhat complicated and can be found in the Appendix.
Before we discuss the Hopf and Bautin bifurcations of system (1.1) at E2, we should know

that these bifurcations occur on a center manifold of E2. Due to the complexity of the quadratic
approximation of center manifold of system (5.13), we will not present here.

According to the Hopf bifurcation theorem [22, Theorem 3.15] and Remark 5.6, we have
the following theorem.

Theorem 5.13. Assume that (b, c) ∈ S∗, where S∗ is described by (5.7) and V1(b, c) 6= 0. On a center
manifold of system (1.1) at E2, a Hopf bifurcation occurs at a = a1. More precisely, the bifurcation is
supercritical for V1(b, c) < 0, giving rise to a stable limit cycle on the center manifold for a < a1; and
subcritical for V1(b, c) > 0 giving rise to an unstable limit cycle on the center manifold for a > a1.

In Maple 2016 (a computer algebra system), the command RootFinding[Isolate] isolates the
real roots of univariate polynomials and polynomial systems with a finite number of solutions.
By default it computes isolating intervals for each of the roots and numerically evaluates the
midpoints of those intervals at the current setting of digits. All significant digits returned by
the program are correct, and unlike purely numerical methods no roots are ever lost.

Now we consider the semi-algebraic system

n11 = n21 = 0, (b, c) ∈ S∗, (5.16)

where S∗ is described by (5.7).
Using the command RootFinding[Isolate], we find there is no solution to (5.16) with (b, c) ∈

S∗. So there is no need to calculate V3(b, c), and thus the system can have at most two small
limit cycles in some neighborhood of E2. Due to the symmetry, at most four small limit cycles
can be found on the center manifolds that spiral around the equilibria E2 and E3.
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Theorem 5.14. On a center manifold of system (1.1)
∣∣
c=3/2 at E2, a subcritical Bautin bifurcation

occurs at (a, b) = (9/2, 1/6), which leads to two small amplitude limit cycles on the center manifold,
with the outermost cycle unstable and the inner cycle stable, for

0 < 9/2− a� 1/6− b� 1. (5.17)

Moreover in this case both E1 and E2 are unstable.

Proof. Let

b = b1 := 1/6, c = c1 := 3/2. (5.18)

Then from (5.1) we obtain a1 = 9/2. It can be easily checked that (a, b, c) = (9/2, 1/6, 3/2) ∈
S, where S is the bifurcation set described by (5.11).

Let δ1(a, b, c) be the real part of the complex conjugate roots of (3.3). A simple computation
gives

δ1(9/2, 1/6, 3/2) = 0, V1(1/6, 3/2) = 0,

V2(1/6, 3/2) = 44000/969 > 0,
∂V1

∂b
(1/6, 3/2) = 27/17 > 0.

(5.19)

Recall from Remark 5.6 that
∂δ1

∂a
(9/2, 1/6, 3/2) < 0. (5.20)

From (5.19)–(5.20), we can concluded that the map (a, b) 7→ (δ1(a, b, 3/2), V1(b, 3/2)) is
regular at a = 9/2, b = 1/6.

Thus the conditions of Bautin bifurcation are fullfilled, so that the conclusion on the limit
cycles is proved.

Since the inner cycle is asymptotically stable, E2 is unstable. We recall from (3.1) the
definition of k1 and k2. For system (1.1)

∣∣
c=3/2, we have k1 = −5/24, k2 = 0 if a = a1 =

9/2, b = b1 = 1/6. By imposing a small perturbation satisfying (5.17) on (a, b), we have
k1 < 0 by the continuity, and k2 < 0 because

∂k2

∂a
∣∣

a=a1,b=b1,c=3/2 = 1/6,
∂k2

∂b
∣∣

a=a1,b=b1,c=3/2 = 6,

which implies (3.2) has one positive root, and thus E1 is unstable.

Remark 5.15. We have tried the cases with c = 2 and c =
√

3. For each case, if a Bautin
bifurcation occurs at E2, we can checked that it is also subcritical.

6 Concluding remarks

We investigated a financial system that describes the development of interest rate, investment
demand and price index. By performing computations on focus quantities using the recursive
formula, we derived the conditions at which limit cycles can bifurcate from the equilibria E1

and E2,3, respectively. The stabilities of the bifurcated limit cycles were also investigated in
detail. Based on the analysis of Bautin bifurcations, it was proved that the system have at
most four small limit cycles on the center manifolds and this bound is sharp.
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Appendix: The expression of n21

n21 = 1188 b19c18 + 13272 b18c19 + 37844 b17c20 − 40132 b16c21 − 291708 b15c22 − 128756 b14c23

+ 605812 b13c24 + 345204 b12c25 − 473048 b11c26 − 250196 b10c27 + 139752 b9c28

+ 56768 b8c29 − 12928 b7c30 − 3072 b6c31 − 1431 b19c16 − 38598 b18c17 − 247295 b17c18

− 334960 b16c19 + 1246686 b15c20 + 3106212 b14c21 − 1028810 b13c22 − 5559912 b12c23

− 296783 b11c24 + 3582082 b10c25 + 522393 b9c26 − 873144 b8c27 − 142792 b7c28

+ 55920 b6c29 + 11968 b5c30 − 1536 b4c31 + 27189 b18c15 + 439329 b17c16 + 1861676 b16c17

+ 527976 b15c18 − 10176796 b14c19 − 12244022 b13c20 + 12466048 b12c21 + 18577936 b11c22

− 5772331 b10c23 − 9479363 b9c24 + 1155748 b8c25 + 2004560 b7c26 + 21386 b6c27

− 135760 b5c28 + 6968 b4c29 + 1376 b3c30 − 236115 b17c14 − 2726802 b16c15

− 7857945 b15c16 + 4608714 b14c17 + 41182386 b13c18 + 23063252 b12c19 − 45484929 b11c20

− 29581420 b10c21 + 20582413 b9c22 + 10664314 b8c23 − 5218255 b7c24 − 1976930 b6c25

+ 389644 b5c26 + 41348 b4c27 − 8383 b3c28 − 524 b2c29 + 1252125 b16c13 + 10918551 b15c14

+ 21245184 b14c15 − 28757748 b13c16 − 100970458 b12c17 − 18645262 b11c18

+ 85763195 b10c19 + 20207125 b9c20 − 30605620 b8c21 − 1905598 b7c22 + 6857765 b6c23

+ 399881 b5c24 − 216087 b4c25 + 6765 b3c26 − 3256 b2c27 − 770 bc28 − 4557735 b15c12

− 30754338 b14c13 − 39581691 b13c14 + 81588724 b12c15 + 165215238 b11c16

− 4326132 b10c17 − 92274188 b9c18 + 5569390 b8c19 + 22435760 b7c20 − 6611584 b6c21

− 3811154 b5c22 − 52316 b4c23 − 15539 b3c24 + 34034 b2c25 + 6757 bc26 − 10 c27

+ 12110553 b14c11 + 64170297 b13c12 + 53791584 b12c13 − 143868664 b11c14

− 190762524 b10c15 + 19355706 b9c16 + 50687426 b8c17 − 23208704 b7c18 − 7524470 b6c19

+ 6037900 b5c20 + 1821722 b4c21 + 367794 b3c22 − 78085 b2c23 − 25401 bc24 + 130 c25

− 24351327 b13c10 − 102580170 b12c11 − 57504784 b11c12 + 170813154 b10c13

+ 160635804 b9c14 − 6959884 b8c15 + 1759762 b7c16 + 23307350 b6c17 + 975470 b5c18

− 3605064 b4c19 − 1503672 b3c20 − 32152 b2c21 + 51339 bc22 − 770 c23 + 37857105 b12c9

+ 128522559 b11c10 + 54630019 b10c11 − 137438047 b9c12 − 99311849 b8c13

− 14665085 b7c14 − 25553443 b6c15 − 14620145 b5c16 + 1193479 b4c17 + 2733231 b3c18

+ 477303 b2c19 − 52325 bc20 + 2750 c21 − 46042425 b11c8 − 128091942 b10c9

− 51612909 b9c10 + 68816794 b8c11 + 42425383 b7c12 + 20105230 b6c13 + 20030083 b5c14

+ 4744022 b4c15 − 2441874 b3c16 − 1047648 b2c17 − 1890 bc18 − 6600 c19 + 43996095 b10c7

+ 102307227 b9c8 + 47060600 b8c9 − 11723762 b7c10 − 8446819 b6c11 − 10728251 b5c12

− 6717822 b4c13 + 821340 b3c14 + 1255302 b2c15 + 90246 bc16 + 11220 c17 − 32945913 b9c6

− 65403030 b8c7 − 36340229 b7c8 − 11528220 b6c9 − 3566953 b5c10 + 1770458 b4c11

− 81455 b3c12 − 1005780 b2c13 − 151578 bc14 − 13860 c15 + 19142487 b8c5 + 33056253 b7c6

+ 21400794 b6c7 + 10951260 b5c8 + 3792381 b4c9 + 853915 b3c10 + 663614 b2c11

+ 150372 bc12 + 12540 c13 − 8464365 b7c4 − 12858582 b6c5 − 8983149 b5c6 − 4666242 b4c7
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− 1483503 b3c8 − 446054 b2c9 − 104575 bc10 − 8250 c11 + 2754675 b6c3 + 3671691 b5c4

+ 2511300 b4c5 + 1094354 b3c6 + 279679 b2c7 + 52835 bc8 + 3850 c9 − 622485 b5c2

− 709902 b4c3 − 418506 b3c4 − 125336 b2c5 − 18753 bc6 − 1210 c7 + 87291 b4c + 79881 b3c2

+ 32515 b2c3 + 4179 bc4 + 230 c5 − 5724 b3 − 3612 b2c− 436 bc2 − 20 c3.
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