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Abstract. This paper is devoted to the existence of solutions for hemivariational in-
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1 Introduction

The aim of this paper is to prove the existence of at least one solution for the nonlocal elliptic
hemivariational inequalities as follows:{

(−∆)su + ∂J(u) 3 f in Ω,

u = 0 in Ωc := Rn \Ω,
(1.1)

where Ω ⊂ Rn, n > 2s, is an open bounded set with Lipschitz boundary, s ∈ (0, 1) is fixed
and (−∆)s stands for the fractional Laplace operator, which (up to normalization factor) is
given by

−(−∆)su(x) :=
1
2

∫
Rn

u(x + y) + u(x− y)− 2u(x)
|y|n+2s dy, ∀x ∈ Rn.

Moreover, f : Ω→ R, the integral functional is given by

J(v) :=
∫

Ω
j(x, v(x)) dx for all v ∈ Lp(Ω)

and ∂J(·) denotes the generalized subdifferential in the sense of Clarke (cf. [4, 9]).
We remark that the Dirichlet datum is given in Ωc = Rn \ Ω and not simply on ∂Ω,

consistently with the non-local character of the operator (−∆)s.
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More precisely, we seek the weak solution u and η ∈ ∂J(u) as follows

1
2

∫
Rn

∫
Rn

[(u(x)− u(y))(v(x)− v(y))
|x− y|(n+2s)

dydx +
∫

Rn
η(x)v(x) dx

=
∫

Rn
f (x)v(x) dx, ∀v ∈ Hs(Rn) with v = 0 in Ωc,

here Hs(Rn) the usual fractional Sobolev space and notice that∫
Rn

v(x)(−∆)su(x)dx = − 1
2

∫
Rn

v(x) dx
∫

Rn

u(x + y) + u(x− y)− 2u(x)
|y|n+2s dy

= − 1
2

∫
Rn

∫
Rn

[u(x + y)− u(x)]v(x)
|y|n+2s dydx

− 1
2

∫
Rn

∫
Rn

[u(x− y)− u(x)]v(x)
|y|n+2s dydx

= − 1
2

∫
Rn

∫
Rn

[u(y)− u(x)]v(x)
|y− x|n+2s dydx

− 1
2

∫
Rn

∫
Rn

[u(y)− u(x)]v(x)
|y− x|n+2s dydx

= − 1
2

∫
Rn

∫
Rn

[u(y)− u(x)]v(x)
|y− x|n+2s dydx

− 1
2

∫
Rn

∫
Rn

[u(x)− u(y)]v(y)
|y− x|n+2s dydx

=
1
2

∫
Rn

∫
Rn

[(u(x)− u(y))(v(x)− v(y))
|x− y|−(n+2s)

dydx

∀v ∈ Hs(Rn) with v = 0 in Ωc.

In recent years, nonlocal variational problems attract a lot of interest since the fractional
powers of the Laplacian play an important role in physics, mathematical finance, which also
describe anomalous diffusion in collective dynamics, extended heterogeneities, and other
sources of long-range correlations.

Hemivariational inequalities arise in variational expressions for some mechanical problems
with nonsmooth and nonconvex energy superpotentials. The derivative of hemivariational
inequality is based on the mathematical notion of the generalized gradient of Clarke [2, 5, 9].

Recently, Teng [12] and Xi et al. [15] established multiplicity of weak solution to nonlocal el-
liptic hemivariational inequalities with Dirichlet boundary condition by using the nonsmooth
critical point theory [7] and nonsmooth version of the three-critical-points theorem under the
framework of the nonsmooth functional.

However, in some cases, the nonsmooth critical point theory and the nonsmooth varia-
tional methods cannot be applied, because the formulated problems have not in general a
variational structure. Then we have to look for other methods, for example, topological de-
gree, theory for pseudomonotone operators, method of sub-supersolutions and fixed point
theory and so on.

In this paper, we show the existence of at least one solution for the nonlocal hemivari-
ational inequalities. The basic tools used in our paper are the surjectivity result for pseu-
domonotone and coercive operators (cf. [10]), properties of the generalized subdifferential in
the sense of Clarke. In our hypotheses we only require a general growth condition with re-
spect to the solution. We believe that our result gives a natural approach to the theory of the
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nonlocal nonlinear hemivariational inequalities. Furthermore, the hypotheses we assume on
the nonlinear term are general and verifiable.

2 Mathematical framework

In this section, collect some important notations and useful results on nonlocal operators,
nonsmooth analysis and operators of monotone type.

We recall the function spaces related to the fractional Laplacian (see, e.g., [1, 6, 11, 13]).
Given s ∈ (0, 1). Let Ω ⊂ Rn, n > 2s be an open bounded set with Lipschitz boundary. Define
the fractional Sobolev space

E :=
{

u ∈ L2(Rn) | u ≡ 0 in Ωc,
∫

Rn

∫
Rn

|u(x)− u(y)|2
|x− y|n+2s dxdy < ∞

}
(2.1)

endowed with the Gagliardo norm

‖u‖E =

(∫
Rn

∫
Rn

|u(x)− u(y)|2
|x− y|n+2s dxdy

)1/2

with the inner product for u, v ∈ E

〈u, v〉E :=
∫

Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s dxdy.

We stress that C2
0(Ω) ⊆ E (see, e.g., [14]). So E is non-empty and dense in L2(Ω). We may

collect the useful facts on the space E (for more details, see [13]) as follows.

Lemma 2.1. E is a Hilbert space and for p ∈ [1, 2∗],there exists a positive constant c(p) such that

‖u‖Lp(Rn) ≤ c(p)‖u‖E, ∀u ∈ E, (2.2)

where 2∗ = 2n
n−2s . Furthermore, the embedding is compact if p ∈ [1, 2∗).

We recall some preliminary material of the pseudomonotone operator. Let X be a reflexive
Banach space and X∗ be its dual space with the dual paring 〈·, ·〉X.

Definition 2.2. We say that the multivalued operator A : X → 2X∗ is pseudomonotone if:

(i) for each u ∈ X, the set Au is nonempty, bounded, closed and convex in X∗;

(ii) A is upper semicontinuous from each finite-dimensional subspace of X to X∗ endowed
with the weak topology;

(iii) if {uk} ⊂ X with uk → u weakly in X, and u∗k ∈ Auk is such that

lim sup
n→∞

〈u∗k , uk − u〉X ≤ 0,

then for every y ∈ X, there exists u∗(y) ∈ Au such that

lim inf
k→∞

〈u∗k , uk − y〉X ≥ 〈u∗(y), u− y〉X.

In what follows we introduce the notion of coercivity.
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Definition 2.3. Let X be a Banach space and A : X → 2X∗ be an operator. We say that A is
coercive if either D(A) is bounded or D(A) is unbounded and

lim
‖u‖X→∞, u∈D(A)

inf{〈u∗, u〉X|u∗ ∈ Au}
‖u‖X

= +∞.

The following is the main surjectivity result for pseudomonotone and coercive operators.

Theorem 2.4 ([9]). Let X be a reflexive Banach space and A : X → 2X∗ be pseudomonotone and
coercive. Then A is surjective, i.e., for every f ∗ ∈ X∗, there exists u ∈ X such that f ∗ ∈ A(u).

Let us recall h0(u, v) the Clarke generalized directional derivative of a locally Lipschitz
functional h : V → R at u ∈ V in the direction v ∈ V

h0(u, v) = lim sup
λ→0+, w→u

h(w + λv)− h(w)

λ

and the generalized Clarke subdifferential of h at u ∈ V

∂h(u) := {u∗ ∈ V∗ | h0(u, v) ≥ 〈u∗, v〉 for all v ∈ V}.

The next proposition provides basic properties of the generalized directional derivative and
the generalized gradient.

Proposition 2.5 ([4, 9]). If h : U → R is a locally Lipschitz function on a subset U of X, then

(i) for every u ∈ U the gradient ∂h(x) is a nonempty, convex,and weakly∗ compact subset of X∗

which is bounded by the Lipschitz constant Kx > 0 of h near u;

(ii) for each y ∈ X, there exists zx ∈ ∂h(x) such that

h0(x; y) = max{〈z, y〉X, | z ∈ ∂h(x)} = 〈zx, y〉X;

(iii) the graph of the generalized gradient ∂h is closed in X × (w∗ − X∗) topology, i.e., if {xk} ⊂ U
and {ζk} ⊂ X∗ are sequences such that ζk ∈ ∂h(xk) and xk → x in X, ζk → ζ weakly∗ in X∗,
then ζ ∈ ∂h(x) where, recall, w∗ − X∗ denotes the space X∗ equipped with weak∗ topology;

(iv) the multifunction U 3 x → ∂h(x) ⊆ X∗ is upper semicontinuous from U into w∗ − X∗.

We assume that j : Ω×R→ R, j(·, 0) ∈ L1(Ω) satisfying the assumption (H):

(i) j(·, s) : Ω→ R is measurable for all s ∈ R;

(ii) j(x, ·) : R→ R is locally Lipschitz for a.e. x ∈ Ω;

(iii) there exist p ≥ 1, c > 0 and b ∈ L
p

p−1 (Ω) such that

|z| ≤ b(x) + c|s|p−1, ∀x ∈ Ω, ∀z ∈ ∂s j(x, s).

Define the integral functional

J(v) :=
∫

Ω
j(x, v(x)) dx for all v ∈ Lp(Ω). (2.3)

Lemma 2.6 ([8]). Under the assumption (H), the functional J in (2.3) is locally Lipschitz and the
following inequalities hold:

J0(u, v) ≤ c1(1 + ‖u‖
p−1
Lp )‖v‖Lp ∀u, v ∈ Lp(Ω) (2.4)

and
‖w‖Lp′ ≤ c1(1 + ‖u‖

p−1
Lp ), ∀w ∈ ∂(J|Lp)(u), u ∈ Lp(Ω), (2.5)

where 1
p +

1
p′ = 1 and c1 is a positive constant.
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3 Main results

Lemma 3.1. (−∆)s : E→ E∗ is a linear bounded strongly monotone operator.

Proof. We observe that for all u, v ∈ E

〈(−∆)su, u〉E =
1
2
‖u‖2

E

and

〈(−∆)su, v〉 = 1
2

∫
Rn

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s dydx

≤ 1
2

{∫
Rn

(u(x)− u(y))2

|x− y|n+2s dydx
}1/2{∫

Rn

(v(x)− v(y))2

|x− y|n+2s dydx
}1/2

=
1
2
‖u‖E‖v‖E,

which implies that

‖(−∆)su‖E∗ ≤
1
2
‖u‖E.

The proof is complete.

Proposition 3.2. Under the assumption (H), (−∆)s + ∂J : E→ E∗ is pseudomonotone. Furthermore,
if 1 ≤ p < 2 or p = 2 such that 2c1c(p) < 1 in the assumption (H), where c(p) and c1 are the
constants in (2.2) and (2.5), respectively, then (−∆)s + ∂J : E→ E∗ is coercive.

Proof. By Proposition 2.5, we observe that ∂J is nonempty, convex, weak-compact subset of E∗.
Then for each u ∈ E, (−∆)su + ∂J(u) is nonempty, bounded, closed and convex subset of E∗.
Moreover, (−∆)su + ∂J(u) is upper semicontinuous from E to w− E∗.

Let uk be a sequence in E converging weakly to u, and wk ∈ ∂J(uk) such that

lim sup
k→∞

〈(−∆)suk + wk, uk − u〉E ≤ 0 (3.1)

which implies

lim sup
k→∞

〈(−∆)suk, uk − u〉E + lim inf
k→∞

〈wk, uk − u〉E ≤ 0. (3.2)

By Lemma 2.1., we have E ⊆ Lp(Ω) ⊆ E∗, p ∈ [1, 2∗] and the embedding E ↪→ Lp(Ω), p ∈
[1, 2∗) is compact. Therefore,

uk → u strongly in Lp(Ω).

Applying Theorem 2.2 in [3], we have

∂(J|E)(u) ⊂ ∂(J|Lp(Ω))(u), ∀u ∈ E.

Therefore,
|〈wk, uk − u〉E| ≤ const‖wk‖Lp′ (Ω)‖uk − u‖Lp(Ω).

Thus
|〈wk, uk − u〉E| → 0 as k→ ∞.
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Then, from (3.2) we have
lim sup

k→∞
〈(−∆)suk, uk − u〉E ≤ 0.

We have from uk → u weakly in E

lim sup
k→∞

〈(−∆)suk − (−∆)su, uk − u〉E ≤ 0.

By Lemma 3.1, we get

lim sup
k→∞

1
2
‖uk − u‖E = lim sup

k→∞
〈(−∆)suk − (−∆)su, uk − u〉E ≤ 0.

Therefore we obtain

uk → u strongly in E, (3.3)

(−∆)suk → (−∆)su strongly in E∗. (3.4)

Then, by Proposition 2.5,

w ∈ ∂J(u).

So, we have

lim
k→∞
〈(−∆)suk + wk, uk − v〉E = 〈(−∆)su− w, u− v〉E, (3.5)

which implies (−∆)s + ∂J : E→ E∗ is pseudomonotone.
In the following, we show that (−∆)s + ∂J : E→ E∗ is coercive, i.e.,

lim
‖u‖E→∞

inf{〈(−∆)su + w, u〉E|w ∈ ∂J(u)}
‖u‖E

= +∞.

Since

inf{〈(−∆)su + w, u〉E|w ∈ ∂J(u)} = 〈(−∆)su, u〉E + inf{〈w, u〉Lp(Ω)|w ∈ ∂J(u)}

≥ 1
2
‖u‖2

E − sup{‖w‖Lp′ (Ω)|w ∈ ∂J(u)}‖u‖Lp(Ω)

≥ 1
2
‖u‖2

E − c1‖u‖Lp(Ω) − c1‖u‖
p
Lp (by Lemma 2.6)

≥ 1
2
‖u‖2

E − c1c(p)‖u‖E − c1c(p)‖u‖p
E,

if 1 ≤ p < 2, or p = 2 with 2c1c(p) < 1, the above inequality implies that (−∆)s + ∂J : E→ E∗

is coercive. The proof is complete.

Therefore, from Theorem 2.4, we get the following theorem.

Theorem 3.3. Under the assumption (H) with 1 ≤ p < 2 or p = 2 such that 2c1c(p) < 1, the
nonlocal hemivariational inequality (1.1) has at least a weak solution.
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