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Abstract. In this paper, we consider the multiplicity of nontrivial solutions for a class
of nonperiodic fourth-order equation with concave and convex nonlinearities. Based
on the Nehari manifold and Ekeland variational principle, we prove that the equation
has at least two solutions under some proper assumptions. Moreover, one solution is a
ground state solution.
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1 Introduction

The purpose of this paper is to consider the multiplicity of nontrivial solutions for the follow-
ing fourth-order differential equation:

u(4) + wu′′ + a(x)u = f (x)|u|q−2u + g(x)|u|p−2u, x ∈ R, (1.1)

where 1 < q < 2 < p < +∞, a(x), f (x) and g(x) are continuous functions and satisfy suitable
conditions. This equation has been used to solve some problems associated to mathematical
model for the study of pattern formation in physic and mechanics. There are many papers
considered fourth-order differential equations, see [1,2,6–8,10–12,14–16,21] for example. Some
authors researched the well-known extended Fisher–Kolmogorov equations (see [4, 5]) and
the Swift–Hohenberg equations (see [9,17]). With suitable changes of variables, the stationary
solutions to the above equations lead to consider the following fourth-order equation

u(4) + wu′′ − u + u3 = 0,

where w > 0 corresponds to the extended Fisher–Kolmogorov equations and w < 0 to the
Swift–Hohenberg equations. In the past years, by critical point theory and variational meth-
ods, many researchers are interested in the existence of homoclinic solutions for the following
equation

u(4) + wu′′ + a(x)u = c(x)u2 + d(x)u3,
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where a(x), c(x), d(x) are independent of x or T-periodic in x, see [7, 13, 14, 18] and the
reference therein. In [18], applying the mountain pass theorem, the authors showed that
the equation possesses one nontrivial homoclinic solution u ∈ H2(R), when a(x), c(x) and
d(x) are continuous periodic functions and satisfy some other assumptions. If there is no
periodicity assumption of a(x), c(x) and d(x), then the study will be more difficult. Very
recently, Sun and Wu [15] considered a class of fourth order differential equations with a
perturbation:

u(4) + wu′′ + a(x)u = f (x, u) + λh(x)|u|p−2u, x ∈ R

where λ > 0 is a parameter, 1 ≤ p < 2 and h ∈ L
2

2−p (R). By using variational methods, the
existence result of two homoclinic solutions for the above equation is obtained if the parameter
λ is small enough. In [11, 16], the authors considered the equation

u(4) + wu′′ + λa(x)u = f (x, u), x ∈ R,

by using variational methods, they get the existence of homoclinic solutions. Motivated by
these papers mentioned above, we consider the fourth-order differential equation (1.1) with
concave-convex nonlinearities on the whole space R. To our best knowledge, there are few
papers which deal with this type of fourth-order differential equation by using Nehari man-
ifold. The main difficulties lie in the boundedness of the domain R and the presence of the
concave-convex nonlinearities.

In order to get our main results, we assume that a(x), f (x) and g(x) satisfy the following
conditions:

(H1) a ∈ C(R, R), there exists a positive constant a1 such that 0 < a1 < a(x) → +∞ as
|x| → +∞ and w ≤ 2

√
a1;

(H2) f ∈ C(R)
⋂

Lq∗(R), q∗ = p
p−q ;

(H3) g ∈ C(R)
⋂

L∞(R) and g(x) > 0, for almost every x ∈ R.

In the problem (1.1), the presence of the concave-convex nonlinearities prevents us from using
the Nehari manifold method in a standard way. Motivated by [3, 19], we split the Nehari
manifold into three parts which are then considered separately. Here are our main results:

Theorem 1.1. Under the assumptions (H1)–(H3), if | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then the problem

(1.1) has at least two nontrivial solutions, one of which corresponds to negative energy and the other
corresponds to positive energy, where σ = (p− 2)(2− q)(2−q)/(p−2)(Sp/(p− q))(p−q)/(p−2) and Sp

is the best Sobolev constant described in Section 2.

Remark 1.2. In problem (1.1), because of the unboundedness of the domain R, we need the
hypothesis (H1), which is used to establish the corresponding compact embedding lemmas
on suitable functional spaces, see Lemma 2 in [8], Lemma 2.2 in [15] and Lemma 2.2 in [10].

Theorem 1.3. Under the assumptions (H1)–(H3), if | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ∗), then the problem

(1.1) has at least two nontrivial solutions, one of which corresponds to negative energy and the other
corresponds to positive energy. Moreover, the solution corresponding to the negative energy is a ground
state solution, where 0 < σ∗ := q

2 σ < σ.

Remark 1.4. On the one hand, from the condition (H2), we can easily conclude that f (x)
is allowed to be sign-changing. On the other hand, to the best of our knowledge, there are
few papers which obtain the ground state solutions of fourth-order equations, so our results
complete the existence of solutions for fourth-order differential equations.
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2 Preliminaries

First, we present the definition of ground state solutions, Palais–Smale (denoted by (PS))
sequences and (PS) value for J as follows.

Definition 2.1.

(i) u is called a ground state solution of equation (1.1), if J(u) is the least level for J at
the nontrivial solutions of (1.1), where J denotes the energy functional corresponding to
(1.1).

(ii) For c ∈ R, a sequence {un} is a (PS)c-sequence in H2(R) for J if J(un) = c + o(1) and
J′(un) = o(1) strongly in (H2(R))′ as n → ∞, where (H2(R))′ is the dual space of
H2(R).

(iii) c ∈ R is a (PS)-value in H2(R) for J if there is a (PS)c-sequence in H2(R) for J.

Lemma 2.2 (See Lemma 8 in [18]). Assume that a(x) ≥ a1 > 0 and w ≤ 2
√

a1. Then there exists
a constant c0 > 0, such that∫

R
[u′′(x)2 − wu′(x)2 + a(x)u(x)2]dx ≥ c0‖u‖2

H2 , (2.1)

for all u ∈ H2(R), where ‖u‖H2 =
( ∫

R
[u′′(x)2 + u(x)2]dx

)1/2 is the norm of Sobolev space H2(R).

By Lemma 2.2, we define

X :=
{

u ∈ H2(R)
∣∣∣ ∫

R
[u′′(x)2 − wu′(x)2 + a(x)u(x)2]dx < +∞

}
,

with the inner product

(u, v) =
∫

R
[u′′(x)v′′(x)− wu′(x)v′(x) + a(x)u(x)v(x)]dx,

and the corresponding norm

‖u‖ =
(∫

R
[u′′(x)2 − wu′(x)2 + a(x)u(x)2]dx

)1/2

.

It is easy to verify that X is a Hilbert space.

Now we begin describing the variational formulation of the problem (1.1). Consider the
functional J : X → R, defined by

J(u) =
1
2

∫
R
[u′′(x)2 − wu′(x)2 + a(x)u(x)2]dx− 1

q

∫
R

f (x)|u|qdx− 1
p

∫
R

g(x)|u|pdx

=
1
2
‖u‖2 − 1

q

∫
R

f (x)|u|qdx− 1
p

∫
R

g(x)|u|pdx, u ∈ X.
(2.2)

Lemma 2.3. If (H1)–(H3) hold, then the functional J ∈ C1(X, R), and for any u, v ∈ X,

〈J′(u), v〉 =
∫

R
[u′′(x)v′′(x)− wu′(x)v′(x) + a(x)u(x)v(x)]dx

−
∫

R
f (x)|u|q−2uvdx−

∫
R

g(x)|u|p−2uvdx.
(2.3)
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The proof of Lemma 2.3 is a direct computation under (H1)–(H3). Then we can infer
that u ∈ X is a critical point of J if and only if it is a solution of problem (1.1). Moreover,
as pointed out previously, assumption (H1) is used to recover compactness of embedding
theorem, which is given below.

Lemma 2.4 (See [15]). Assume that condition (H1) holds, then the embedding X ↪→ Lp(R) is
continuous for p ∈ [2, ∞], and compact for p ∈ [2, ∞).

Throughout this paper, we denote by Sp the best Sobolev constant for the embedding
X ↪→ Lp(R), which is given by

Sp = inf
u∈X\{0}

‖u‖2(∫
R
|u|pdx

)2/p > 0.

In particular, for ∀u ∈ X\{0}, |u|p ≤ S−1/2
p ‖u‖, where | · |p is the Lp-norm, 2 ≤ p < ∞.

As usual, some energy functionals such as J in (2.2) are not bounded from below on X,
but are bounded from below on an appropriate subset of X, and a minimizer on this set (if it
exists) may give rise to a solution of corresponding differential equation. A good example for
an appropriate subset of X is the so-called Nehari manifold

N = {u ∈ X : 〈J′(u), u〉 = 0},

where 〈·, ·〉 denotes the duality between X and X′. It is obvious to see that u ∈ N if and only
if

‖u‖2 =
∫

R
f (x)|u|qdx +

∫
R

g(x)|u|pdx. (2.4)

Obviously, N contains all solutions of (1.1). In the following, we will use the Nehari manifold
methods to find critical points for J. The Nehari manifold N is closely linked to the behavior
of functions of the form Nu : t→ J(tu) for t > 0. For u ∈ X, let

Nu(t) = J(tu) =
1
2

t2‖u‖2 − 1
q

tq
∫

R
f (x)|u|qdx− 1

p
tp
∫

R
g(x)|u|pdx.

Because N′u(t) = 〈J′(tu), u〉 = 1
t 〈J′(tu), tu〉 for u ∈ X\{0} and t > 0, then tu ∈ N if and

only if N′u(t) = 0, that is, the critical points of Nu(t) correspond to the points on the Nehari
manifold. In particular, u ∈ N if and only if N′u(1) = 0. Then we define

N+ = {u ∈ N : N′′u (1) > 0},
N 0 = {u ∈ N : N′′u (1) = 0},
N− = {u ∈ N : N′′u (1) < 0}.

Let

ψ(u) = N′u(1) = 〈J′(u), u〉

= ‖u‖2 −
∫

R
f (x)|u|qdx−

∫
R

g(x)|u|pdx.
(2.5)

Then, for u ∈ N ,

d
dt

ψ(tu)|t=1 = 〈ψ′(u), u〉 = 〈ψ′(u), u〉 − 〈J′(u), u〉

= ‖u‖2 −
∫

R
f (x)|u|qdx−

∫
R

g(x)|u|pdx.
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For each u ∈ N , ψ(u) = N′u(1) = 0. Thus, we have

N′′u (1) = N′′u (1)− (q− 1)ψ(u) = (2− q)‖u‖2 − (p− q)
∫

R
g(x)|u|pdx, (2.6)

N′′u (1) = N′′u (1)− (p− 1)ψ(u) = (2− p)‖u‖2 + (p− q)
∫

R
f (x)|u|qdx. (2.7)

In order to ensure the Nehari manifold to be a C1-manifold, we need the following lemmas.

Lemma 2.5. If | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then the set N 0 = {0}, where

σ = (p− 2)(2− q)(2−q)/(p−2)(Sp/(p− q))(p−q)/(p−2).

Proof. Suppose that there exists u ∈ N\{0}, such that N′′u (1) = 0. By Lemma 2.4,∫
R

g(x)|u|pdx ≤ |g|∞S−p/2
p ‖u‖p. (2.8)

Noting that 1 < q < 2 < p < +∞, from (2.6), we have

(2− q)‖u‖2 ≤ (p− q)|g|∞S−p/2
p ‖u‖p,

and then

‖u‖ ≥
(
(2− q)Sp/2

p

(p− q)|g|∞

)1/(p−2)

. (2.9)

Moreover, by Hölder inequality and Lemma 2.4, one obtains

∫
R

f (x)|u|qdx ≤
(∫

R
| f (x)|q∗dx

)1/q∗ (∫
R
|u|pdx

)q/p

= | f |q∗ |u|qp ≤ | f |q∗S
−q/2
p ‖u‖q.

(2.10)

From (2.7), we have (p− 2)‖u‖2 ≤ (p− q)| f |q∗S−q/2
p ‖u‖q, which implies that

‖u‖ ≤
(
(p− q)| f |q∗
(p− 2)Sq/2

p

)1/(2−q)

. (2.11)

Combining (2.9) and (2.11), we deduce that

| f |q∗ |g|(2−q)/(p−2)
∞ ≥

(
(2− q)Sp/2

p

p− q

)(2−q)/(p−2)
p− 2
p− q

Sq/2
p

= (p− 2)(2− q)(2−q)/(p−2)(Sp/(p− q))(p−q)/(p−2),

which contradicts the assumptions.

For each u ∈ X\{0}, let h(t) = t2−q‖u‖2 − tp−q
∫

R
g(x)|u|pdx for t ≥ 0, then we have

h(0) = 0, h(t) > 0 for t small enough, and h(t)→ −∞ as t→ ∞. By 1 < q < 2 < p < +∞ and

h′(t) = tp−q−1
(
(2− q)t2−p‖u‖2 − (p− q)

∫
R

g(x)|u|pdx
)
= 0,
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we can obtain that there is a unique

tmax =

[
(2− q)‖u‖2

(p− q)
∫

R
g(x)|u|pdx

]1/(p−2)

such that h(t) achieves its maximum at tmax, increasing for t ∈ [0, tmax), and decreasing for
t ∈ [tmax, ∞). Then we have the lemma below.

Lemma 2.6. Suppose that | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ) and u ∈ X\{0}. Then

(i) if
∫

R
f (x)|u|qdx = 0, then there is a unique t− > tmax, such that t−u ∈ N− and

J(t−u) = sup
t≥0

J(tu);

(ii) if
∫

R
f (x)|u|qdx > 0, then there are unique t+ and t− with t− > tmax > t+ > 0, such that

t−u ∈ N−, t+u ∈ N+ and

J(t+u) = inf
0≤0≤tmax

J(tu), J(t−u) = sup
t≥tmax

J(tu).

Proof. By the Sobolev embedding theorem, we have that

h(tmax) =

[
(2− q)‖u‖2

(p− q)
∫

R
g(x)|u|pdx

](2−q)/(p−2)

‖u‖2

−
[

(2− q)‖u‖2

(p− q)
∫

R
g(x)|u|pdx

](p−q)/(p−2) (∫
R

g(x)|u|pdx
)

≥ ‖u‖q p− 2
p− q

(
(2− q)Sp/2

p

(p− q)|g|∞

)(2−q)/(p−2)

.

(2.12)

(i) If
∫

R
f (x)|u|qdx = 0, there exists a unique positive number t− > tmax such that h(t−) =∫

R
f (x)|u|qdx = 0, and h′(t−) < 0. Then

d
dt

J(tu)
∣∣∣∣
t−t−

=

[
1
t
(‖tu‖2 −

∫
R

g(x)|tu|pdx−
∫

R
f (x)|tu|q)

]∣∣∣∣
t=t−

= 0,

d2

dt2 J(tu)
∣∣∣∣
t−t−

=

[
1
t2 (‖tu‖

2 − (p− 1)
∫

R
g(x)|tu|pdx− (q− 1)

∫
R

f (x)|tu|q)
]∣∣∣∣

t=t−
< 0,

and J(tu) → −∞ as t → ∞. Moreover, for 1 < q < 2 < p, it is easy to check that t−u ∈ N−,
and J(t−u) = supt≥0 J(tu).

(ii) If
∫

R
f (x)|u|qdx > 0, by (2.10) and (2.12), then

h(0) = 0 <
∫

R
f (x)|u|qdx ≤ ‖u‖q p− 2

p− q

(
(2− q)Sp/2

p

(p− q)|g|∞

)(2−q)/(p−2)

≤ h(tmax).

It follows that there exist unique positive numbers t+ and t− such that t+ < tmax < t−,
h(t+) =

∫
R

f (x)|u|qdx = h(t−) and h′(t−) < 0 < h′(t+). Similarly, we have that t+u ∈ N+,
t−u ∈ N−, J(t+u) ≤ J(tu) ≤ J(t−u) for each t ∈ [t+, t−], and J(t+u) ≤ J(tu) for each
t ∈ [0, tmax]. Hence, J(t+u) = inf0≤0≤tmax J(tu), J(t−u) = supt≥tmax

J(tu).
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In the following, we will give some lemmas to obtain the minimizing sequence of the
energy functional J on Nehari manifold N .

Lemma 2.7. The energy functional J is coercive and bounded from below on N .

Proof. For u ∈ N , by Hölder’s inequality and Lemma 2.4,

J(u) = J(u)− 1
p
〈J′(u), u〉

=

(
1
2
− 1

p

)
‖u‖2 −

(
1
q
− 1

p

) ∫
R

f (x)|u|qdx

≥
(

1
2
− 1

p

)
‖u‖2 −

(
1
q
− 1

p

)
| f |q∗S−q/2

p ‖u‖q.

(2.13)

For 1 < q < 2 < p, thus we get the conclusion.

Lemma 2.8. If | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), the set N− is closed in X.

Proof. Let {un} ⊂ N− such that un → u in X. In the following, we prove u ∈ N−. Indeed, by
〈J′(un), un〉 = 0, and

〈J′(un), un〉 − 〈J′(u), u〉 = 〈J′(un)− J′(u), u〉+ 〈J′(un), un − u〉 → 0

as n→ ∞, we have 〈J′(u), u〉 = 0, that is, u ∈ N . For any u ∈ N−, from (2.6), one obtains

(2− q)‖u‖2 < (p− q)
∫

R
g(x)|u|pdx.

Similar to the proof of (2.9), we have

‖u‖ ≤
(
(2− q)Sp/2

p

(p− q)|g|∞

)1/(p−2)

. (2.14)

Thus, N− is bounded away from 0. By (2.6), it follows that N′′un
(1)→ N′′u (1). Combining with

N′′un
(1) < 0, we have N′′u (1) ≤ 0. By Lemma 2.5, for | f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ), N′′u (1) < 0.
Thus we deduce u ∈ N−.

Lemma 2.9. If | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then for each u ∈ N+, there exist ε > 0 and a differential

function ϕ1 : (−ε, ε)→ R+ = (0,+∞) such that

ϕ1(0) = 1, ϕ1(w)(u− w) ∈ N+, ∀w ∈ (−ε, ε),

〈ϕ1(0), w〉 = L(u, w)

N′′u (1)
, (2.15)

where
L(u, w) = 2〈u, w〉 − q

∫
R

f (x)|u|q−2uwdx− p
∫

R
g(x)|u|p−2uwdx.

Moreover, for any C1, C2 > 0, there exists C > 0, such that if C1 ≤ ‖u‖ ≤ C2, then |〈ϕ′1(0), w〉| ≤
C‖w‖.
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Proof. First, we define F : R× X → R by F(t, w) = N′′u−w(t), it is easy to obtain that F is
differentiable. Since F(1, 0) = 0 and F′t (1, 0) = N′′u (1) > 0, according to the implicit function
theorem at point (1, 0), one can get the existence of ε > 0, and differentiable function ϕ1 :
(−ε, ε)→ R+ = (0,+∞) such that

ϕ1(0) = 1, F(ϕ1(w), w) = 0, ∀w ∈ (−ε, ε).

Thus, ϕ1(w)(u − w) ∈ N , ∀w ∈ (−ε, ε). Next, we prove ϕ1(w)(u − w) ∈ N+, ∀w ∈
(−ε, ε). Indeed, by u ∈ N+ and N− ∪ N 0 is closed, we know dist(u,N− ∪ N 0) > 0. Since
ϕ1(w)(u−w) is continuous with respect to w, when ε > 0 small enough, for w ∈ (−ε, ε), one
has

‖ϕ1(w)(u− w)− u‖ < 1
2

dist(u,N− ∪N 0),

and thus

dist(ϕ1(w)(u− w),N− ∪N 0) ≥ dist(u,N− ∪N 0)− ‖ϕ1(w)(u− w)− u‖

>
1
2

dist(u,N− ∪N 0) > 0.

Thus, ϕ1(w)(u− w) ∈ N+, ∀w ∈ (−ε, ε). Also by the differentiability of the implicit function
theorem, we have

〈ϕ′1(0), w〉 = −〈F
′
w(1, 0), w〉
F′t (1, 0)

.

Note that L(u, w) = −〈F′w(1, 0), w〉 and N′′u (1) = Ft(1, 0). So we prove (2.15).
Then we prove that for any C1, C2 > 0, if C1 ≤ ‖u‖ ≤ C2, u ∈ N , there exists δ > 0, such

that N′′u (1) ≥ δ > 0. On the contrary, if there exists a sequence {un} ⊂ N+, C1 ≤ ‖un‖ ≤ C2,
such that for any δn small enough, N′′un

(1) ≤ δn, δn → 0 as n→ ∞. From (2.8) we have

(2− q)‖un‖2 ≤ (p− q)|g|∞S−p/2
p ‖un‖p + O(δn)

and so

‖un‖ ≥
(
(2− q)Sp/2

p

(p− q)|g|∞

)1/(p−2)

+ O(δn). (2.16)

From (2.7), we also have

(p− 2)‖un‖2 = (p− q)
∫

R
f (x)|un|qdx + O(δn).

In view of (2.10), we obtain

(p− 2)‖un‖2 ≤ (p− q)| f |q∗S−q/2
p ‖un‖q + O(δn),

which implies

‖un‖ ≤
(
(p− q)| f |q∗
(p− 2)Sq/2

p

)1/(2−q)

+ O(δn). (2.17)

Combining (2.16) and (2.17) as n → ∞, we deduce a contradiction. Thus if C1 ≤ ‖u‖ ≤ C2,
then |〈ϕ′1(0), w〉| ≤ C‖w‖. This completes the proof.
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Similarly, we establish the lemma below.

Lemma 2.10. If | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then for each u ∈ N−, there exist ε > 0 and a differential

function ϕ2 : (−ε, ε)→ R+ = (0,+∞) such that

ϕ2(0) = 1, ϕ2(w)(u− w) ∈ N−, ∀w ∈ (−ε, ε),

〈ϕ2(0), w〉 = L(u, w)

N′′u (1)
,

where L(u, w) is defined in Lemma 2.9. Moreover, for any C1, C2 > 0, there exists C > 0, such that if
C1 ≤ ‖u‖ ≤ C2, then |〈ϕ′2(0), w〉| ≤ C‖w‖.

The following lemma aims at obtaining the critical point of J on whole space from the local
minimizer for J on Nehari manifold.

Lemma 2.11. Suppose that u is a local minimizer for J on N+ (or N−). Then J′(u) = 0.

Proof. If u 6= 0, u is a local minimizer for J on N+ (or N−), then u is a nontrivial solution
of the optimization problem: minimize J subject to ψ′(u) = 0, where ψ(u) is defined in (2.5).
By ψ′(u) 6= 0, N+ (or N−) is a local differential manifold. So by the theory of Lagrange
multipliers, there exists λ ∈ R such that J′(u) = λψ′(u), thus 〈J′(u), u〉 = λ〈ψ′(u), u〉. Since
u ∈ N+ (or N−), 〈J′(u), u〉 = 0, and 〈ψ′(u), u〉 6= 0. Hence, λ = 0. Thus, the proof is
complete.

3 Proofs of theorems

First, we also give some lemmas, which are necessary for our results.

Lemma 3.1. Every (PS)c-sequence {un} ⊂ N+ (or N−) for J on X has a strongly convergent
subsequence.

Proof. Assume that {un} ⊂ N+ (or N−) such that J(un) → c, J′(un) → 0 as n → ∞. By
the proof of Lemma 2.7, we obtain that {un} ⊂ N+ (or N−) for J on X is bounded, and by
Lemma 2.4, going to a subsequence if necessary, we have

un ⇀ u in X,

un → u in Lp(R), p ∈ [2, ∞).

Note that

〈J′(un)− J′(u), un − u〉 = 〈J′(un), un − u〉 − 〈J′(u), un − u〉

≥ ‖un − u‖2 −
∫

R
f (x)(|un|q−2un − |u|q−2u)(un − u)dx

−
∫

R
g(x)(|un|p−2un − |u|p−2u)(un − u)dx,

then we can deduce that ‖un− u‖ → 0 as n→ ∞. Indeed, from the boundedness of {un} in X
and Lemma 2.4, {un} is bounded in Lp(R), p ∈ [2, ∞). By Hölder’s inequality, one obtains∣∣∣∣∫

R
f (x)(|un|q−2un − |u|q−2u)(un − u)dx

∣∣∣∣
≤
(∫

R
| f |q∗dx

)1/q∗ (∫
R

∣∣|un|q−2un − |u|q−2u
∣∣p/q |un − u|p/qdx

)q/p

≤ C| f |q∗
(
|un|q−1

p + |u|q−1
p

)
|un − u|p → 0,
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as n→ ∞, where C is a positive constant. Similarly, we have∫
R

g(x)(|un|p−2un − |u|p−2u)(un − u)dx → 0,

as n → ∞. From 〈J′(un)− J′(u), un − u〉 → 0, as n → ∞, we have ‖un − u‖ → 0 as n → ∞.
This completes the proof.

Lemma 3.2. If | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then the minimization problem c1 = infN+ J(u) is solved

at a point u1 ∈ N+. That is, u1 is a critical point of J.

Proof. First, we prove the minimizing sequence {un} ⊂ N+ is a (PS)c1-sequence on X. Indeed,
by Lemma 2.2 and the Ekeland variational principle (see [20]) on N+ ∪ N 0, there exists a
minimizing sequence {un} ⊂ N+ ∪N 0 such that

inf
u∈N+∪N 0

J(u) ≤ J(un) < inf
u∈N+∪N 0

J(u) +
1
n

, (3.1)

J(un)−
1
n
‖v− un‖ ≤ J(v), ∀v ∈ N+ ∪N 0. (3.2)

From Lemma 2.6, we obtain that for each u ∈ X\{0}, there exists a unique t+ such that
t+u ∈ N+, then infu∈N+ J(u) ≤ J(t+u). Now, we prove that for each u ∈ N+, J(u) < 0.
Indeed, for each u ∈ N+, N′′u (1) > 0. From (2.7), we have

(p− q)
∫

R
f (x)|u|qdx > (p− 2)‖u‖2,

then for each u ∈ N+,

J(u) = J(u)− 1
p
〈J′(u), u〉

=

(
1
2
− 1

p

)
‖u‖2 +

(
1
p
− 1

q

) ∫
R

f (x)|u|qdx

<

(
1
2
− 1

p

)
‖u‖2 − p− 2

pq
‖u‖2

=
(p− 2)(q− 2)

2pq
‖u‖2 < 0.

From the inequality above, we have infu∈N+ J(u) < 0. Since J(0) = 0, we have

inf
u∈N+

⋃N 0
J(u) = inf

u∈N+
J(u) = c1.

Thus we may assume {un} ⊂ N+, J(un) → c1 < 0. By Lemma 2.9, for | f |q∗ |g|(2−q)/(p−2)
∞ ∈

(0, σ), we can find δn > 0 and differentiable function ϕ1n = ϕ1n(w) > 0 such that
ϕ1n(w)(un − w) ∈ N+, ∀w ∈ (−δn, δn). By the continuity of ϕ1n(w) and ϕ1n(0) = 1, with-
out loss of generality, we can assume δn is sufficiently small such that 1

2 ≤ ϕ1n(w) ≤ 3
2 , for

|w| ≤ δn. From ϕ1n(w)(un − w) ∈ N+ and (3.2), we have

J(ϕ1n(w)(un − w)) ≥ J(un)−
1
n
‖ϕ1n(w)(un − w)− un‖,

which implies

〈J′(un), ϕ1n(w)(un − w)− un〉+ o(‖ϕ1n(w)(un − w)− un‖) ≥
1
n
‖ϕ1n(w)(un − w)− un‖.
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Consequently,

ϕ1n(w)〈J′(un), w〉+ (1− ϕ1n(w))〈J′(un), un〉

≤ 1
n
‖(ϕ1n(w)− 1)un − ϕ1n(w)w‖+ o(‖ϕ1n(w)(un − w)− un‖).

By the choice of δn and 1
2 ≤ ϕ1n(w) ≤ 3

2 , we infer that there exists C3 > 0 such that

|〈J′(un), w〉| ≤ 1
n
‖〈ϕ′1n(0), w〉un‖+

C3

n
‖w‖+ o

(
|〈ϕ′1n(0), w〉(‖un‖+ ‖w‖)|

)
.

Then, we prove that for {un} ⊂ N+, infn ‖un‖ ≥ C1, where C1 is a constant. Indeed, if not,
then we have J(un) → 0, which contradicts J(un) → c1 < 0. Moreover, by Lemma 2.7, we
know that J is coercive on N+, {un} is bounded in X. Thus, there exists C2 > 0 such that
0 < C1 ≤ ‖un‖ ≤ C2. From Lemma 2.9, |〈ϕ′1n(0), w〉| ≤ C‖w‖, so

|〈J′(un), w〉| ≤ C
n
‖w‖+ C

n
‖w‖+ o(‖w‖),

‖J′(un)‖ = sup
w∈X\{0}

|〈J′(un), w〉|
‖w‖ ≤ C

n
+ o(1),

then ‖J′(un)‖ → 0 as n → ∞. Thus, {un} ⊂ N+ is a (PS)c1-sequence for J on X. From
Lemma 3.1, there is a strongly convergent subsequence {un}, we will denote by {un}, such
that un → u1 as n→ ∞ in X. From the above, we obtain that there exist C1, C2 > 0, such that
0 < C1 ≤ ‖un‖ ≤ C2, then < C1 ≤ ‖u1‖ ≤ C2, thus u1 6= 0.

Finally, we prove u1 ∈ N+. Indeed, by (2.6), it follows that N′′un
(1) → N′′u1

(1). From
N′′un

(1) > 0, we have N′′u1
(1) ≥ 0. by Lemma 2.5, we have N′′u1

(1) > 0. Thus u1 ∈ N+,
J(u1) = limn→∞ J(un) = infu∈N+ J(u).

Lemma 3.3. If | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then the minimization problem c2 = infN− J(u) is solved

at a point u2 ∈ N−. That is, u2 is a critical point of J.

Proof. From Lemma 2.8, N− is closed in X. By Lemma 2.7, we know J is conceive on N−, so
we use Ekland variational principle on N− and then obtain a minimizing sequence {un} ⊂
N− such that

inf
u∈N−

J(u) ≤ J(un) < inf
u∈N−

J(u) +
1
n

,

J(un)−
1
n
‖v− un‖ ≤ J(v), ∀v ∈ N−.

By (2.14) and Lemma 2.7, one obtains that there exist C1, C2 > 0 such that 0 < C1 ≤ ‖un‖ ≤ C2.
Hence, by Lemma 2.10, similar to Lemma 3.2, there exists a minimizing sequence {un} ⊂ N−
is the (PS)c2-sequence on X. From Lemma 3.1, we know that there is a strongly convergent
subsequence, still denotes by {un}, un → u2 in X. By Lemma 2.8, the set N− is closed, we
know u2 ∈ N−, thus J(u2) = limn→∞ J(un) = infu∈N− J(u).

Proof of Theorem 1.1. From Lemma 3.2 and Lemma 3.3, we know if | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ),

then problem (1.1) has at least two nontrivial solutions u1 and u2, and by Lemma 3.2, the
solution u1 ∈ N+ with J(u1) < 0; by Lemma 3.3, the solution u2 ∈ N− with J(u2) > 0. The
proof is completed.
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Proof of Theorem 1.3. First, for 0 < σ∗ := q
2 σ < σ, then if | f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ∗), by Theo-
rem 1.1, the problem (1.1) has at least two nontrivial solutions u1 ∈ N+ with J(u1) < 0 and
u2 ∈ N− with J(u2) > 0. Next, we will prove that u1 is a ground state solution of (1.1). If
| f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ∗), then by (2.14), we can infer that

J(u) = J(u)− 1
p
〈J′(u), u〉

=

(
1
2
− 1

p

)
‖u‖2 +

(
1
p
− 1

q

) ∫
R

f (x)|u|qdx

≥
(

1
2
− 1

p

)
‖u‖2 −

(
1
q
− 1

p

)
| f |q∗S−q/2

p ‖u‖q

= ‖u‖q
[(

1
2
− 1

p

)
‖u‖2−q −

(
1
q
− 1

p

)
| f |q∗S−q/2

p

]

≥
(
(2− q)Sp/2

p

(p− q)|g|∞

)q/(p−2)
(1

2
− 1

p

)(
(2− q)Sp/2

p

(p− q)|g|∞

)(2−q)/(p−2)

−
(

1
q
− 1

p

)
| f |q∗S−q/2

p


> 0.

That is, for | f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ∗), J(u) > 0 for ∀u ∈ N−, then J(u1) = infu∈N J(u), u1 is

a ground state solution. This completes the proof.
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