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Abstract. For a dynamics with continuous time, we consider the notion of a strong
exponential dichotomy with respect to a family of norms and we characterize it in terms
of the admissibility of bounded solutions. Moreover, we consider both strong and weak
admissibility, in the sense that the solutions are respectively of a nonautonomous linear
equation defined by a strongly continuous function or of an integral equation obtained
from perturbing a general evolution family. As a nontrivial application, we establish the
robustness of the notions of a strong exponential dichotomy and of a strong nonuniform
exponential dichotomy. We emphasize that the last notion is ubiquitous in the context
of ergodic theory: for almost all trajectories with nonzero Lyapunov exponents of a
measure-preserving flow, the linear variational equation admits a strong nonuniform
exponential dichotomy..
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1 Introduction

For a nonautonomous linear equation

x′ = A(t)x (1.1)

in a Banach space defined by a strongly continuous function A(t) and more generally for an
evolution family T(t, s) in a Banach space, we introduce the notion of a strong exponential
dichotomy with respect to a family of norms. This means that besides having the usual upper
bounds in the stable direction for positive time and in the unstable direction for negative time,
we have, in addition, lower bounds in the stable direction for positive time and in the unstable
direction for negative time.

Moreover, at each time we consider a possibly different norm. The main motivation comes
from ergodic theory. Indeed, for almost all trajectories with nonzero Lyapunov exponents of
a measure-preserving flow, the linear variational equation admits a strong nonuniform expo-
nential dichotomy (we refer to [2] for details and references). This last notion is a particular
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case of the notion of a strong exponential dichotomy with respect to a family of norms, more
precisely a family of Lyapunov norms. Therefore, the type of exponential behavior considered
in the paper, besides being very common in the context of ergodic theory, plays a unifying
role. In particular, it includes as particular cases both the notions of uniform and nonuni-
form exponential behavior, considering respectively families of constant norms and Lyapunov
norms.

Our main aim is to characterize the notion of a strong exponential dichotomy in terms
of the admissibility of bounded solutions. The latter corresponds to assume that there exists
a unique bounded solution for each time-dependent bounded perturbation of the original
dynamics. In addition to considering a nonautonomous linear equation and more generally
an arbitrary evolution family, we also consider both strong and weak admissibility, which
corresponds to the perturbations of each of those dynamics. More precisely, in the case of
equation (1.1) we consider the perturbed equation

x′ = A(t)x + y(t) (1.2)

and its classical solutions, while in the case of an arbitrary evolution family T(t, s) we consider
the perturbed integral equation

x(t) = T(t, τ)x(τ) +
∫ t

τ
T(t, s)y(s) ds (1.3)

and its mild solutions. We refer to the admissibility in the two perturbed equations, respec-
tively, as strong and weak admissibility. We emphasize that a priori none of them implies the
other.

Our main results show that:

1. the evolution family defined by equation (1.1) admits a strong exponential dichotomy
with respect to a family of norms if and only if it has bounded growth and there exists
a unique bounded solution of equation (1.2) for each bounded perturbation y of the
original dynamics (see Theorems 2.1 and 2.3);

2. an arbitrary evolution family T(t, s) admits a strong exponential dichotomy with respect
to a family of norms if and only if it has bounded growth and there exists a unique
bounded solution of equation (1.3) for each bounded perturbation y of the original dy-
namics (see Theorems 4.1 and 4.2).

Here, “bounded growth” and “bounded” are always with respect to the family of norms ‖·‖t

under consideration. For example, a function y : R → X with values in a Banach space X is
said to be bounded (with respect to the norms ‖·‖t) if

sup
t∈R

‖y(t)‖t < +∞.

For an evolution family with bounded growth defined by a differential equation as in (1.1), it
follows from the latter results that there exists a unique bounded solution of equation (1.2) for
each bounded perturbation y if and only if there exists a unique bounded solution of equation
(1.3) for each bounded perturbation y. In other words, in our setting the notions of weak
admissibility and strong admissibility are in fact equivalent. In fact, this can be considered
the main contribution of our work.

The study of the admissibility property goes back to pioneering work of Perron in [8] who
used it to deduce the stability or the conditional stability under sufficiently small perturbations
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of a linear equation. For some of the most relevant early contributions in the area we refer to
the books by Massera and Schäffer [6] and by Dalec′kiı̆ and Kreı̆n [4]. We also refer to [5] for
some early results in infinite-dimensional spaces.

As a nontrivial application of these results, we establish the robustness of the notion of a
strong exponential dichotomy with respect to a family of norms and of a strong nonuniform
exponential dichotomy. This corresponds to show that any sufficiently small linear pertur-
bation of the dynamics is still, respectively, a strong exponential dichotomy with respect to
a family of norms and a strong nonuniform exponential dichotomy. We emphasize that the
study of robustness has a long history; see in particular [3, 7, 9, 10] and the references therein.
See also [1] for the study of robustness in the general setting of a nonuniform exponential
behavior.

2 Exponential behavior and strong admissibility

2.1 Exponential dichotomies

Let X = (X, ‖·‖) be a Banach space and let B(X) be the set of all bounded linear operators
on X. A function A : R → B(X) is said to be strongly continuous if for each x ∈ X the map
t 7→ A(t)x is continuous. We note that every continuous function A : R → B(X) is strongly
continuous.

Let A : R→ B(X) be a strongly continuous function and consider the linear equation

x′ = A(t)x. (2.1)

Let also T(t, τ) be the associated evolution family. Moreover, we consider a family of norms
‖·‖t on X for t ∈ R such that:

(i) there exist constants C and ε ≥ 0 such that

‖x‖ ≤ ‖x‖t ≤ Ceε|t|‖x‖ (2.2)

for x ∈ X and t ∈ R;

(ii) the map t 7→ ‖x‖t is measurable for each x ∈ X.

We say that equation (2.1) admits a strong exponential dichotomy with respect to the family of
norms ‖·‖t if:

(iii) there exist projections P(t) for t ∈ R such that

P(t)T(t, τ) = T(t, τ)P(τ), t, τ ∈ R; (2.3)

(iv) there exist constants
a ≤ a < 0 < b ≤ b and D > 0

such that

‖T(t, τ)P(τ)x‖t ≤ Dea(t−τ)‖x‖τ,

‖T(τ, t)Q(t)x‖τ ≤ De−b(t−τ)‖x‖t
(2.4)

for t ≥ τ and

‖T(t, τ)P(τ)x‖t ≤ Dea(t−τ)‖x‖τ,

‖T(τ, t)Q(t)x‖τ ≤ De−b(t−τ)‖x‖t
(2.5)

for t ≤ τ, where Q(τ) = Id− P(τ).
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2.2 From exponential behavior to admissibility

Let Y be the set of all continuous functions x : R→ X such that

‖x‖∞ := sup
t∈R

‖x(t)‖t < +∞.

One can easily verify that when equipped with the norm ‖·‖∞ the set Y is a Banach space.
We first show that for a strong exponential dichotomy the pair (Y, Y) is admissible in the

strong sense, that is, considering classical solutions of equation (2.1).

Theorem 2.1. Assume that equation (2.1) admits a strong exponential dichotomy with respect to the
family of norms ‖·‖t. Then:

1. for each y ∈ Y there exists a unique x ∈ Y such that

x′(t)− A(t)x(t) = y(t) (2.6)

for t ∈ R;

2. there exist K, a > 0 such that

‖T(t, τ)x‖t ≤ Kea|t−τ|‖x‖τ (2.7)

for x ∈ X and t, τ ∈ R.

Proof. For the first statement in the theorem, take y ∈ Y. For t ∈ R we define

x(t) =
∫ t

−∞
T(t, τ)P(τ)y(τ) dτ −

∫ +∞

t
T(t, τ)Q(τ)y(τ) dτ. (2.8)

It follows from (2.4) that∫ t

−∞
‖T(t, τ)P(τ)y(τ)‖t dτ +

∫ +∞

t
‖T(t, τ)Q(τ)y(τ)‖t dτ

≤ D‖y‖∞

(∫ t

−∞
ea(t−τ)dτ +

∫ +∞

t
e−b(τ−t)dτ

)
= D

(
−1

a
+

1
b

)
‖y‖∞

(2.9)

for t ∈ R and thus, x(t) is well defined. Moreover, given t0 ∈ R, we have

x(t) =
∫ t

t0

T(t, τ)y(τ) dτ −
∫ t

t0

T(t, τ)P(τ)y(τ) dτ

−
∫ t

t0

T(t, τ)Q(τ)y(τ) dτ +
∫ t

−∞
T(t, τ)P(τ)y(τ) dτ

−
∫ +∞

t
T(t, τ)Q(τ)y(τ) dτ

=
∫ t

t0

T(t, τ)y(τ) dτ +
∫ t0

−∞
T(t, τ)P(τ)y(τ) dτ

−
∫ +∞

t0

T(t, τ)Q(τ)y(τ) dτ

=
∫ t

t0

T(t, τ)y(τ) dτ + T(t, t0)x(t0)

(2.10)
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and hence,

x(t) = T(t, t0)x(t0) +
∫ t

t0

T(t, τ)y(τ) dτ (2.11)

for t ∈ R. Since T(t, τ) is the evolution family of equation (2.1), it follows from (2.11) that
the function x : R → X is differentiable and that identity (2.6) holds for t ∈ R. Moreover, it
follows from (2.9) that x ∈ Y.

Lemma 2.2. x is the unique function in Y satisfying (2.6).

Proof of the lemma. Since the map x 7→ y defined by identity (2.6) is linear, it is sufficient to
show that if a function x ∈ Y satisfies x′(t) = A(t)x(t) for t ∈ R, then x = 0. Let

xs(t) = P(t)x(t) and xu(t) = Q(t)x(t).

Then x(t) = xs(t) + xu(t) and it follows from (2.3) that

xs(t) = T(t, τ)xs(τ) and xu(t) = T(t, τ)xu(τ)

for t, τ ∈ R. Since xs(t) = T(t, t− τ)xs(t− τ) for τ ≥ 0, we have

‖xs(t)‖t = ‖T(t, t− τ)xs(t− τ)‖t

= ‖T(t, t− τ)P(t− τ)x(t− τ)‖t

≤ Deaτ‖x(t− τ)‖t−τ

≤ Deaτ‖x‖∞

and letting τ → +∞ yields that xs(t) = 0 for t ∈ R. Similarly, since xu(t) = T(t, t+ τ)xu(t+ τ)

for τ ≥ 0, we have

‖xu(t)‖t = ‖T(t, t + τ)xu(t + τ)‖t

= ‖T(t, t + τ)Q(t + τ)x(t + τ)‖t

≤ De−bτ‖x(t + τ)‖t+τ

≤ De−bτ‖x‖∞

and hence, xu(t) = 0 for t ∈ R. Therefore, x(t) = 0 for t ∈ R.

It remains to establish the second statement in the theorem. It follows from (2.4) and (2.5)
that

‖T(t, τ)x‖t ≤ ‖T(t, τ)P(τ)x‖t + ‖T(t, τ)Q(τ)x‖t

≤ Dea(t−τ)‖x‖τ + Deb(t−τ)‖x‖τ

≤ 2Deb(t−τ)‖x‖τ

for t ≥ τ and similarly
‖T(t, τ)x‖t ≤ 2De−a(τ−t)‖x‖τ

for t ≤ τ. Therefore, (2.7) holds with K = 2D and a = max{b,−a}.
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2.3 From admissibility to exponential behavior

Now we establish the converse of Theorem 2.1, that is, we show that if the pair (Y, Y) is
admissible, then equation (2.1) admits a strong exponential dichotomy.

Theorem 2.3. Assume that for each y ∈ Y there exists a unique x ∈ Y such that:

1. identity (2.6) holds for t ∈ R;

2. there exist K, a > 0 such that (2.7) holds for x ∈ X and t, τ ∈ R.

Then equation (2.1) admits a strong exponential dichotomy with respect to the family of norms ‖·‖t.

Proof. Let H be the linear operator defined by

(Hx)(t) = x′(t)− A(t)x(t), t ∈ R (2.12)

in the domain D(H) formed by all x ∈ Y such that Hx ∈ Y.

Lemma 2.4. The operator H : D(H)→ Y is closed.

Proof of the lemma. Let (xk)k∈N be a sequence in D(H) converging to x ∈ Y such that yk = Hxk
converges to y ∈ Y. For each τ ∈ R, we have

x(t)− x(τ) = lim
k→∞

(xk(t)− xk(τ))

= lim
k→∞

∫ t

τ
x′k(s) ds

= lim
k→∞

∫ t

τ
(yk(s) + A(s)xk(s)) ds

for t ≥ τ. Moreover, it follows from (2.2) that∥∥∥∥ ∫ t

τ
yk(s) ds−

∫ t

τ
y(s) ds

∥∥∥∥ ≤ ∫ t

τ
‖yk(s)− y(s)‖ ds

≤
∫ t

τ
‖yk(s)− y(s)‖s ds

≤ (t− τ)‖yk − y‖∞.

Since yk → y in Y, we obtain

lim
k→∞

∫ t

τ
yk(s) ds =

∫ t

τ
y(s) ds.

Similarly, ∥∥∥∥ ∫ t

τ
A(s)xk(s) ds−

∫ t

τ
A(s)x(s) ds

∥∥∥∥ ≤ M
∫ t

τ
‖xk(s)− x(s)‖ds

≤ M(t− τ)‖xk − x‖∞,

where
M = sup

{
‖A(s)‖ : s ∈ [τ, t]

}
.

Since the function s 7→ A(s)x is continuous for each x ∈ X, we have

sup
τ≤s≤t

‖A(s)x‖ < +∞
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and it follows from the Banach–Steinhaus theorem that M < +∞. Since Hxk → y in Y, we
obtain

lim
k→∞

∫ t

τ
A(s)xk(s) ds =

∫ t

τ
A(s)x(s) ds.

Therefore,

x(t)− x(τ) =
∫ t

τ
(A(s)x(s) + y(s)) ds,

which implies that Hx = y and x ∈ D(H).

It follows from Lemma 2.4 and the closed graph theorem that the operator H has a
bounded inverse G : Y → Y.

For τ ∈ R, let Fs
τ be the set of all x ∈ X such that there exists a solution u of equation (2.1)

with u(τ) = x satisfying
sup

{
‖u(t)‖t : t ∈ [τ,+∞)

}
< +∞. (2.13)

Similarly, let Fu
τ be the set of all x ∈ X such that there exists a solution u of equation (2.1) with

u(τ) = x satisfying
sup

{
‖u(t)‖t : t ∈ (−∞, τ]

}
< +∞. (2.14)

One can easily verify that Fs
τ and Fu

τ are subspaces of X.

Lemma 2.5. For τ ∈ R, we have
X = Fs

τ ⊕ Fu
τ . (2.15)

Proof of the lemma. Let φ : R → R be a smooth function supported on [τ,+∞) such that 0 ≤
φ ≤ 1, φ = 1 on [τ + 1,+∞) and supt∈R|φ′(t)| < +∞. Moreover, given x ∈ X let u be the
solution of equation (2.1) with u(τ) = x. It follows from (2.13) that g := φ′u ∈ Y. Since H is
invertible, there exists v ∈ Y such that Hv = g. Let w = (1− φ)u + v. One can easily verify
that Hw = 0. Furthermore,

sup
{
‖w(t)‖t : t ∈ [τ,+∞)

}
≤ sup

{
‖u(t)‖t : t ∈ [τ, τ + 1]

}
+ sup

{
‖v(t)‖t : t ∈ [τ,+∞)

}
< +∞,

and thus w(τ) ∈ Fs
τ. On the other hand, w− u is also a solution of equation (2.1) and

sup
{
‖(w− u)(t)‖t : t ∈ (−∞, τ]

}
= sup

{
‖v(t)‖t : t ∈ (−∞, τ]

}
< +∞.

Hence,
w(τ)− x = w(τ)− u(τ) = v(τ) ∈ Fu

τ

and x ∈ Fs
τ + Fu

τ .
It remains to show that Fs

τ ∩ Fu
τ = {0}. Take x ∈ Fs

τ ∩ Fu
τ and let u be the solution of

equation (2.1) with u(τ) = x. It follows from (2.13) and (2.14) that u ∈ Y. Since H is invertible,
we must have u = 0 and hence x = 0.

Now let P(τ) : X → Fs
τ and Q(τ) : X → Fu

τ be the projections associated to the decomposi-
tion in (2.15), with P(τ) + Q(τ) = Id. It follows readily from the definitions that property (2.3)
holds.

Lemma 2.6. There exists M > 0 such that

‖P(τ)x‖τ ≤ M‖x‖τ (2.16)

for x ∈ X and τ ∈ R.
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Proof of the lemma. Using the same notation as in the proof of Lemma 2.5, we have

‖P(τ)x‖τ = ‖w(τ)‖τ ≤ ‖u(τ)‖τ + ‖v(τ)‖τ

≤ ‖x‖τ + ‖v‖∞ = ‖x‖τ + ‖Gg‖∞.
(2.17)

Furthermore,
‖g‖∞ = ‖φ′u‖∞ ≤ L sup

{
‖u(t)‖t : t ∈ [τ, τ + 1]

}
,

where L = supt∈R|φ′(t)|. We note that the constant L is independent of τ. Using (2.7) we
obtain

‖g‖∞ ≤ LKea‖x‖τ

and it follows from (2.17) that

‖P(τ)x‖τ ≤ (1 + ‖G‖LKea)‖x‖τ.

This shows that (2.16) holds taking M = 1 + ‖G‖LKea.

Lemma 2.7. There exist constants λ, D > 0 such that

‖T(t, τ)P(τ)x‖t ≤ De−λ(t−τ)‖x‖τ (2.18)

for x ∈ X and t ≥ τ.

Proof of the lemma. Let ψ : R → R be a smooth function supported on [τ,+∞) such that 0 ≤
ψ ≤ 1, ψ = 1 on [τ + 1,+∞) and supt∈R|ψ′(t)| ≤ 2. Moreover, given x ∈ Fs

τ, let u be the
solution of equation (2.1) with u(τ) = x. It follows from (2.13) that ψu ∈ Y and one can easily
verify that H(ψu) = ψ′u. Moreover,

sup
{
‖u(t)‖t : t ∈ [τ + 1,+∞)

}
= sup

{
‖ψ(t)u(t)‖t : t ∈ [τ + 1,+∞)

}
≤ ‖ψu‖∞ = ‖G(ψ′u)‖∞

≤ ‖G‖ · ‖ψ′u‖∞

= ‖G‖ sup
{
‖(ψ′u)(t)‖t : t ∈ [τ, τ + 1]

}
≤ 2‖G‖ sup

{
‖u(t)‖t : t ∈ [τ, τ + 1]

}
= 2‖G‖ sup

{
‖T(t, τ)u(τ)‖t : t ∈ [τ, τ + 1]

}
≤ 2Kea‖G‖ · ‖u(τ)‖τ

= 2Kea‖G‖ · ‖x‖τ,

using (2.7) in the last inequality. Hence, using again (2.7), we obtain

‖u(t)‖t ≤ C‖x‖τ for t ≥ τ, (2.19)

where C = 2Kea max{1, ‖G‖}.
Now we show that there exists N ∈N such that for every τ ∈ R and x ∈ Fs

τ,

‖u(t)‖t ≤
1
2
‖x‖τ for t− τ ≥ N. (2.20)

In order to prove (2.20), take t0 ∈ R such that t0 > τ and ‖u(t0)‖t0 > ‖x‖τ/2. It follows
from (2.19) that

1
2C
‖x‖τ < ‖u(s)‖s ≤ C‖x‖τ, τ ≤ s ≤ t0. (2.21)
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Now take ε > 0 and let ψ : R → R be a smooth function supported on [τ, t0] such that
0 ≤ ψ ≤ 1 and ψ = 1 on [τ + ε, t0 − ε]. Moreover, let

y(t) = ψ(t)u(t) and v(t) = u(t)
∫ t

−∞
ψ(s) ds

for t ∈ R. Clearly, y and v belong to Y and one can easily verify that Hv = y. Therefore,

‖G‖ sup
{
‖u(t)‖t : t ∈ [τ, t0]

}
≥ ‖G‖ · ‖y‖∞ ≥ ‖v‖∞.

Hence, it follows from (2.21) that

C‖G‖ · ‖x‖τ ≥ ‖v(t0)‖t0

≥ ‖u(t0)‖t0

∫ t0−ε

τ+ε
ψ(s) ds

≥ 1
2C

(t0 − τ − 2ε)‖x‖τ.

Letting ε→ 0 yields the inequality

t0 − τ ≤ 2C2‖G‖.

Hence, property (2.20) holds taking N > 2C2‖G‖.
In order to complete the proof, take t ≥ τ and write t − τ = kN + r, with k ∈ N and

0 ≤ r < N. By (2.16), (2.19) and (2.20), we obtain

‖T(t, τ)P(τ)x‖t = ‖T(τ + kN + r, τ)P(τ)x‖τ+kN+r

≤ 1
2k ‖T(τ + r, τ)P(τ)x‖τ+r

≤ C
2k ‖P(τ)x‖τ

≤ 2CMe−(t−τ) log 2/N‖x‖τ,

for x ∈ X. Taking D = 2CM and λ = log 2/K yields inequality (2.18).

Lemma 2.8. There exist constants λ, D > 0 such that

‖T(t, τ)Q(τ)x‖t ≤ De−λ(τ−t)‖x‖τ (2.22)

for x ∈ X and t ≤ τ.

Proof of the lemma. Let ψ : R → R be a smooth function supported on (−∞, τ] such that 0 ≤
ψ ≤ 1, ψ = 1 on (−∞, τ − 1] and supt∈R|ψ′(t)| ≤ 2. Moreover, given x ∈ Fu

τ , let u be the
solution of equation (2.1) with u(τ) = x. It follows from (2.14) that ψu ∈ Y and one can easily
verify that H(ψu) = ψ′u. Moreover,

sup
{
‖u(t)‖t : t ∈ (−∞, τ − 1]

}
= sup

{
‖ψ(t)u(t)‖t : t ∈ (−∞, τ − 1]

}
≤ ‖ψu‖∞ = ‖G(ψ′u)‖∞

≤ ‖G‖ · ‖ψ′u‖∞

= ‖G‖ sup
{
‖(ψ′u)(t)‖t : t ∈ [τ − 1, τ]

}
≤ 2‖G‖ sup

{
‖u(t)‖t : t ∈ [τ − 1, τ]

}
= 2‖G‖ sup

{
‖T(t, τ)u(τ)‖t : t ∈ [τ − 1, τ]

}
≤ 2Kea‖G‖ · ‖u(τ)‖τ = 2Kea‖G‖ · ‖x‖τ,
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using (2.7) in the last inequality. Hence, using again (2.7), we obtain

‖u(t)‖t ≤ C‖x‖τ for t ≤ τ, (2.23)

where C = 2Kea max{1, ‖G‖}.
We also show that there exists N ∈N such that for every τ ∈ R and x ∈ Fu

τ ,

‖u(t)‖t ≤
1
2
‖x‖τ for τ − t ≥ N. (2.24)

In order to prove (2.24), take t0 ∈ R such that t0 < τ and ‖u(t0)‖t0 > ‖x‖τ/2. It follows
from (2.23) that

1
2C
‖x‖τ < ‖u(s)‖s ≤ C‖x‖τ, t0 ≤ s ≤ τ. (2.25)

Now take ε > 0 and let ψ : R → R be a smooth function supported on [t0, τ] such that
0 ≤ ψ ≤ 1 and ψ = 1 on [t0 + ε, τ − ε]. Moreover, let

y(t) = −ψ(t)u(t) and v(t) = u(t)
∫ +∞

t
ψ(s) ds

for t ∈ R. Clearly, y and v belong to Y and one can easily verify that Hv = y. Therefore,

‖G‖ sup
{
‖u(t)‖t : t ∈ [t0, τ]

}
≥ ‖G‖ · ‖y‖∞ ≥ ‖v‖∞.

Hence, it follows from (2.25) that

C‖G‖ · ‖x‖τ ≥ ‖v(t0)‖t0

≥ ‖u(t0)‖t0

∫ τ−ε

t0+ε
ψ(s) ds

≥ 1
2C

(τ − t0 − 2ε)‖x‖τ.

Letting ε→ 0 yields the inequality

τ − t0 ≤ 2C2‖G‖.

Hence, property (2.24) holds taking N > 2C2‖G‖.
Finally, take t ≤ τ and write τ − t = kN + r, with k ∈ N and 0 ≤ r < N. By (2.16), (2.23)

and (2.24), we obtain

‖T(t, τ)Q(τ)x‖t = ‖T(τ − kN − r, τ)Q(τ)x‖τ−kN−r

≤ 1
2k ‖T(τ − r, τ)Q(τ)x‖τ−r

≤ C
2k ‖Q(τ)x‖τ

≤ 2C(1 + M)e−(τ−t) log 2/N‖x‖τ,

for x ∈ X. Taking D = 2C(1 + M) and λ = log 2/K yields inequality (2.22).

In order to complete the proof of the theorem, we note that it follows from (2.18) and (2.22)
that (2.4) holds taking a = −λ and b = λ. Moreover, it follows from (2.7) and (2.16) that (2.5)
holds taking D = K(1 + M), a = −a and b = a.
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3 Strong robustness

In this section we establish the robustness of the notion of a strong exponential dichotomy
using its characterization in terms of admissibility of the pair (Y, Y) in Theorems 2.1 and 2.3.

Theorem 3.1. Let A, B : R→ B(X) be strongly continuous functions such that:

1. equation (2.1) admits a strong exponential dichotomy with respect to a family of norms ‖·‖t

satisfying (2.2) for some C > 0 and ε ≥ 0;

2. there exists c ≥ 0 such that

‖B(t)− A(t)‖ ≤ ce−ε|t|, t ∈ R. (3.1)

If c is sufficiently small, then the equation x′ = B(t)x admits a strong exponential dichotomy with
respect to the same family of norms.

Proof. Let H be the linear operator defined by (2.12) on the domain D(H). For x ∈ D(H) we
consider the graph norm

‖x‖′∞ = ‖x‖∞ + ‖Hx‖∞.

Clearly, the operator
H : (D(H), ‖·‖′∞)→ (Y, ‖·‖∞)

is bounded. For simplicity, we denote it from now on simply by H. It follows from Lemma 2.4
that (D(H), ‖·‖′∞) is a Banach space.

It follows from (2.7) and (3.1) that

‖(B(t)− A(t))x‖t ≤ cC‖x‖t (3.2)

for x ∈ X and t ∈ R. We define a linear operator L : D(H)→ Y by

(Lx)(t) = x′(t)− B(t)x(t), t ∈ R.

By (3.2) we have
‖(H − L)x‖∞ ≤ cC‖x‖′∞ (3.3)

for x ∈ D(T). By Theorem 2.1, the operator H is invertible. Hence, it follows from (3.3) that if
c is sufficiently small, then L is also invertible. Furthermore, it follows from Theorem 2.1 that
there exist constants K, a > 0 such that (2.7) holds for x ∈ X and t, τ ∈ R. Now let U(t, τ) be
the evolution family associated to the linear equation x′ = B(t)x.

Lemma 3.2. There exist constants K′, a′ > 0 such that

‖U(t, τ)x‖t ≤ K′ea′|t−τ|‖x‖τ

for x ∈ X and t, τ ∈ R.

Proof of the lemma. Let x(t) be a solution of the equation x′ = B(t)x. For each t ≥ τ we have

‖x(t)‖t =

∥∥∥∥T(t, τ)x(τ) +
∫ t

τ
T(t, s)(B(s)− A(s))x(s) ds

∥∥∥∥
t

≤ Kea(t−τ)‖x(τ)‖τ + K
∫ t

τ
ea(t−s)‖(B(s)− A(s))x(s)‖s ds

≤ Kea(t−τ)‖x(τ)‖τ + cCK
∫ t

τ
ea(t−s)‖x(s)‖s ds.
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This shows that the function φ(t) = e−at‖x(t)‖t satisfies

φ(t) ≤ Kφ(τ) + cCK
∫ t

τ
φ(s) ds

and using Gronwall’s lemma we obtain

φ(t) ≤ Kφ(τ)ecCK(t−τ).

Hence,
‖U(t, τ)x‖t ≤ Ke(a+cCK)(t−τ)‖x‖τ

for t ≥ τ. One can argue in a similar manner for t ≤ τ.

Since L is invertible, it follows from Theorem 2.3 together with Lemma 3.2 that the equation
x′ = B(t)x admits a strong exponential dichotomy with respect to the family of norms ‖·‖t.

4 Exponential behavior and weak admissibility

In this section we consider a weak form of the admissibility property and we use it to give a
characterization of the notion of a strong exponential dichotomy.

A family T(t, τ), for t, τ ∈ R, of bounded linear operators on X is said to be an evolution
family if:

1. T(t, t) = Id for t ∈ R;

2. T(t, s)T(s, τ) = T(t, τ) for t, s, τ ∈ R;

3. given t, τ ∈ R and x ∈ X, the maps s 7→ T(t, s)x and s 7→ T(s, τ)x are continuous.

We continue to consider a family of norms ‖·‖t satisfying conditions (i) and (ii). We say that
an evolution family T(t, s) admits a strong exponential dichotomy with respect to the family of
norms ‖·‖t if conditions (iii) and (iv) hold.

We first show that the existence of a strong exponential dichotomy yields the weak admis-
sibility of the pair (Y, Y).

Theorem 4.1. If the evolution family T(t, τ) admits a strong exponential dichotomy with respect to
the family of norms ‖·‖t, then:

1. for each y ∈ Y there exists a unique x ∈ Y such that

x(t) = T(t, τ)x(τ) +
∫ t

τ
T(t, s)y(s) ds for t ≥ τ; (4.1)

2. there exist K, a > 0 such that (2.7) holds.

Proof. Take y ∈ Y. For t ∈ R we define x(t) as in (2.8). Then (2.9) holds and proceeding as in
(2.10) we obtain

x(t) =
∫ t

τ
T(t, s)y(s) ds + T(t, τ)x(τ)

for t ≥ τ. This shows that property (4.1) holds. It follows readily from (4.1) that the function
x is continuous and thus x ∈ Y. The uniqueness of x follows from Lemma 2.2 (that can be
obtained using the same proof). This establishes the first property of the theorem.

The second property follows exactly as in the proof of Theorem 2.1.
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Now we establish the converse of Theorem 4.1.

Theorem 4.2. Assume that for each y ∈ Y there exists a unique x ∈ Y such that (4.1) holds and that
there exist constants K, a > 0 such that (2.7) holds for x ∈ X and t, τ ∈ R. Then the evolution family
T(t, τ) admits a strong exponential dichotomy with respect to the family of norms ‖·‖t.

Proof. Let H be the linear operator defined by Hx = y in the domain D(H) formed by all
x ∈ Y for which there exists y ∈ Y satisfying (4.1). In order to show that H is well defined, let
y1, y2 ∈ Y be such that

x(t) = T(t, τ)x(τ) +
∫ t

τ
T(t, s)y1(s) ds

and

x(t) = T(t, τ)x(τ) +
∫ t

τ
T(t, s)y2(s) ds

for t ≥ τ. Then
1

t− τ

∫ t

τ
T(t, s)y1(s) ds =

1
t− τ

∫ t

τ
T(t, s)y2(s) ds

and since the map s 7→ T(t, s)yi(s) is continuous for i = 1, 2, letting τ → t yields that y1(t) =
y2(t) for t ∈ R.

Lemma 4.3. The operator H : D(H)→ Y is closed.

Proof of the lemma. Let (xn)n∈N be a sequence in D(H) converging to x ∈ Y such that Hxn

converges to y ∈ Y. For each τ ∈ R, we have

x(t)− T(t, τ)x(τ) = lim
n→∞

(xn(t)− T(t, τ)xn(τ))

= lim
n→∞

∫ t

τ
T(t, s)yn(s) ds

for t ≥ τ. Furthermore,∥∥∥∥ ∫ t

τ
T(t, s)yn(s) ds−

∫ t

τ
T(t, s)y(s) ds

∥∥∥∥ ≤ M
∫ t

τ
‖yn(s)− y(s)‖ ds

≤ M
∫ t

τ
‖yn(s)− y(s)‖s ds

≤ M‖yn − y‖∞(t− τ),

where
M = sup

{
‖T(t, s)‖ : s ∈ [τ, t]

}
.

Since the map s 7→ T(t, s)x is continuous for each x ∈ X, we have

sup
τ≤s≤t

‖T(t, s)x‖ < +∞

and it follows from the Banach–Steinhaus theorem that M < +∞. Since yn converges to y in
Y, we conclude that

lim
n→∞

∫ t

τ
T(t, s)yn(s) ds =

∫ t

τ
T(t, s)y(s) ds

and

x(t)− T(t, τ)x(τ) =
∫ t

τ
T(t, s)y(s) ds

for t ≥ τ. This shows that (4.1) holds. Hence, Hx = y and x ∈ D(H).
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It follows from the closed graph theorem that H has a bounded inverse G : Y → Y. For
each τ ∈ R we define

Fs
τ =

{
x ∈ X : sup

t≥τ

‖T(t, τ)x‖t < +∞
}

and

Fu
τ =

{
x ∈ X : sup

t≤τ

‖T(t, τ)x‖t < +∞
}

.

One can easily verify that Fs
τ and Fu

τ are subspaces of X.

Lemma 4.4. For τ ∈ R, we have
X = Fs

τ ⊕ Fu
τ . (4.2)

Proof of the lemma. Let φ : R → R be a continuous function supported on [τ, τ + 1] such that∫ τ+1
τ φ(s) ds = 1. Given x ∈ X, we define a function g : R→ X by

g(t) = φ(t)T(t, τ)x.

Clearly, g ∈ Y. Since H is invertible, there exists v ∈ Y such that Hv = g. Moreover, it follows
from (4.1) that

v(t) = T(t, τ)(v(τ) + x)

for t ≥ τ + 1 and thus v(τ) + x ∈ Fs
τ. Furthermore, again by (4.1), we have v(t) = T(t, τ)v(τ)

for t ≤ τ and thus v(τ) ∈ Fu
τ . This shows that x ∈ Fs

τ + Fu
τ .

Now take x ∈ Fs
τ ∩ Fu

τ . We define a function u : R → X by u(t) = T(t, τ)x. It follows
from the definitions of Fs

τ and Fu
τ that u ∈ Y. Moreover, Hu = 0 and u ∈ D(H). Since H is

invertible, we obtain u = 0 and hence x = 0.

Now let P(τ) : X → Fs
τ and Q(τ) : X → Fu

τ be the projections associated to the decomposi-
tion in (4.2), with P(τ) + Q(τ) = Id.

Lemma 4.5. There exists M > 0 such that

‖P(τ)x‖τ ≤ M‖x‖τ (4.3)

for x ∈ X and τ ∈ R.

Proof of the lemma. Using the same notation as in Lemma 4.4, we have

‖P(τ)x‖τ = ‖v(τ) + x‖τ

≤ ‖v(τ)‖τ + ‖x‖τ ≤ ‖v‖∞ + ‖x‖τ

= ‖Gg‖∞ + ‖x‖τ ≤ ‖G‖ · ‖g‖∞ + ‖x‖τ.

On the other hand, it follows from (2.7) that ‖g‖∞ ≤ CKea‖x‖τ, where

C = sup
{
|φ(t)| : t ∈ [τ, τ + 1]

}
.

This shows that (4.3) holds taking M = CKea‖G‖+ 1.

Lemma 4.6. There exist constants λ, D > 0 such that

‖T(t, τ)P(τ)x‖t ≤ De−λ(t−τ)‖x‖τ (4.4)

for x ∈ X and t ≥ τ.
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Proof of the lemma. Take x ∈ Fs
τ and let u(t) = T(t, τ)x. Moreover, let ψ : R → R be a smooth

function supported on [τ,+∞) such that 0 ≤ ψ ≤ 1, ψ = 1 on [τ + 1,+∞) and supt∈R|ψ′(t)| ≤
2. Clearly, ψu ∈ Y and one can easily verify that H(ψu) = ψ′u. Moreover,

sup
{
‖u(t)‖t : t ∈ [τ + 1,+∞)

}
= sup

{
‖ψ(t)u(t)‖t : t ∈ [τ + 1,+∞)

}
≤ ‖ψu‖∞ = ‖G(ψ′u)‖∞

≤ ‖G‖ · ‖ψ′u‖∞

= ‖G‖ sup
{
‖(ψ′u)(t)‖t : t ∈ [τ, τ + 1]

}
≤ 2‖G‖ sup

{
‖u(t)‖t : t ∈ [τ, τ + 1]

}
= 2‖G‖ sup

{
‖T(t, τ)u(τ)‖t : t ∈ [τ, τ + 1]

}
≤ 2Kea‖G‖ · ‖u(τ)‖τ = 2Kea‖G‖ · ‖x‖τ,

using (2.7) in the last inequality. Hence, again using (2.7), we obtain

‖u(t)‖t ≤ C‖x‖τ for t ≥ τ, (4.5)

where C = 2Kea max{1, ‖G‖}.
We show that there exists N ∈N such that for every τ ∈ R and x ∈ Fs

τ,

‖u(t)‖t ≤
1
2
‖x‖τ for t− τ ≥ N. (4.6)

In order to prove (4.4), take t0 ∈ R such that t0 > τ and ‖u(t0)‖t0 > ‖x‖τ/2. It follows
from (4.5) that

1
2C
‖x‖τ < ‖u(s)‖s ≤ C‖x‖τ, τ ≤ s ≤ t0. (4.7)

Now take ε > 0 and let ψ : R → R be a smooth function supported on [τ, t0] such that
0 ≤ ψ ≤ 1 and ψ = 1 on [τ + ε, t0 − ε]. Moreover, let

y(t) = ψ(t)u(t) and v(t) = u(t)
∫ t

−∞
ψ(s) ds

for t ∈ R. Clearly, y and v belong to Y and one can easily verify that Hv = y. Therefore,

‖G‖ sup
{
‖u(t)‖t : t ∈ [τ, t0]

}
≥ ‖G‖ · ‖y‖∞ ≥ ‖v‖∞.

Hence, it follows from (4.7) that

C‖G‖ · ‖x‖τ ≥ ‖v(t0)‖t0

≥ ‖u(t0)‖t0

∫ t0−ε

τ+ε
ψ(s) ds

≥ 1
2C

(t0 − τ − 2ε)‖x‖τ.

Letting ε→ 0 yields the inequality

t0 − τ ≤ 2C2‖G‖.

Hence, property (4.6) holds taking N > 2C2‖G‖.
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Now take t ≥ τ and write t − τ = kN + r, with k ∈ N and 0 ≤ r < N. By (4.3), (4.5)
and (4.6), we obtain

‖T(t, τ)P(τ)x‖t = ‖T(τ + kN + r, τ)P(τ)x‖τ+kN+r

≤ 1
2k ‖T(τ + r, τ)P(τ)x‖τ+r

≤ C
2k ‖P(τ)x‖τ

≤ 2CMe−(t−τ) log 2/N‖x‖τ,

for x ∈ X. Taking D = 2CM and λ = log 2/K yields property (4.4).

Lemma 4.7. There exist constants λ, D > 0 such that

‖T(t, τ)Q(τ)x‖t ≤ De−λ(τ−t)‖x‖τ (4.8)

for x ∈ X and t ≤ τ.

Proof of the lemma. Take x ∈ Fu
τ and let u(t) = T(t, τ)x. Moreover, let ψ : R → R be a

smooth function supported on (−∞, τ] such that 0 ≤ ψ ≤ 1, ψ = 1 on (−∞, τ − 1] and
supt∈R|ψ′(t)| ≤ 2. Clearly, ψu ∈ Y and one can easily verify that H(ψu) = ψ′u. Moreover,

sup
{
‖u(t)‖t : t ∈ (−∞, τ − 1]

}
= sup

{
‖ψ(t)u(t)‖t : t ∈ (−∞, τ − 1]

}
≤ ‖ψu‖∞ = ‖G(ψ′u)‖∞

≤ ‖G‖ · ‖ψ′u‖∞

= ‖G‖ sup
{
‖(ψ′u)(t)‖t : t ∈ [τ − 1, τ]

}
≤ 2‖G‖ sup

{
‖u(t)‖t : t ∈ [τ − 1, τ]

}
= 2‖G‖ sup

{
‖T(t, τ)u(τ)‖t : t ∈ [τ − 1, τ]

}
≤ 2Kea‖G‖ · ‖u(τ)‖τ

= 2Kea‖G‖ · ‖x‖τ,

using (2.7) in the last inequality. Hence, again using (2.7), we obtain

‖u(t)‖t ≤ C‖x‖τ for t ≤ τ, (4.9)

where C = 2Kea max{1, ‖G‖}.
Now we show that there exists N ∈N such that for every τ ∈ R and x ∈ Fu

τ ,

‖u(t)‖t ≤
1
2
‖x‖τ for τ − t ≥ N. (4.10)

In order to prove (4.10), take t0 ∈ R such that t0 < τ and ‖u(t0)‖t0 > ‖x‖τ/2. It follows
from (4.9) that

1
2C
‖x‖τ < ‖u(s)‖s ≤ C‖x‖τ, t0 ≤ s ≤ τ. (4.11)

Now take ε > 0 and let ψ : R → R be a smooth function supported on [t0, τ] such that
0 ≤ ψ ≤ 1 and ψ = 1 on [t0 + ε, τ − ε]. Moreover, let

y(t) = −ψ(t)u(t) and v(t) = u(t)
∫ +∞

t
ψ(s) ds
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for t ∈ R. Clearly, y and v belong to Y and one can easily verify that Hv = y. Therefore,

‖G‖ sup
{
‖u(t)‖t : t ∈ [t0, τ]

}
≥ ‖G‖ · ‖y‖∞ ≥ ‖v‖∞.

Hence, it follows from (4.11) that

C‖G‖ · ‖x‖τ ≥ ‖v(t0)‖t0

≥ ‖u(t0)‖t0

∫ τ−ε

t0+ε
ψ(s) ds

≥ 1
2C

(τ − t0 − 2ε)‖x‖τ.

Letting ε→ 0 yields the inequality

τ − t0 ≤ 2C2‖G‖.

Hence, property (4.8) holds taking N > 2C2‖G‖.
Finally, take t ≤ τ and write τ − t = kN + r, with k ∈ N and 0 ≤ r < N. By (4.3), (4.9)

and (4.10), we obtain

‖T(t, τ)Q(τ)x‖t = ‖T(τ − kN − r, τ)Q(τ)x‖τ−kN−r

≤ 1
2k ‖T(τ − r, τ)Q(τ)x‖τ−r

≤ C
2k ‖Q(τ)x‖τ

≤ 2C(1 + M)e−(τ−t) log 2/N‖x‖τ,

for x ∈ X. Taking D = 2C(1 + M) and λ = log 2/K yields property (4.8).

If follows from (4.4) and (4.8) that (2.4) holds with a = −λ and b = λ. Moreover, it follows
from (2.7) and (4.3) that (2.5) holds with D = (1 + M)K, a = −a and b = a. This completes
the proof of the theorem.

5 Weak robustness

In a similar manner to that in Section 3 we establish, once more, the robustness of the notion
of a strong exponential dichotomy but now using its characterization in terms of the weak
admissibility of the pair (Y, Y) in Theorems 4.1 and 4.2.

Theorem 5.1. Assume that the evolution family T(t, τ) admits a strong exponential dichotomy with
respect to the family of norms ‖·‖t and that B : R→ B(X) is a strongly continuous function such that

‖B(t)‖ ≤ ce−ε|t|, t ∈ R. (5.1)

If c is sufficiently small, then the evolution family U(t, τ) defined by

U(t, τ)x = T(t, τ)x +
∫ t

τ
T(t, s)B(s)U(s, τ)x ds, t, τ ∈ R

admits a strong exponential dichotomy with respect to the same family of norms.
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Proof. Let L be the linear operator associated to the evolution family U(t, τ), defined by Lx = y
on the domain D(L) formed by all x ∈ Y for which there exists y ∈ Y such that

x(t) = U(t, τ)x(τ) +
∫ t

τ
U(t, s)y(s) ds for t ≥ τ.

For each x, y ∈ Y such that Lx = y, we have

x(t) = U(t, τ)x(τ) +
∫ t

τ
U(t, s)y(s) ds

= T(t, τ)x(τ) +
∫ t

τ
T(t, s)B(s)U(s, τ)x(τ) ds

+
∫ t

τ
T(t, s)y(s) ds +

∫ t

τ

∫ t

s
T(t, w)B(w)U(w, s)y(s) dw ds

= T(t, τ)x(τ) +
∫ t

τ
T(t, w)B(w)U(w, τ)x(τ) dw

+
∫ t

τ
T(t, s)y(s) ds +

∫ t

τ

∫ w

τ
T(t, w)B(w)U(w, s)y(s) ds dw

= T(t, τ)x(τ) +
∫ t

τ
T(t, s)y(s) ds

+
∫ t

τ
T(t, w)B(w)

(
U(w, τ)x(τ) +

∫ w

τ
U(w, s)y(s) ds

)
dw

= T(t, τ)x(τ) +
∫ t

τ
T(t, w)(y(w) + B(w)x(w)) dw

(5.2)

for t ≥ τ. Now we introduce an operator P : Y → Y by (Px)(t) = B(t)x(t). It follows
from (2.2) and (5.1) that

‖B(t)x(t)‖t ≤ Ceε|t|‖B(t)x(t)‖
≤ cC‖x(t)‖ ≤ cC‖x(t)‖t

(5.3)

for t ∈ R and hence, P is a well defined bounded linear operator. Furthermore, it follows
from (5.2) that D(H) = D(L) and that H = L + P. For x ∈ D(H) we consider the graph norm

‖x‖′∞ = ‖x‖∞ + ‖Hx‖∞.

Clearly, the operator
H : (D(H), ‖·‖′∞)→ (Y, ‖·‖∞)

is bounded and for simplicity we denote it simply by H. Moreover, since H is closed,
(D(H), ‖·‖′∞) is a Banach space. By (5.3) we have

‖(H − L)x‖∞ ≤ cC‖x‖∞ ≤ cC‖x‖′∞ (5.4)

for x ∈ X. On the other hand, by Theorem 4.1, the operator H is invertible. Hence, it follows
from (5.4) that if c is sufficiently small, then L is also invertible.

It remains to show that there exist K′, a′ > 0 such that

‖U(t, τ)x‖t ≤ K′ea′|t−τ|‖x‖τ for t, τ ∈ R. (5.5)
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By (2.7), we have

‖U(t, τ)x‖t =

∥∥∥∥T(t, τ)x +
∫ t

τ
T(t, s)B(s)U(s, τ)x ds

∥∥∥∥
t

≤ Kea(t−τ)‖x‖τ + K
∫ t

τ
ea(t−s)‖B(s)U(s, τ)x‖s ds

≤ Kea(t−τ)‖x‖τ + cCK
∫ t

τ
ea(t−s)‖U(s, τ)x‖s ds

for t ≥ τ. Hence, the function φ(t) = e−at‖U(t, τ)x‖t satisfies

φ(t) ≤ Kφ(τ) + cCK
∫ t

τ
φ(s) ds

and it follows from Gronwall’s lemma that

φ(t) ≤ Kφ(τ)ecCK(t−τ).

This shows that property (5.5) holds for t ≥ τ taking K′ = Kφ(τ) and a′ = cCK. A similar
argument can be used for t ≤ τ. One can now apply Theorem 4.2 to conclude that the
evolution family U(t, τ) admits a strong exponential dichotomy.

6 Strong nonuniform exponential dichotomies

In this section we consider briefly the notion of a strong nonuniform exponential dichotomy
and we obtain a corresponding robustness result.

We say that an evolution family T(t, τ), for t, τ ∈ R, admits a strong nonuniform exponential
dichotomy if there exists:

(i) projections P(t) for t ∈ R satisfying (2.3);

(ii) constants
λ ≤ λ < 0 < µ ≤ µ, ε ≥ 0 and D > 0

such that
‖T(t, τ)P(τ)x‖ ≤ Deλ(t−τ)+ε|τ|‖x‖,

‖T(τ, t)Q(t)x‖ ≤ De−µ(t−τ)+ε|t|‖x‖
for t ≥ τ and

‖T(t, τ)P(τ)x‖ ≤ Deλ(t−τ)+ε|τ|‖x‖,
‖T(τ, t)Q(t)x‖ ≤ De−µ(t−τ)+ε|t|‖x‖

for t ≤ τ, where Q(τ) = Id− P(τ).

We first relate this notion to the notion of a strong exponential dichotomy with respect to
a family of norms.

Proposition 6.1. The following properties are equivalent:

1. T(t, τ) admits a strong nonuniform exponential dichotomy;

2. T(t, τ) admits a strong exponential dichotomy with respect to a family of norms ‖·‖t satisfying
conditions (i) and (ii).
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Proof. Assume that T(t, τ) admits a strong nonuniform exponential dichotomy. For x ∈ X
and τ ∈ R, write y = P(τ)x and z = Q(τ)x, and let

‖x‖τ = max
{
‖y‖τ, ‖z‖τ

}
,

where
‖y‖τ = sup

t≥τ

(
‖T(t, τ)y‖e−λ(t−τ)

)
+ sup

t<τ

(
‖T(t, τ)y‖e−λ(t−τ)

)
and

‖z‖τ = sup
t<τ

(
‖T(t, τ)z‖eµ(τ−t))+ sup

t≥τ

(
‖T(t, τ)z‖eµ(τ−t)).

One can easily verify that condition (2.2) holds. Moreover, for t ≥ τ we have

‖T(t, τ)y‖t = sup
s≥t

(
‖T(s, t)T(t, τ)y‖e−λ(s−τ)

)
+ sup

s<t

(
‖T(s, t)T(t, τ)y‖e−λ(s−t))

≤ sup
s≥t

(
‖T(s, τ)y‖e−λ(s−t))+ sup

τ≤s<t

(
‖T(s, τ)y‖e−λ(s−t))+ sup

s<τ

(
‖T(s, τ)y‖e−λ(s−t))

≤ 2 sup
s≥τ

(
‖T(s, τ)y‖e−λ(s−t))+ sup

s<τ

(
‖T(s, τ)y‖e−λ(s−t)),

where in the last inequality we have used that λ ≥ λ. Hence,

‖T(t, τ)P(τ)x‖t ≤ 2eλ(t−τ) sup
s≥τ

(
‖T(s, τ)P(τ)x‖e−λ(s−τ)

)
+eλ(t−τ) sup

s<τ

(
‖T(s, τ)P(τ)x‖e−λ(s−τ)

)
≤ 2eλ(t−τ)‖x‖τ,

again since λ ≥ λ. Analogously, for t ≥ τ we have

‖T(τ, t)z‖τ = sup
s≤τ

(
‖T(s, τ)T(τ, t)z‖eµ(τ−s))+ sup

s>τ

(
‖T(s, τ)T(τ, t)z‖eµ(τ−s))

≤ sup
s≤τ

(
‖T(s, t)z‖eµ(τ−s))+ sup

τ<s≤t

(
‖T(s, t)z‖eµ(τ−s))+ sup

s>t

(
‖T(s, t)z‖eµ(τ−s))

≤ 2 sup
s≤t

(
‖T(s, t)z‖eµ(τ−s))+ sup

s>t

(
‖T(s, t)z‖eµ(τ−s)),

where in the last inequality we have used that µ ≤ µ. Hence,

‖T(τ, t)Q(t)x‖τ ≤ 2eµ(τ−t) sup
s≤t

(
‖T(s, t)Q(t)x‖eµ(t−s))+ eµ(τ−t) sup

s>t

(
‖T(s, t)Q(t)x‖eµ(t−s))

≤ 2e−µ(t−τ)‖x‖t,

again since µ ≤ µ. One can show in a similar manner that

‖T(t, τ)P(τ)x‖t ≤ eλ(t−τ)‖x‖τ

and

‖T(τ, t)Q(t)x‖τ ≤ e−µ(t−τ)‖x‖t

for t ≤ τ. Therefore, the evolution family T(t, τ) admits a strong exponential dichotomy with
respect to the family of norms ‖·‖t.
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It remains to show that the map t 7→ ‖x‖t is measurable for each x. Let

g(τ) = sup
t≥τ

(
‖T(t, τ)y‖e−λ(t−τ)

)
.

Since the function under the supremum is continuous, we have

g(τ) = sup
t∈Q∩[τ,+∞)

(
‖T(t, τ)y‖e−λ(n−τ)

)
.

Now write Q = {t1, t2, . . .} and for each n ∈N define

gn(τ) = ‖T(tn, τ)y‖e−λ(tn−τ)χ(−∞,tn](τ).

The function gn is measurable and hence, g = supn gn is also measurable. One can show in a
similar manner that the three other suprema in the definition of the norm are also measurable.

Conversely, assume that T(t, τ) admits a strong exponential dichotomy with respect to a
family of norms satisfying (2.2) for some constants C > 0 and ε ≥ 0. Then

‖T(t, τ)P(τ)x‖ ≤ ‖T(t, τ)P(τ)x‖t

≤ Deλ(t−τ)‖x‖τ

≤ CDeλ(t−τ)+ε|τ|‖x‖

and

‖T(τ, t)Q(t)x‖ ≤ ‖T(τ, t)Q(t)x‖τ

≤ De−µ(t−τ)‖x‖t

≤ CDe−µ(t−τ)+ε|t|‖x‖

for x ∈ X and t ≥ τ. Similarly,

‖T(t, τ)Q(τ)x‖ ≤ CDeλ(τ−t)+ε|τ|‖x‖

and
‖T(t, τ)Q(τ)x‖ ≤ CDe−µ(t−τ)+ε|t|‖x‖

for x ∈ X and t ≤ τ. This shows that T(t, τ) admits a strong nonuniform exponential di-
chotomy.

The following robustness result for the notion of a strong nonuniform exponential di-
chotomy is an immediate consequence of Theorem 5.1 and Proposition 6.1.

Theorem 6.2. Assume that the evolution family T(t, τ) admits a strong nonuniform exponential
dichotomy and that B : R→ B(X) is a strongly continuous function such that

‖B(t)‖ ≤ ce−ε|t|, t ∈ R.

If c is sufficiently small, then the evolution family U(t, τ) defined by

U(t, τ)x = T(t, τ)x +
∫ t

τ
T(t, s)B(s)U(s, τ)x ds, t, τ ∈ R

admits a strong nonuniform exponential dichotomy.
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