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Abstract. In this paper, we propose a new method for constructing a solution of the
integro-differential equations of Volterra type. The particular solutions of the homo-
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malized systems functions with respect to the differential operator’s fractional order.
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1 Introduction

Let α > 0, ν ≥ 0, β ∈ R, λ 6= 0. On the domain 0 < t ≤ d < ∞ consider an integro-differential
equation of the following form:

Dαy (t) = λtβ Iνy (t) + f (t) , 0 < t ≤ d < ∞, (1.1)

where for any δ > 0 :

Iδy(t) =
1

Γ(δ)

∫ t

0
(t− τ)δ−1y(τ)dτ,

and Dα is the derivative of α order in the Riemann–Liouville sense, i.e.

Dαy (t) =
dm

dtm Im−αy (t) , m = [α] + 1.

We denote
Cδ[0, d] =

{
f (t) : ∃δ ∈ [0, 1), tδ f (t) ∈ C[0, d]

}
.

By a solution of equation (1.1) we mean a function y(t) such that ∃δ ∈ [0, m − α], y(t) ∈
Cδ[0, d], Dαy(t) ∈ C[0, d] and y(t) satisfies equation (1.1) at all points t ∈ (0, d).
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Questions related to theorems about existence and uniqueness of solutions of Cauchy type
and Dirichlet type problems for linear and nonlinear fractional order differential equations
have been developed in sufficient detail (see [15] for the main results, review of papers, and
references). In [1], equation (1.1) was studied in the case β = 0 . In a more general case,
an equation of the type (1.1) and a Cauchy-type problem for them were studied in [3, 5, 7–9,
16]. Theorems on existence and uniqueness of a solution of Cauchy-type problem have been
proved. We note that explicit solutions have been constructed only for certain types of linear
differential equations of fractional order. Solutions of certain elementary homogeneous and
inhomogeneous equations, obtained by the selection method or by expansion of the desired
solution into a quasi-power series, are known. Moreover, explicit solutions of a Cauchy-type
problem for certain differential equations of fractional order were found in [12] by the method
of reduction to an equivalent Volterra integral equation. Further, in [14], using the properties
of Mittag-Leffler type functions:

Eα,m,l (z) =
∞

∑
i=0

cizi, c0 = 1, ci =
i−1

∏
k=0

Γ [α (km + l) + 1]
Γ [α (km + l + 1) + 1]

, i ≥ 1, (1.2)

an algorithm for constructing a solution of the differential equation (1.1) in the case ν = 0 was
proposed. Moreover, the case, when f (t) = 0 and f (t) is a quasi-polynomial, was considered.
Further, in [13] an analogous algorithm was used to construct a solution of the equation (1.1)
in the case α = β = 0.

In this paper we propose a new method for constructing an explicit solution of integro-
differential equations of fractional order. This method is based on construction of normalized
systems with respect to a pair of operators

(
Dα, λtβ

)
(see Section 2). Moreover, in contrast to

[14], we construct particular solutions of the inhomogeneous equation for a more general class
of functions f (t). We also note that this method was used in [2, 17] to construct solutions of
certain linear differential equations of integer and fractional order with constant coefficients.

2 Normalized systems

In this section we give some information on normalized systems related to linear differential
operators. Let L1 and L2 be linear operators, acting from the functional space X to X, LkX ⊂ X,
k = 1, 2. Let functions from X be defined in a domain Ω ⊂ Rn. Let us give the definition of
normalized systems [10].

Definition 2.1. A sequence of functions { fi(x)}∞
i=0 , fi (x) ∈ X is called f -normalized with

respect to (L1, L2) on Ω, having the base f0 (x) , if on this domain the following equality
holds:

L1 f0(x) = f (x), L1 fi(x) = L2 fi−1(x), i ≥ 1.

If L2 = E is a unit operator, then f -normalized with respect to (L1, I) system of functions
is called f -normalized with respect to L1, i.e.

L1 f0 (x) = f (x) , L1 fi (x) = fi−1 (x) , i ≥ 1.

If f (x) = 0, then the system of functions { fi (x)} is called just normalized.
The main properties of the f -normalized systems of functions with respect to the oper-

ators (L1, L2) on Ω have been described in [11]. Let us consider the main property of the
f -normalized systems.
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Proposition 2.2. If a system of functions { fi (x)}∞
i=0 is f -normalized with respect to (L1, L2) on Ω,

then the functional series y (x) = ∑∞
i=0 fi (x), x ∈ Ω, is a formal solution of the equation:

(L1 − L2) y (x) = f (x) , x ∈ Ω. (2.1)

The next proposition allows to construct an f -normalized system with respect to a pair of
operators (L1, L2).

Proposition 2.3. If for L1 there exists a right inverse operator L−1
1 , i.e. L1 · L−1

1 = E, where E is a
unit operator and L1 f0(x) = f (x), then a system of the functions

fi(x) =
(

L−1
1 · L2

)i
f0(x), i ≥ 1,

is f -normalized with respect to a pair of the operators (L1, L2) on Ω.

Proof. Since L1 · L−1
1 = E is the unit operator, then for all i = 1, 2, . . . , we have

L1 fi(x) = L1

(
L−1

1 · L2

)i
f0(x) = L1

(
L−1

1 · L2

) (
L−1

1 · L2

)i−1
f0(x)

= L2

(
L−1

1 · L2

)i−1
f0(x) = L2 fi−1(x).

Consequently, L1 fi(x) = L2 fi−1(x) and by assumption of the theorem L1 f0(x) = f (x) i.e. the
system fi(x) =

(
L−1

1 · L2
)i f0(x), i ≥ 0, is f -normalized with respect to the pair of operators(

L1, L2
)
.

3 Properties of operators Iα and Dα

Consider some properties of the operators Iα and Dα.
The following statements are known [15].

Lemma 3.1. Let α > 0. Then for all f (t) ∈ Cδ[0, d] the equality

Dα [Iα[ f ]] (t) = f (t) (3.1)

holds for all t ∈ (0, d]. If f (t) ∈ C[0, d], then (3.2) holds for all t ∈ [0, d].

Lemma 3.2. Let α > 0, m = [α] + 1 and s ∈ R. Then the following equalities hold:

Iαts =
Γ (s + 1)

Γ (s + 1 + α)
ts+α, s > −1, (3.2)

Dαts =
Γ (s + 1)

Γ (s + 1− α)
ts−α, s > α− 1, (3.3)

Dαts = 0, s = α− j, j = 1, 2, . . . , m. (3.4)

Corollary 3.3. Let α > 0, m = [α] + 1. Then the equality Dαy(t) = 0 holds if and only if

y(t) =
m

∑
j=1

cjtα−j,

where cj are arbitrary constants.
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Lemma 3.4. Let α > 0, m = [α] + 1, 0 ≤ δ < 1 and f (t) ∈ Cδ[a, b]. Then

1) if α < δ, then Iα f (t) ∈ Cδ−α[a, b] and

‖Iα f ‖Cδ−α[a,b] ≤ M‖ f ‖Cδ[a,b], M =
Γ(1− δ)

Γ(1 + α− δ)
; (3.5)

2) if α ≥ δ, then Iα f (t) ∈ C[a, b] and

‖Iα f ‖C[a,b] ≤ M‖ f ‖Cδ[a,b], M =
(b− a)α−δΓ(1− δ)

Γ(1 + α− δ)
. (3.6)

4 Construction of 0-normalized systems

In this section we construct 0 - normalized systems with respect to the pair of the operators(
Dα, λtβ Iν

)
. To do it from Proposition 2.3 it follows that it is necessary to find all solutions of

the equation Dαy(t) = 0 and a right inverse for the operator Dα. According to statement of
Lemma 3.1 the right inverse of the the operator Dα is the operator Iα, and due to (3.4) linear
independent solutions of the equation Dαy(t) = 0 are functions tsj , sj = α− j, j = 1, 2, . . . , m.
Hereinafter, we denote L1 = Dα and L2 = λtβ Iν. Then the equation (1.1) is represented as
(2.1). For real numbers α > 0, ν ≥ 0, δ > 0, s ∈ R we introduce the following coefficients:

Cα,ν(δ, s, i)=
i−1

∏
k=0

Γ(δk + s + 1)
Γ(δk + s + 1 + ν)

· Γ [δ(k + 1) + s + 1− α]

Γ [δ(k + 1) + s + 1]
, i ≥ 1, Cα,ν(δ, s, 0) = 1, s ∈ R.

From the properties of the gamma function we have Cα,ν(δ, s, i) 6= 0. It’s obvious that

Cα,0(δ, s, i) =
i−1

∏
k=0

Γ [δ(k + 1) + 1 + s− α]

Γ [δ(k + 1) + 1 + s])
.

Let sj = α− j, j = 1, 2, . . . , m and f0,sj(t) = tsj , then due to (3.4): L1 f0,sj(t) = 0, j = 1, 2, . . . , m.
We consider the system of functions:

fi,j(t) =
(

Iα · λtβ Iν
)i

f0.sj(t), i ≥ 1. (4.1)

Since (Dα)−1 = Iα and Dα f0,sj(t) = 0, then Proposition 2.3 implies that the system (4.1)
is 0-normalized with respect to the pair of the operators

(
Dα, λtβ Iν

)
. We find explicit form

of the system of functions fi(t). Hereinafter, everywhere we will assume that α > 0, m =

[α] + 1, ν ≥ 0, β > −{α} − ν. The following proposition is valid.

Lemma 4.1. Let s ≥ α−m, gi(t) =
(

Iαtβ Iν
)its, i ≥ 1. Then

1) for the function gi(t) the following equality holds:

gi(t) = Cα,ν(α + β + ν, s, i)t(α+β+ν)i+s, i ≥ 1; (4.2)

2) the function gi(t) at least belongs to the class Cm−α[0, d].

Proof. Note that due to (3.2) for s ≥ α−m the equality

Iνts =
Γ(s + 1)

Γ(s + 1 + ν)
ts+ν
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holds. Let i = 1. Then due to the inequality s + β + ν ≥ α−m + β + ν = −1 + {α}+ β + ν >

−1 and properties of the operator Iα, for the function g1(t) we have

g1(t) = Iα
(

tβ Iνts
)
=

Γ(s + 1)
Γ(s + 1 + ν)

Iαts+ν+β =
Γ(s + 1)

Γ(s + 1 + ν)

Γ(β + ν + s + 1)
Γ(α + ν + β + s + 1)

ts+ν+β+α

= Cα,ν(α + β + ν, s, 1)tα+β+ν+s.

Due to the inequality α + β + ν + s > α−m it follows that at least g1(t) ∈ Cm−α[0, d].
Further, in general case by the mathematical induction method it is possible to show valid-

ity of the equality (4.2). Indeed, let for some positive integer r the equality (4.2) holds. Then
for r + 1 we get:

gr+1(t) =
(

Iα · tβ Iν
)r+1

ts =
(

Iα · tβ Iν
) (

Iα · tβ Iν
)r

ts = Iα
[
tβ Iνgr(t)

]
= Cα,ν(α + β + ν, s, r)Iα

[
tβ Iνtr(α+β+ν)+s

]
= Cα,ν(α + β + ν, s, r)

Γ(r(α + β + ν) + s + 1)
Γ(r(α + β + ν) + s + 1 + ν)

Iαtr(α+β+ν)+β+ν+s

= Cα,ν(α + β + ν, s, r)
Γ(r(α + β + ν) + s + 1)

Γ(r(α + β + ν) + s + 1 + ν)

× Γ(r(α + β + ν) + α + β + ν + s + 1− α)

Γ(r(α + β + ν) + α + β + ν + s + 1)
tr(α+β+ν)+α+β+ν+s

= Cα,ν(α + β + ν, s, r + 1)t(r+1)(α+β+ν)+s.

Therefore, (4.2) is true also for the case r + 1. It is obvious that for any r ≥ 1 at least
gr+1(t) ∈ Cm−α[0, d] and Dαgr+1(t) ∈ C(0, d).

From the lemma in the case sj = α− j, j = 1, 2, . . . , m, we obtain

Cα,ν(δ, α− j, i)

=
i−1

∏
k=0

Γ [kδ + 1 + α− j]
Γ [kδ + 1 + α− j + ν]

· Γ [(k + 1)δ + 1− j]
Γ [(k + 1)δ + 1 + α− j]

, i ≥ 1, δ = α + β + ν. (4.3)

Consider the function

uj(z) =
∞

∑
i=0

Cα,ν(α + β + ν, sj, i)zi, (4.4)

where z is a complex number. If in (4.3) β = 0, then

Cα,ν(α + ν, α− j, i) =
Γ(1 + α− j)

Γ(i(α + ν) + 1 + α− j)
, i ≥ 1,

and

uj(z) =
∞

∑
i=0

Γ(1 + α− j)
Γ(i(α + ν) + 1 + α− j)

zi = Γ(1 + α− j)Eα+ν,1+α−j(z),

where Eρ,δ(z) is a Mittag-Leffler type function [15].
It is easy to show that at ν = 0 the equality

Cα,0(α + β, α− j, i) = ci
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holds, i.e. these coefficients coincide with coefficients of expansion of the function (1.2), with
indexes m = 1 + β

α , ` = 1 + β−j
α . In [6] it is shown that for the coefficients of the function (1.2)

the following asymptotic estimate holds:

ci

ci+1
=

Γ[α(im + l + 1) + 1]
Γ[α(im + l) + 1]

∼ (αmi)α (i→ ∞).

Thus, the function (1.2) is entire. Denote δ = α + β + ν and rewrite the coefficients
Cα,ν(δ, α− j, i) as follows:

Cα,ν(δ, α− j, i) =
i−1

∏
k=0

Γ
[
ν
(

k δ
ν +

α−j
ν

)
+ 1
]

Γ
[
ν
(

k δ
ν +

α−j
ν + 1

)
+ 1
] · Γ

[
α
(

k δ
α + δ−j

α

)
+ 1
]

Γ
[
α
(

k δ
α + δ−j

α + 1
)
+ 1
] , i ≥ 1, ν > 0.

Further, the asymptotic estimate

Cα,ν(δ, α− j, i)
Cα,ν(δ, α− j, i + 1)

∼ (δi)ν+α → ∞ (i→ ∞)

yields that uj(z), j = 1, 2, . . . , m, from (4.4) are also entire functions. Lemma 4.1 and Proposi-
tion 2.3 implies the following lemma.

Lemma 4.2. Let sj = α− j, j = 1, 2, . . . , m. Then at all values j = 1, 2, . . . , m the system of functions

fi,j(t) = λiCα,ν(α + β + ν, sj, i)t(α+β+ν)i+sj , i = 0, 1, . . .

is 0-normalized with respect to the pair of operators
(

Dα, λtβ Iν
)

on the domain t > 0.

Using the main property of normalized systems we get the following theorem.

Theorem 4.3. Let sj = α− j, j = 1, 2, . . . , m. Then at all values j = 1, 2, . . . , m the functions

yj(t) =
∞

∑
i=0

fi,j(t) = tsj
∞

∑
i=0

λiCα,ν(α + β + ν, sj, i)t(α+β+ν)i (4.5)

are linearly independent solutions of the homogeneous equation (1.1).
Moreover, for all j = 1, 2, . . . , m− 1, yj(t) ∈ C[0, d] and ym(t) ∈ Cm−α[0, d].

Proof. Consider the function

uj(t) =
∞

∑
i=0

λiCα,ν(α + β + ν, sj, i)t(α+β+ν)i.

Since the function (4.4) is entire, then it is obvious that yj(t) = tα−juj(t) ∈ C[0, d] at
j = 1, 2, . . . , m− 1 and ym(t) = tα−mum(t) ∈ Cm−α[0, d]. Moreover, for all j = 1, 2, . . . , m:

Dα f0,j(t) = 0, Dα fi,j(t) = λIν fi−1,j(t) = λiCα,ν(α + β + ν, sj, i− 1)Iνt(α+β+ν)i+sj

= λiCα,ν(α + β + ν, sj, i− 1)
Γ
[
(α + β + ν)i + sj + 1

]
Γ
[
(α + β + ν)i + sj + 1 + ν

] t(α+β+ν)i+ν+sj , i ≥ 1.

Consequently, the series ∑∞
i=0 Dα fi,j(t), ∑∞

i=0 Iν fi,j(t) uniformly converge on any closed domain
[ε, d], 0 < ε < d and, therefore, termwise use of the operators Dα and Iν to the series (4.5)
is rightful. Then functions yj(t) from (4.5) are solutions of the homogeneous equation (1.1).
Proof of linearly independence of the solutions (4.5) we will show below in Theorem 6.2 of
Section 6.
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Remark 4.4. In the case ν = 0 the functions yj(t) are represented in the form:

yj(t) = tα−jE
α,1+ β

α ,1+ β−j
α

(
λtα+β

)
, j = 1, 2, . . . , m.

This representation of solution of the equation (1.1) coincides with the result of [14] (see
Theorem 1, formulas (19) and (21)).

5 Construction of f -normalized systems

Now we turn to construction of a solution of inhomogeneous equation. Let f (t) ∈ C[0, d].
Then by the statement of Lemma 3.1 for the function f0(t) = Iα f (t) the following equality is
true:

L1 f0(t) = Dα Iα f (t) = f (t).

Consider the system

fi(t) =
(

Iαλtβ Iν
)i

f0(t) ≡ λi
(

Iαtβ Iν
)i

f0(t), i = 1, 2, . . . (5.1)

Lemma 5.1. Let f (t) ∈ C[0, d], d < ∞. Then the system of functions (5.1) is f (t)-normalized with
respect to the pair of operators

(
Dα, λtβ Iν

)
on the domain t > 0 .

Proof. Since f (t) ∈ C[0, d], then due to statement of Lemma 3.4 f0(t) = Iα f (t) ∈ C[0, d].
Moreover,

| f0(t)| = |Iα f (t)| ≤ 1
Γ(α)

t∫
0

(t− τ)α−1| f (τ)|dτ ≤ ‖ f ‖C[0,d]
tα

Γ(α + 1)
.

Thus

| f0(t)| ≤
‖ f ‖C[0,d]

Γ(α + 1)
tα,

‖ f0‖C[0,d] ≤
dα

Γ(α + 1)
‖ f ‖C[0,d].

Hereinafter, we denote M =
‖ f ‖C[0,d]
Γ(α+1) . Then | f0(t)| ≤ Mtα. Since | f0(t)| ≤ Mtα, then∣∣∣λ (Iαtβ Iν

)
f0(t)

∣∣∣ ≤ M|λ|
(

Iαtβ Iν
)

tα.

Therefore, for any i ≥ 1 the following estimate holds:

| fi(t)| =
∣∣∣∣λi
(

Iαtβ Iν
)i

f0(t)
∣∣∣∣ ≤ M|λ|i

(
Iαtβ Iν

)i
tα.

Further, due to (4.2) the function
(

Iαtβ Iν
)itα is represented as follows:(

Iαtβ Iν
)i

tα = Cα,ν(α + β + ν, α, i)t(α+β+ν)i+α,

thus,
| fi(t)| ≤ M|λ|iCα,ν(α + β + ν, α, i)ti(α+β+ν)+α. (5.2)
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Consequently, at any i ≥ 1 we have fi(t) ∈ C[0, d] as well as (5.2).
Moreover,

L1 fi(t) = Dα
(

Iα · λtβ
)i

f0,sj(t) = Dα Iα · λtβ
(

Iα · λtβ
)i−1

f0,sj(t)

= λtβ fi−1(t) = L2 fi−1(t), i ≥ 1.

Thus, in the class of functions X = C[0, d] we get:

L1 f0(t) = f (t), L1 fi(t) = L2 fi−1(t), i ≥ 1,

i.e. the system (5.1) is f -normalized with respect to the pair of operators
(

Dα, λtβ
)
.

Theorem 5.2. Let f (t) ∈ C[0, d] and functions fi(t), i ≥ 0 be defined by (5.1). Then the function

y f (x) =
∞

∑
i=0

fi(t) (5.3)

is a particular solution of the equation (1.1) from the class C[0, d].

Proof. Estimate the series (5.3). Due to (5.2), we have

|y f | ≤
∞

∑
i=0
| fi(t)| ≤

‖ f ‖C[0,d]tα

Γ(α + 1)

[
1 +

∞

∑
i=1
|λ|iCα,ν (α + β + ν, α, i) ti(α+β)

]
.

Since the last series is uniformly convergent on the domain 0 ≤ t ≤ d, then sum of the
series, and hence the function y f (t) belong to the class C[0, d].

Now we study representation of the functions (5.1) for certain particular cases of func-
tions f (t).

Lemma 5.3. Let f (t) = tµ, µ > −1 . Then a particular solution of the equation (1.1) has the following
form:

y f (t) =
Γ(µ + 1)tα+µ

Γ(µ + 1 + α)

∞

∑
k=0

λkCα,ν(α + β + ν, µ + α, k)tk(α+β+ν).

Proof of the lemma follows from (4.2).

Theorem 5.4. Let f (t) =
p
∑

j=1
λjtµj , µj > −1. Then a particular solution of the equation (1.1) has the

following form:

y f (t) =
p

∑
j=1

λjΓ(µj + 1)tα+µj

Γ(µj + 1 + α)

∞

∑
k=0

λkCα,ν(α + β + ν, µj + α, k)tk(α+β+ν). (5.4)

In the case ν = 0 the representation (5.4) of a particular solution of (1.1) coincides with the
result of [14] (see Theorem 2, formula (27)).

Now we give an algorithm for constructing particular solutions of the inhomogeneous
equation (1.1) in the case when f (t) is an analytic function.
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Theorem 5.5. Let f (t) be an analytic function. Then a particular solution of the equation (1.1) has
the form

y f (t) =
∞

∑
k=0

f (k)(0)tα+k

Γ(α + k + 1)
yk+α(t), (5.5)

where yk+α(t) is defined by the equality:

yk+α(t) =
∞

∑
i=0

λiCα,ν (α + β, k + α, i) ti(α+β).

Proof. Let f (t) be an analytical function. Then it can be represented in the form

f (t) =
∞

∑
k=0

f (k)(0)
k!

tk,

and assuming that f0(t) = Iα f (t), we have

fi(t) =
(

Iα · λtβ Iν
)i

f0(t) =
(

Iα · λtβ Iν
)i
(

∞

∑
k=0

f (k)(0)
k!

Iαtk

)

=
∞

∑
k=0

f (k)(0)
k!

Γ(k + 1)
Γ(k + 1 + α)

(
Iα · λtβ Iν

)i
tk+α.

Due to (4.2): (
Iα · λtβ Iν

)i
tk+α = λiCα,ν(α + β + ν, k + α, i)t(α+β+ν)i+k+α.

Then

fi(t) =
∞

∑
k=0

f (k)(0)
k!

Γ(k + 1)
Γ(k + 1 + α)

λiCα,ν(α + β + ν, k + α, i)t(α+β+ν)i+k+α.

Hence for the function y f (t) we get (5.5):

y f (t) =
∞

∑
i=0

fi(t) =
∞

∑
k=0

f (k)(0)tk+α

Γ(α + k + 1)

∞

∑
i=0

λiCα,ν (α + β, k + α, i) ti(α+β) =
∞

∑
k=0

f (k)(0)tk+α

Γ(α + k + 1)
yk+α(t).

Theorem 5.6. Let β = n, n = 0, 1, . . . , f (t) ∈ C[0, d]. Then a particular solution of the equation
(1.1) has the form:

y f (t) =
∫ t

0
Gn,α+ν(t− τ, τ, λ) f (τ)dτ, (5.6)

where Gn,α+ν(u, w, λ) is defined by the equality:

Gn,α+ν(u, w, λ) =
∞

∑
i=0

Gn,α+ν,i(u, w, λ),

Gn,α,ν,i(u, w, λ) =
λi

Γ(α)

n

∑
j1=0

. . .
n

∑
ji=0

Cj1
n . . . Cj1

n Cα,ν(α + ν, j1 + j2 + · · ·+ ji + α− 1, i)

× ui(α+ν)+j1+···+ji+α−1win−j1−···−ji , Cji
n =

n!
ji!(n− ji)!

.
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Cα,ν(α + ν, j1 + j2 + · · ·+ ji + α− 1, i)

=
i−1

∏
p=0

Γ(p(α + ν) + j0 + · · ·+ jp + α)

Γ(p(α + ν) + j0 + · · ·+ jp + α + ν)
·

Γ
[
(p + 1)(α + ν) + j1 + · · ·+ jp+1

]
Γ
[
(p + 1)(α + ν) + j1 + · · ·+ jp+1 + α

] , (5.7)

where j0 = 0.

Proof. Let i = 1, β = n, n = 0, 1, . . . , f0(t) = Iα f (t). Then

f1(t) = (Iα · λtn Iν) f0(t) = (Iα · λtn) Iν+α f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1λτn Iν+α f (τ)dτ

=
λ

Γ(α)Γ(ν + α)

∫ t

0
f (z)

∫ t

z
(t− τ)α−1(τ − z)α+ν−1τndτdz.

Investigate the inner integral:

In,1 =
∫ t

z
(t− τ)α−1(τ − z)α+ν−1τndτ.

After the change of variables τ = z + (t− z)ξ we have:

In,1 =
∫ t

z
(t− τ)α−1(τ − z)α+ν−1τndτ = (t− z)2α+ν−1

∫ 1

0
(1− ξ)α−1ξα+ν−1((t− z)ξ + z)ndξ.

Consequently,

f1(t) =
λ

Γ(α + ν)

n

∑
j1=0

Cj1
n

Γ(α + ν + j1)
Γ(α + ν + j1 + α)

∫ t

0
(t− z)j1+2α+ν−1zn−j1 f (z)dz.

Further, for the function Iν f1(t) we obtain:

Iν f1(t) = λ
Γ(ν)Γ(α+ν)

n

∑
j1=0

Cj1
n

Γ(α+ν+j1)
Γ(α+ν+j1+α)

∫ t

0
(t− τ)ν−1

∫ τ

0
(τ − z)j1+2α+ν−1zn−j1 f (z)dzdτ

= λ
Γ(ν)Γ(α+ν)

n

∑
j1=0

Cj1
n

Γ(α+ν+j1)
Γ(α+ν+j1+α)

∫ t

0
zn−j1 f (z)

t∫
z

(t− τ)ν−1(τ − z)j1+2α+ν−1dτdz

= λ
Γ(ν)Γ(α+ν)

n

∑
j1=0

Cj1
n Γ(α+ν+j1)

Γ(α+ν+j1+α)

∫ t

0
(t− τ)j1+2α+2ν−1zn−j1 f (z)

∫ 1

0
(1− ξ)j1+2α+ν−1ξν−1dξdz

= λ
Γ(ν)Γ(α+ν)

n

∑
j1=0

Cj1
n Γ(α+ν+j1)

Γ(α+ν+j1+α)
Γ(ν)Γ(j1+2α+ν)

Γ(j1+2α+2ν)

∫ t

0
(t− τ)j1+2α+2ν−1zn−j1 f (z)dz

= λ
Γ(α+ν)

n

∑
j1=0

Cj1
n

Γ(α+ν+j1)
Γ(α+ν+j1+α)

Γ(2(α+ν)+j1−ν)
Γ(2(α+ν)+j1)

∫ t

0
(t− τ)j1+2α+2ν−1zn−j1 f (z)dz.

Then for f2(t) we get:

f2(t) = (Iα · λtn Iν) f1(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1λτn Iν f1(τ)dτ

=
λ2

Γ(α)Γ(α + ν)

n

∑
j1=0

Cj1
n

Γ(α + ν + j1)
Γ(α + ν + j1 + α)

Γ(2(α + ν) + j1 − ν)

Γ(2(α + ν) + j1)

×
∫ t

0
zn−j1 f (z)

∫ t

z
(t− τ)α−1(τ − z)j1+2α+2ν−1τndτdz.
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Consequently,

f2(t) =
λ2

Γ(α)

n

∑
j1=0

n

∑
j2=0

Cj1
n Cj2

n
Γ(α)

Γ(α + ν)

Γ(α + ν + j1 + α)

Γ(α + ν + j1 + α + ν)

Γ(α + ν + j1)
Γ(α + ν + j1 + α)

× Γ(2(α + ν) + j1 + j2)
Γ(2(α + ν) + j1 + j2 + α)

∫ t

0
(t− z)2(α+ν)+α+j1+j2−1z2n−j1−j2 f (z)dz.

Put j0 = 0. Then for f2(t) we obtain the following representation:

f2(t) =
λ2

Γ(α)

n

∑
j1=0

n

∑
j2=0

Cj1
n Cj2

n

1

∏
p=0

Γ(p(α + ν) + j0 + · · ·+ jp + α)

Γ(p(α + ν) + j0 + · · ·+ jp + α + ν)

×
Γ
[
(p + 1)(α + ν) + j0 + · · ·+ jp+1

]
Γ
[
(p + 1)(α + ν) + j0 + · · ·+ jp+1 + α

] t∫
0

(t− z)2(α+ν)+α+j1+j2−1z2n−j1−j2 f (z)dz.

In general case, using the representation of coefficients Cα,ν(δ, s, i) for fi(t), we get:

fi(t) =
λi

Γ(α)

n

∑
j1=0
· · ·

n

∑
ji=0

Cj1
n . . . Cji

n Cα,ν(α + ν, j1 + j2 + · · ·+ ji + α− 1, i)

×
t∫

0

(t− z)k(α+ν)+α+j1+j2+···+ji−1zkn−j1−j2−···−ji f (z)dz,

where coefficients Cα,ν(α + ν, j1 + j2 + · · ·+ ji + α− 1, i) are defined by the equality (5.7). Then
a particular solution of the equation (1.1) is represented in the form (5.6).

Example 5.7. Let β ≡ n = 0. Then j1 = j2 = · · · = ji = 0 ,

Cα,ν(α + ν, 0, i) =
i−1

∏
p=0

Γ(p(α + ν) + α)

Γ(p(α + ν) + α + ν)
· Γ [(p + 1)(α + ν)]

Γ [(p + 1)(α + ν) + α]
=

Γ(α)
Γ [i(α + ν) + α]

,

G0,α,i(u, w, λ) =
λi

Γ(i(α + ν) + α)
ui(α+ν)+α−1,

G0,α(u, v, λ) =
∞

∑
i=0

λiui(α+ν)+α−1

Γ(i(α + ν) + α)
= uα−1Eα+ν,α(λuα+ν).

In this case

y f (t) =
∫ t

0
G0,α(t− τ, τ, λ) f (τ)dτ =

∫ t

0
(t− τ)α−1Eα+ν,α(λ(t− τ)α+ν) f (τ)dτ.

This formula has been obtained in [1] (see formula (15)).

6 Solution of Cauchy type problem

Consider the following Cauchy type equation:

Dαy(t) = λtβ Iνy(t) +
p

∑
j=1

λjtµj , 0 < t ≤ d < ∞, (6.1)

Dα−ky(t)
∣∣∣
t=0

= bk, k = 1, 2, . . . , m− 1, (6.2)
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where Dα−m = Im−α, bk are real numbers. First we study the homogeneous equation (6.1)–
(6.2).

Theorem 6.1. Let λj = 0, j = 1, 2, . . . , p. Then solution of the Cauchy equation (6.1)–(6.2) exists,
unique and can be represented in the form:

y(t) =
m

∑
j=1

bj

Γ(α− j + 1)
tα−j

∞

∑
i=0

λiCα,ν(α + β + ν, α− j, i)t(α+β+ν)i. (6.3)

Proof. Let λj = 0, j = 1, 2, . . . , p. According to Theorem 4.3 the function y(t) in (6.3) is solution
of the equation (6.1). Let us show that y(t) satisfies initial conditions (6.2). Due to (3.2)–(3.4),
we have:

Im−αt(α+β+ν)i+α−j =
Γ [(α + β + ν)i + α− j + 1]
Γ [(α + β + ν)i + m− j + 1]

t(α+β+ν)i+m−j,

Dα−ktα−j = 0, j > k,

Dα−kt(α+β+ν)i+α−j =
Γ [(α + β + ν)i + α− j + 1]
Γ [(α + β + ν)i + k− j + 1]

t(α+β+ν)i+k−j, j ≤ k.

Thus, for the functions fi,j(t), j = 1, 2, . . . , m, we get:

Dα−k fi,j(t)
∣∣∣
t=0

= lim
t→0

Dα−k fi,j(t) =

{
Γ (α− j + 1) , i = 0, k = j,

0, k 6= j, i ≥ 0.

Then

Dα−jyj(0) = lim
t→0

Dα−jyj(t) = Γ (α− j + 1) , Dα−kyj(0) = lim
t→0

Dα−kyj(t) = 0, k 6= j. (6.4)

Consequently,

Dα−ky(t)
∣∣∣
t=0

= lim
t→0

Dα−ky(t) =
bk

Γ (α− k + 1)
Γ (α− k + 1) = bk.

Theorem 6.1 implies also the following result.

Theorem 6.2. If β > −{α} − ν, then solutions yj(t) in (4.5) of the homogeneous equation (6.1) are
linearly independent.

Proof. For solutions y1(t), y2(t), . . . , ym(t) we introduce analogue of Wronskian [4, p. 225]:
Wα(t) = det

(
Dα−kyj(t)

)m
k,j , 0 ≤ t ≤ d. We have the following statement, which is proved

similarly to the corresponding theorem for linear differential equations of order m.

Lemma 6.3. Solutions y1(t), y2(t), . . . , ym(t) of the equation (6.1) are linearly independent if and only
if at some point t0 ∈ [0, d]: Wα(t0) 6= 0.

According to (6.4) we get Wα(0) = (−1)nΓ (α) Γ (α− 1) · . . . · Γ (α−m + 1) 6= 0 and, con-
sequently, due to the lemma, solutions y1(t), y2(t), . . . , ym(t) of the equation (6.1) are linearly
independent.

From the Theorems 5.4 and 6.1 we get the following statement.
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Theorem 6.4. If µj > −1, j = 1, 2, . . . , p, then solution of the Cauchy problem (6.1)–(6.2) exists,
unique and can be represented in the form:

y(t) =
m

∑
j=1

bj

Γ(α− j + 1)
tα−j

∞

∑
i=0

λiCα,ν(α + β + ν, α− j, i)t(α+β+ν)i

+
p

∑
j=1

λjΓ(µj + 1)tα+µj

Γ(µj + 1 + α)

∞

∑
k=0

λkCα,ν(α + β + ν, µj + α, k)tk(α+β+ν).
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