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Abstract. This paper is concerned with a general chemical reaction model with re-
spect to Neumann boundary condition. The stability of positive equilibrium and the
non-existence of non-constant positive solution are discussed rigorously, respectively in
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1 Introduction

A chemical reaction is a process that leads to the transformation of one set of chemical sub-
stances to another [2]. During a chemical reaction, a new substance is formed. Chemical equa-
tions are used to graphically illustrate chemical reactions by various mathematical models,
such as CIMA reaction model [5, 11], the activator-inhibitor model [19, 22], and the Schnaken-
berg model [8,10,16]. The classical Schnakenberg kinetics [16] is a system of interacting chem-
icals describing the relations of activation between substances, this system has been used and
studied extensively, such as [1, 4, 6, 7, 9, 14, 15, 18, 24].

Based on the classical Schnakenberg equations, Wu, Ma and Guo (2013) [17] have given
the following reaction-diffusion system with a general reactive function:

ut = d1∆u + α1 − βu + γ f (u)v, x ∈ Ω, t > 0,

vt = d2∆v + α2 − γ f (u)v, x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥6≡ 0, v(x, 0) = v0(x) ≥6≡ 0, x ∈ Ω.

(1.1)
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The reaction mechanism of system (1.1) could be expressed as follows: there is a diffusing
substance u, which activates itself and consumes a substrate v at interaction ratio γ while sup-
plying to the system at constant rate β in a bounded domain Ω ∈ RN with smooth boundary
∂Ω.

Here, α1 and α2 are the feed concentrations for u and v, respectively. The reactor is assumed
to be closed, thus a zero-flux boundary condition is imposed and ∂/∂n represents the outer
normal derivative. Moreover, α1, α2, β, γ are all positive constants. The term f (u)v represents
the reactive law of u and v, where f (u) is smooth and satisfies f (u) > 0 for u > 0.

The system (1.1) has a unique constant equilibrium U∗ = (u∗, v∗), where

u∗ =
α1 + α2

β
, v∗ =

α2

γ f (u∗)
.

The steady-state system corresponding to (1.1) is given by
−d1∆u = α1 − βu + γ f (u)v, x ∈ Ω,

−d2∆v = α2 − γ f (u)v, x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.

(1.2)

In this paper, we consider the following two cases simultaneously:

Case 1: f (u) > 0 and fu(u) < 0 for u > 0 or
Case 2: f (0) = 0 and fu(u) > 0 for u > 0.

For the classical type of Case 2, take f (u) = u2 for an example. Zhou (1985) [24] considered
the existence, uniqueness and stability of limit cycles for the spatially homogeneous system
corresponding to (1.1). When α1 = 0, Iron, Wei and Winter (2004) [4] showed that the stability
of symmetric N-peaked steady states to system (1.1) with Ω = (−1, 1), both analytically
and numerically. When f (u) = u2 and α1 > 0 or α1 < 0, Ruuth (1995) [14] performed
some experiments on system (1.1) by using finite differences (implicit-explicit schemes) and
pseudospectral methods in one and two dimensions. Madzvamuse, Wathen and Maini (2003)
[9] applied a novel moving grid finite element method to obtain the morphogenesis of system
(1.1) in two-dimensional continuously deforming Euclidean domains. Shakeri and Dehghan
(2011) [15] developed a hybrid finite volume spectral element method, and applied to system
(1.1) for the variety of spatio-temporal patterns. Recently, for the general Case 2, [17] discussed
the steady-state bifurcation both from the simple and double eigenvalues.

According to the requirement of the research, the Case 1 is not studied up to now. Besides,
the stability and non-existence of equilibrium of system (1.1) is also unknown for the general
Case 2. We will try to solve the two problems this paper.

The present paper is organized as follows. In Section 2 and 3, we briefly discuss the
stability of positive equilibrium for system (1.1) and the non-existence of non-constant positive
solution to system (1.2), respectively in Case 1: fu(u) < 0 for u > 0 and Case 2: f (0) = 0,
fu(u) > 0 for u > 0. Finally, we give a conclusion in Section 4.

2 Case 1: f (u) > 0 and fu(u) < 0 for u > 0

In this section, we mainly discuss the stability of positive equilibrium for system (1.1) and
the non-existence of non-constant positive solution to system (1.2), under the conditions that
f (u) > 0 and fu(u) < 0 for u > 0.
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2.1 The stability of positive equilibrium

Let Ω = (0, l) with some constant l > 0 this subsection. Consider the following eigenvalue
problem {

−∆φ = µu, x ∈ Ω,
∂φ
∂n = 0, x ∈ ∂Ω.

(2.1)

All the eigenvalues of problem (2.1) are µn, n = 0, 1, 2, . . . and the corresponding eigenfunction
are {φn}∞

0 , which construct the normal orthogonal basis of L2(Ω).
Let H2(Ω) = {u ∈ W2,p(Ω), ∂u

∂n = 0, x ∈ ∂Ω}, X = {(u, v) : u, v ∈ H2(Ω)}, Y = Lp(Ω)×
Lp(Ω). Then X is a Banach space, and Y is a Hilbert space. Define a mapping F : (0, ∞)×X →
Y by

F(U) =

(
d1∆u + α1 − βu + γ f (u)v

d2∆v + α2 − γ f (u)v

)
,

where U = (u, v).
At the positive constant solution U∗, the Fréchet derivative of F(U) with respect to U can

be characterized by

L =

 d1∆− β + α2 fu(u∗)
f (u∗) γ f (u∗)

− α2 fu(u∗)
f (u∗) d2∆− γ f (u∗)

 . (2.2)

The characteristic equation of L is L(ξ, η) = λ(ξ, η), where (ξ, η) ∈ X. That is to say, (ξ, η)

satisfies 
d1∆ξ + (−β + α2 fu(u∗)

f (u∗) )ξ + γ f (u∗)η = λξ, x ∈ Ω,

d2∆η − γ f (u∗)η − α2 fu(u∗)
f (u∗) ξ = λη, x ∈ Ω,

∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.

Let ξ = ∑∞
n=0 anφn, η = ∑∞

n=0 bnφn. Then the above characteristic equation translates into

∞

∑
n=0

Mn

(
an

bn

)
φn = 0,

where

Mn =

 −d1µn − β + α2 fu(u∗)
f (u∗) − λ γ f (u∗)

− α2 fu(u∗)
f (u∗) −d2µn − γ f (u∗)− λ

 . (2.3)

Letting |Mn| = 0, n = 0, 1, 2, . . . , we have

λ2 − Tnλ + Dn = 0, n = 0, 1, 2, . . . , (2.4)

where
Tn = −(d1 + d2)µn − β + α2 fu(u∗)

f (u∗) − γ f (u∗),

Dn = µn

[
d1d2µn + d2β− d2α2 fu(u∗)

f (u∗) + d1γ f (u∗)
]
+ γβ f (u∗).

(2.5)

Theorem 2.1. Suppose that f (u) > 0 and fu(u) < 0 for u > 0. Then the positive equilibrium U∗ is
asymptotically stable for system (1.1).

Proof. Note that f (u) > 0 and fu(u) < 0 for u > 0. Then for any n ≥ 0, we have

Dn ≥ γβ f (u∗) > 0 > −β +
α2 fu(u∗)

f (u∗)
− γ f (u∗) ≥ Tn.
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This implies that Eq. (2.9) have two different roots λ+
n , λ−n , with Re(λ+

n ) < 0 and Re(λ−n ) < 0.
The proof is completed.

Example A. Let d1 = 0.5, d2 = 0.6, α1 = 1.5, α2 = 5.5, β = 0.65 and γ = 3.75. If f (u) = 1/u,
then the unique constant equilibrium U∗ = (u∗, v∗) = (10.7692, 15.7949); if f (u) = 1/u2, then
U∗ = (10.7692, 170.0986). By Theorem 2.1, U∗ is asymptotically stable for system (1.1). See
Figure 2.1 and 2.2 for the numerical simulations.

Figure 2.1: Numerical simulation of stability of (u∗, v∗) = (10.7692, 15.7949):
f (u) = 1/u. Here, d1 = 0.5, d2 = 0.6, α1 = 1.5, α2 = 5.5, β = 0.65, γ = 3.75 and
the initial conditions (u0(x), v0(x)) = (10.7692+ 0.5 cos 4x, 15.7949+ 0.5 cos 4x).

Figure 2.2: Numerical simulation of stability of (u∗, v∗) = (10.7692, 170.0986):
f (u) = 1/u2. Here, d1 = 0.5, d2 = 0.6, α1 = 1.5, α2 = 5.5, β = 0.65, γ = 3.75
and the initial conditions (u0(x), v0(x)) = (10.7692 + 0.5 cos 4x, 170.0986 +

1.5 cos 4x).

2.2 The non-existence of non-constant positive equilibrium

The following lemma is useful to obtain the non-existence of non-constant positive solution to
system (1.2).

Lemma 2.2 ([11, Lemma 3.1]; [20,21, Lemma 2.1]). Suppose that F(x, w) ∈ C(Ω×R), qi ∈ C(Ω),
i = 1, 2, . . . , N. If w ∈ C2(Ω)× C1(Ω) satisfies

∆w(x) +
N

∑
i=1

qi(x)wxi(x) + F(x, w(x)) ≥ 0 in Ω,
∂w
∂n
≤ 0 on ∂Ω (2.6)

and w(x0) = maxΩ w. Then F(x0, w(x0)) ≥ 0. Similarly, if the two inequalities in Eq. (2.6) are
reversed and w(x0) = minΩ w, then F(x0, w(x0)) ≤ 0.
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Theorem 2.3. Suppose that f (u) > 0 and fu(u) < 0 for u > 0. Then U∗ is the unique positive
solution to system (1.2), that is, system (1.2) has no non-constant positive solutions.

Proof. Let (u(x), v(x)) be a positive solution to system (1.2). Take xi ∈ Ω (i = 1, 2, 3, 4) such
that

max
Ω

u(x) = u(x1), max
Ω

v(x) = v(x2),

min
Ω

u(x) = u(x3), min
Ω

v(x) = v(x4).

By Lemma 2.2, we have

α1 − βu(x1) + γ f (u(x1))v(x1) ≥ 0⇒ u(x1) ≤
α1 + γ f (u(x1))v(x1)

β
,

α2 − γ f (u(x2))v(x2) ≥ 0⇒ v(x2) ≤
α2

γ f (u(x2))
.

(2.7)

Note that f (u) > 0 and fu(u) < 0 for u > 0. From (2.7), we have

u(x1) ≤
α1 + γ f (u(x1))v(x1)

β
≤ α1 + γ f (u(x2))v(x2)

β
≤ α1 + α2

β
. (2.8)

By Lemma 2.2 again, we have

α1 − βu(x3) + γ f (u(x3))v(x3) ≥ 0⇒ u(x3) ≥
α1 + γ f (u(x3))v(x3)

β
,

α2 − γ f (u(x4))v(x4) ≥ 0⇒ v(x4) ≥
α2

γ f (u(x4))
.

Similarly, we have

u(x3) ≥
α1 + γ f (u(x3))v(x3)

β
≥ α1 + γ f (u(x4))v(x4)

β
≥ α1 + α2

β
. (2.9)

Inequations (2.8) and (2.9) imply u ≡ α1+α2
β = u∗ in Ω. Moreover, we also have v ≡ α2

γ f (u∗) . The
proof is completed.

3 Case 2: f (0) = 0 and fu(u) > 0 for u > 0

In this section, we mainly discuss the stability of positive equilibrium for system (1.1) and
the non-existence of non-constant positive solution to system (1.2), under the conditions that
f (0) = 0 and fu(u) > 0 for u > 0.

3.1 The stability of positive equilibrium

Let us consider the spatially homogeneous system corresponding to (1.1):
du
dt

= α1 − βu + γ f (u)v, t > 0,

dv
dt

= α2 − γ f (u)v, t > 0.
(3.1)

Theorem 3.1. Suppose that γ f (u∗) > α2 fu(u∗)
f (u∗) − β > 0. If there exist d∗1 , d∗2 > 0 such that d1 < d∗1

and d2 > d∗2 , then the positive equilibrium U∗ is asymptotically stable for system (3.1) and unstable
for system (1.1) with Ω = (0, l) as that in Subsection 2.1.
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Proof. Note that γ f (u∗) > α2 fu(u∗)
f (u∗) − β. Recall that

Tn = −(d1 + d2)µn +

[
α2 fu(u∗)

f (u∗)
− β− γ f (u∗)

]
,

Dn = µn

[
d1d2µn − d2

(
α2 fu(u∗)

f (u∗)
− β

)
+ d1γ f (u∗)

]
+ γβ f (u∗).

(3.2)

Since γ f (u∗) > α2 fu(u∗)
f (u∗) − β, similarly as the proof of Theorem 2.1, the positive equilibrium U∗

is asymptotically stable for system (3.1).
Since α2 fu(u∗)

f (u∗) − β > 0, there exists a d∗2 > 0 such that µ1d∗2
(

α2 fu(u∗)
f (u∗) − β

)
> γβ f (u∗). By

(3.2), for any d2 > d∗2 , we have

D1 = µ1

[
d1d2µ1 − d2

(
α2 fu(u∗)

f (u∗)
− β

)
+ d1γ f (u∗)

]
+ γβ f (u∗)

< µ1

[
d1d2µ1 − d∗2

(
α2 fu(u∗)

f (u∗)
− β

)
+ d1γ f (u∗)

]
+ γβ f (u∗)

Letting d1 → 0, we have

lim
d1→0

D1 ≤ γβ f (u∗)− µ1d∗2

(
α2 fu(u∗)

f (u∗)
− β

)
< 0.

Thus, there exists a d∗1 > 0 such that D1 < 0 for any d1 < d∗1 , d2 > d∗2 . This implies that M1,
and also the operator L has at least one positive eigenvalue, where M1 and L are defined by
(2.3) and (2.4). By Corollary 5.1.1 in [3], the positive equilibrium U∗ is asymptotically instable
for system (1.1). The proof is completed.

Remark 3.2. Note that Subesection 3.1 is subject to Case 2: f (u) > 0 and fu(u) > 0 for u > 0.
Thus the condition α2 fu(u∗)

f (u∗) − β > 0 in Theorem 3.1 may be tenable, and the instability is called
Turing instability or diffusion-driven instability.

Example B. If f (u) = u, letting α1 = 1, α2 = 5.5, β = 0.65 and γ = 0.05, then the unique
constant equilibrium U∗ = (u∗, v∗) = (10, 11) and γ f (u∗) = 0.5000 > 0 > α2 fu(u∗)

f (u∗) − β =

−0.1000. If f (u) = u2, letting α1 = 1, α2 = 5.5, β = 0.65 and γ = 0.005, then U∗ = (10, 11) and
γ f (u∗) = 0.5000 > α2 fu(u∗)

f (u∗) − β = 0.4500 > 0. By Theorem 3.1, U∗ is asymptotically stable for
system (3.1). See Figure 3.1 for the numerical simulations.
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Figure 3.1: Numerical simulation of stability of (u∗, v∗). Left: f (u) = u, α1 =

1, α2 = 5.5, β = 0.65, γ = 0.05 and (u∗, v∗) = (10, 11); Right: f (u) = u2, α1 =

1, α2 = 5.5, β = 0.65, γ = 0.005 and (u∗, v∗) = (10, 11).
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Theorem 3.3. Suppose that f (0)= 0 and fu(u) > 0 is continuous for u > 0 and set d1 = d2 = d > 0.
Then there exists a α∗2 > 0 such that the positive equilibrium U∗ is global asymptotically stable for
system (1.1) when 0 < α2 < α∗2 .

Proof. By the hypotheses, it follows from Theorem 8.3.3 in [12] that system (1.1) has a unique
globally defined solution (u(x, t), v(x, t)). It is well known that if a, b > 0 and z(t) > 0 satisfies
the equation

dz
dt

= a− bz, t > 0, w(0) = w0 > 0,

then z(t)→ a/b as t→ ∞.
Note that u(x, t) satisfies

ut − d1∆u = α1 − βu + γ f (u)v ≥ α1 − βu.

By the comparison principle for parabolic equations, there exists T1 > 0 and ε0 > 0 such that
u(x, t) ≥ u = α1/β + ε0 for any t > T1. Then v(x, t) satisfies

vt − d2∆v = α2 − γ f (u)v ≤ α2 − γ f (u)v.

And also, there exists a T2 > 0 such that v(x, t) ≤ v = α2
γ f (u) + ε0 for any t > T2.

Since d1 = d2 = d > 0 and let w = u + v, adding the two equations of (1.1), we have

wt − d∆w = α1 + α2 − βu ≤ α1 + α2 + βv− βw

for any t > T2. And also, there exists a T3 > 0 such that w(x, t) ≤ (α1 + α2 + βv)/β + ε0 for
any t > T3. Thus, u(x, t) ≤ u = (α1 + α2 + βv)/β + ε0 for any t > T3. Then v(x, t) satisfies

vt − d2∆v = α2 − γ f (u)v ≥ α2 − γ f (u)v.

And also, there exists a T4 > 0 such that v(x, t) ≥ v = α2
γ f (u) + ε0 for any t > T4. Take

T0 = max{T1, T2, T3, T4}. Then for t > T0, we have

u ≤ u(x, t) ≤ u, v ≤ v(x, t) ≤ v.

We could verify that (u, v) and (u, v) are a pair of coupled upper and lower solutions of system
(1.1) by the definition in [12, 23], and (α1 − βu + γ f (u)v, α2 − γ f (u)v) satisfies the Lipschitz
conditions.

Let c(0) = (u, v), c(0) = (u, v). Then we construct the iterative sequences of upper and
lower solutions {c(m)}, {c(m)}, where c̄(m) ≡

(
c(m)

1 , c(m)
2 ), c(m) ≡

(
c(m)

1 , c(m)
2 ), m = 1, 2, . . . ,

which satisfy 

c(m)
1 = c(m−1)

1 +
1
K

[
α1 − βc(m−1)

1 + γ f (c(m−1)
1 )c(m−1)

2

]
,

c(m)
2 = c(m−1)

2 +
1
K

[
α2 − γ f (c(m−1)

1 )c(m−1)
2

]
,

c(m)
1 = c(m−1)

1 +
1
K

[
α1 − βc(m−1)

1 + γ f (c(m−1)
1 )c(m−1)

2

]
,

c(m)
2 = c(m−1)

2 +
1
K

[
α2 − γ f (c(m−1)

1 )c(m−1)
2

]
,

and
(u, v) ≤ c(1) ≤ c(2) ≤ · · · ≤ c(m) ≤ · · · ≤ c̄(m) ≤ · · · ≤ c̄(2) ≤ c̄(1) ≤ (u, v).
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Here, K is the Lipschitz coefficients.
Let c = limm→∞ c(m) = (ũ, ṽ) and c = limm→∞ c(m) = (û, v̂). Then (u, v) ≤ (ũ, ṽ) ≤ (û, v̂) ≤

(u, v), satisfying
α1 − βû + γ f (û)v̂ = 0, α2 − γ f (ũ)v̂ = 0,

α1 − βũ + γ f (ũ)ṽ = 0, α2 − γ f (û)ṽ = 0.
(3.3)

From (3.3), we have

cα1 − βû + α2 f (û)/ f (ũ) = 0,

α1 − βũ + α2 f (ũ)/ f (û) = 0.
(3.4)

By subtracting the first equation of (3.4) form the second one, we have

β(û− ũ) + α2

[
f (ũ)
f (û)

− f (û)
f (ũ)

]
= 0

⇒β(û− ũ) +
α2

f (ũ) f (û)
[

f 2(ũ)− f 2(û)
]
= 0

⇒β(û− ũ) +
α2

f (ũ) f (û)
[ f (ũ) + f (û)] [ f (ũ)− f (û)] = 0

⇒β(û− ũ)− α2

f (ũ) f (û)
[ f (ũ) + f (û)] f ′(θ)(û− ũ) = 0

⇒(û− ũ){β− α2

f (ũ) f (û)
[ f (ũ) + f (û)] f ′(θ)} = 0.

(3.5)

Now let us determine the sign of the term β − α2
f (ũ) f (û) [ f (ũ) + f (û)] f ′(θ). Recall that

u = α1/β + ε0, v = α2
γ f (u) + ε0, u = (α1 + α2 + βv)/β + ε0 and u ≤ ũ ≤ û ≤ u. By the

monotonicity of f (u), we have

β− α2

f (ũ) f (û)
[ f (ũ) + f (û)] f ′(θ) = β− α2

[
f ′(θ)
f (û)

+
f ′(θ)
f (ũ)

]
> β− 2α2 f ′(θ)

f (ũ)
.

Note that u is independent of α2. We obtain that v = α2
γ f (u) + ε0 → ε0 as α2 → 0, and then

u = (α1 + α2 + βv)/β + ε0 → (α1 + βε0)/β + ε0 as α2 → 0. Since u ≤ ũ, θ ≤ u, it is obviously
that f (ũ)(> 0) is bounded for small α2 > 0. Note that fu(u)(> 0) is continuous for u > 0.
Accordingly, there exists a α∗2 > 0 such that, β − 2α2 f ′(θ)

f (ũ) > 0 if α2 < α∗2 . This yields that
β− α2

f (ũ) f (û) [ f (ũ) + f (û)] f ′(θ) > 0 if α2 < α∗2 .
It follows from (3.5) that û = ũ if α2 < α∗2 , and then v̂ = ṽ from (3.3). That is, û = ũ =

α1+α2
β = u∗, v̂ = ṽ = α2

γ f (u∗) = v∗. By Theorem 2.2 of [13], the solution (u(x, t), v(x, t)) to
system (1.1) satisfies

lim
t→∞

u(x, t) = u∗, lim
t→∞

v(x, t) = v∗, uniformly on Ω.

Thus, we obtain that the positive equilibrium U∗ = (u∗, v∗) is global asymptotically stable for
system (1.1) when α2 < α∗2 . The proof is completed.

3.2 The non-existence of non-constant positive equilibrium

By Lemma 2.2, Wu, Ma and Guo (2013) [17] have given the following boundedness of positive
solution to system (1.2).
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Lemma 3.4 ([17, Lemma 1.2]). Suppose that (u(x), v(x)) is a positive solution to system (1.2), then

α1

β
≤ u(x) ≤ M̃,

α2

γ f (M̃)
≤ v(x) ≤ α2

γ f (α1/β)
,

where M̃ = 1
β

(
α1 + α2 +

d2α2β
d1γ f (α1/β)

)
.

By Lemma 3.4, we will arrive at the following corollary easily and omit the proof.

Corollary 3.5. Suppose that (u(x), v(x)) is a positive solution to system (1.2) and take two constants
D1, D2 > 0 fixed. Then there exist two constants C1, C2 > 0 such that for any d1 ≥ D1, d2 ≤ D2,
(u(x), v(x)) satisfies

C1 ≤ u(x), v(x) ≤ C2, x ∈ Ω,

where C1 = C1(α1, α2, β, γ, D1, D2), C2 = C2(α1, α2, β, γ, D1, D2).

Proposition 3.6. Take D = D(α1, α2, β, γ, d2) > 0 fixed and suppose {d1i}∞
i=1 ⊂ (0, ∞) such that

d1i > D, d1i → ∞ as i → ∞, and (ui(x), vi(x)) is a positive solution to system (1.2) with d1 = d1i,
then

(ui(x), vi(x))→ (u∗, v∗),

in C2(Ω)× C2(Ω) as i→ ∞.

Proof. If (ui(x), vi(x)) is a positive solution to system (1.2) with d1 = d1i, then integrating and
adding the equations in (1.2), we have

1
|Ω|

∫
Ω

ui(x)dx =
α1 + α2

β
= u∗. (3.6)

By Corollary 3.5, we know the sequence {(ui(x), vi(x))} is bounded in L∞(Ω)× L∞(Ω).
By the Lp estimation and the Sobolev imbedding theorems, {(ui(x), vi(x))} converges to some
(u, v) in C2(Ω)× C2(Ω) as i→ ∞. Thus, (u, v) satisfies

−∆u = 0, x ∈ Ω,

−d2∆v = α2 − γ f (u)v, x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.

(3.7)

The first equation in (3.7) implies that u is a constant. Also u satisfies (3.6), which yields
u ≡ α1+α2

β = u∗. Moreover, v satisfies

− d2∆v = α2 − γ f (u∗)v, x ∈ Ω,
∂v
∂n

= 0, x ∈ ∂Ω. (3.8)

Multiplying (3.8) by α2 − γ f (u∗)v and integrating over Ω, we have

0 ≤ γ f (u∗)
∫

Ω
|∇v|2dx ≤

∫
Ω
[α2 − γ f (u∗)]2dx ≤ 0,

which yields v ≡ α2
γ f (u∗) = v∗. The proof is completed.

Theorem 3.7. There exists a D = D(α1, α2, β, γ, d2) > 0 such that system (1.2) has no non-constant
positive solution for any d1 > D.
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Proof. Define the function space L2
0(Ω) = {u ∈ L2(Ω) :

∫
Ω u(x)dx = 0}. Let w = u − u∗,

where u∗ = α1+α2
β . It is easy to see that w ∈ H2(Ω)

⋂
L2

0(Ω) and system (1.2) is equivalent to{
−∆w = δ[α1 − β(w + u∗) + γ f (w + u∗)v], x ∈ Ω,

−d2∆v = α2 − γ f (u)v, x ∈ Ω,
(3.9)

where δ = 1/d1, w ∈ H2(Ω)
⋂

L2
0(Ω) and v ∈ H2(Ω). Define a projection P : L2(Ω) → L2

0(Ω)

by

P(u) = u− 1
|Ω|

∫
Ω

u(x)dx, u ∈ L2(Ω).

We can derive that system (3.9) is is equivalent to(
∆w + δP(α1 − β(w + u∗) + γ f (w + u∗)v)

d2∆v + α2 − γ f (w + u∗)v

)
.
= F̃(δ, w, v) = 0.

Similarly as the proof of Proposition 3.6, it follows that F̃(0, w, v) = 0 has a unique silu-
tion (w, v) = (0, v∗), where v∗ = α2

γ f (u∗) . At (δ, w, v) = (0, (0, v∗)), the Fréchet derivative of

F̃(δ, w, v) with respect to (w, v) can be characterized by

F̃(w,v)(0, (0, v∗)) =

(
∆ 0

− α2 fu(u∗)
f (u∗) d2∆− γ f (u∗)

)
.

Therefore, F̃(w,v)(0, (0, v∗)) is invertible form (H2(Ω)
⋂

L2
0(Ω))×H2(Ω) to L2

0(Ω)× L2(Ω) and
the implicit function theorem establishes. So there exists a r > 0 such that (0, (0, v∗)) is a
unique solution of F̃(δ, w, v) = 0 in Br(0, (0, v∗)).

To do this, we proceed with a contradiction argument and assume that there exist d1i > D
and d1i → ∞ such that system (1.2) has a non-constant positive solution (ui(x), vi(x)) with
d1 = d1i. Let wi(x) = ui(x)− u∗ and δi = 1/d1i. Then F̃(δi, (wi, vi)) = 0.

By Proposition 3.6, it follows that (wi, vi)→ (0, v∗) in C2(Ω)×C2(Ω) as i→ ∞. Thus, there
exists some i0 ≥ 1 such that (δi, (wi, vi)) ∈ Br(0, (0, v∗)) when i > i0. This is a contradiction,
which completes the proof.

4 Conclusion

In this paper, the stability of positive equilibrium and the non-existence of non-constant posi-
tive solution are investigated under the Neumann boundary conditions. The local and global
stability of the positive equilibrium is obtained by analyzing the characteristic equations and
the upper and lower solution method. By the maximal principle and the implicit function
theorem, the non-existence of non-constant positive solution are derived.
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