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Abstract

The even order neutral differential equation

(1.1)
dn

dtn
[x(t) + λx(t − τ)] + f(t, x(g(t))) = 0

is considered under the following conditions: n ≥ 2 is even; λ > 0; τ > 0;
g ∈ C[t0,∞), limt→∞ g(t) = ∞; f ∈ C([t0,∞) × R), uf(t, u) ≥ 0 for
(t, u) ∈ [t0,∞)×R, and f(t, u) is nondecreasing in u ∈ R for each fixed
t ≥ t0. It is shown that equation (1.1) is oscillatory if and only if the
non-neutral differential equation

x(n)(t) +
1

1 + λ
f(t, x(g(t))) = 0

is oscillatory.

Keywords: Oscillation, Neutral differential equation.
AMS Subject Classification: 34K11, 34K40.

1. Introduction and main results

We shall be concerned with the oscillatory behavior of solutions of the
even order neutral differential equation

dn

dtn
[x(t) + λx(t − τ)] + f(t, x(g(t))) = 0.(1.1)
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Throughout this paper, the following conditions are assumed to hold: n ≥ 2
is even; λ > 0; τ > 0; g ∈ C[t0,∞), limt→∞ g(t) = ∞; f ∈ C([t0,∞) × R),
uf(t, u) ≥ 0 for (t, u) ∈ [t0,∞) × R, and f(t, u) is nondecreasing in u ∈ R
for each fixed t ≥ t0.

By a solution of (1.1), we mean a function x(t) that is continuous and
satisfies (1.1) on [tx,∞) for some tx ≥ t0. Therefore, if x(t) is a solution of
(1.1), then x(t) + λx(t− τ) is n-times continuously differentiable on [tx,∞).
Note that, in general, x(t) itself is not continuously differentiable.

A solution is said to be oscillatory if it has arbitrarily large zeros; oth-
erwise it is said to be nonoscillatory. This means that a solution x(t) is
oscillatory if and only if there is a sequence {ti}

∞
i=1 such that ti → ∞ as

i → ∞ and x(ti) = 0 (i = 1, 2, . . .), and a solution x(t) is nonoscillatory if
and only if x(t) is eventually positive or eventually negative. Equation (1.1)
is said to be oscillatory if every solution of (1.1) is oscillatory.

There has been considerable investigation of the oscillations of even order
neutral differential equations. For typical results we refer to the papers [1,
2, 4–8, 11, 12, 16, 18, 19, 21–25] and the monographs [3] and [9]. Neutral
differential equations find numerous applications in natural science and tech-
nology. For instance, they are frequently used for the study of distributed
networks containing lossless transmission lines. See Hale [10].

Now consider the linear equation

dn

dtn
[x(t) + λx(t − τ)] + p(t)x(t − σ) = 0(1.2)

and the nonlinear equation

dn

dtn
[x(t) + λx(t − τ)] + p(t)|x(t − σ)|γ sgn x(t − σ) = 0.(1.3)

Here and hereafter we assume that σ ∈ R, γ > 0, γ 6= 1, p ∈ C[t0,∞),
p(t) > 0 for t ≥ t0.

For the case 0 < λ < 1, Jaroš and Kusano [11, Theorems 3.1 and 4.1]
proved that equation (1.2) is oscillatory if

∫ ∞

tn−1−εp(t)dt = ∞ for some ε > 0,(1.4)

and that equation (1.2) has a nonoscillatory solution if
∫ ∞

tn−1p(t)dt < ∞.(1.5)

EJQTDE, 2000 No. 4, p. 2



There is a difference between (1.4) and (1.5). Indeed, the case p(t) = c t−n

(c > 0) is an example such that both conditions (1.4) and (1.5) fail.
In particular, Y. Naito [19, Theorems 5.3 and 5.4] characterized the os-

cillation of equation (1.3) with 0 < λ < 1 as follows: equation (1.3) with
0 < λ < 1 is oscillatory if and only if

∫ ∞

tmin{γ,1}(n−1)p(t)dt = ∞.(1.6)

For the case λ ≥ 1, it is known that if (1.5) holds, then equation (1.2)
has a nonoscillatory solution, and that if

∫ ∞

tmin{γ,1}(n−1)p(t)dt < ∞,(1.7)

then equation (1.3) has a nonoscillatory solution. See, M. Naito [18] (λ = 1),
Chen [1] (λ > 1), and also [21]. In the case λ ≥ 1, sufficient conditions for
(1.2) or (1.3) to be oscillatory were established in [4], [5], [7] and [8], under
the condition ∫ ∞

p(t)dt = ∞.

Recently, it has been obtained in [22] that if

∫ ∞

tn−1−ε min{p(t), p(t − τ)}dt = ∞ for some ε > 0,(1.8)

then equation (1.2) with λ ≥ 1 is oscillatory, and that if

∫ ∞

tmin{γ,1}(n−1) min{p(t), p(t − τ)}dt = ∞,(1.9)

then equation (1.3) with λ ≥ 1 is oscillatory. However, as compared with
the case 0 < λ < 1, there are gaps between conditions (1.5) and (1.8), and
between conditions (1.7) and (1.9).

In this paper we have the following oscillation theorem, which is able to
narrow the above difference and gaps.

Theorem 1.1. Equation (1.1) is oscillatory if and only if

x(n)(t) +
1

1 + λ
f(t, x(g(t))) = 0(1.10)

is oscillatory.
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The oscillatory behavior of solutions of non-neutral differential equations
of the form

x(n)(t) + f(t, x(g(t))) = 0

has been intensively studied in the last three decades. We refer the reader
to [9, 14, 15, 17, 20] and the references cited therein. In Section 2, using the
known oscillation results for the equations

x(n)(t) + p(t)x(t − σ) = 0(1.11)

and

x(n)(t) + p(t)|x(t − σ)|γ sgn x(t − σ) = 0,(1.12)

we prove the following corollaries of Theorem 1.1.

Corollary 1.1. (i) Equation (1.2) is oscillatory if

∫ ∞

tn−2p(t)dt = ∞.(1.13)

(ii) Suppose that (1.13) fails. Equation (1.2) is oscillatory if

lim sup
t→∞

t
∫ ∞

t
sn−2p(s)ds > (1 + λ)(n − 1)!,(1.14)

or if

lim inf
t→∞

t
∫ ∞

t
sn−2p(s)ds > (1 + λ)(n − 1)!/4.(1.15)

Equation (1.2) has a nonoscillatory solution if

lim sup
t→∞

t
∫ ∞

t
sn−2p(s)ds < (1 + λ)(n − 2)!/4.(1.16)

Corollary 1.2. Equation (1.2) is oscillatory if (1.4) holds. Equation (1.2)
has a nonoscillatory solution if (1.5) holds.

Corollary 1.3. Equation (1.3) is oscillatory if and only if (1.6) holds.

It is possible to obtain oscillation results for equations of the form (1.1).
However, for simplicity, we have restricted our attention to equations (1.2)
and (1.3).

We give an example illustrating Corollary 1.1.
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Example 1.1. We consider the linear neutral differential equation

dn

dtn
[x(t) + λx(t − τ)] + c tαx(t − σ) = 0,(1.17)

where c > 0, α ∈ R. Applying Corollary 1.1, we conclude that: equation
(1.17) is oscillatory if either α = −n and c > (1 + λ)(n − 1)!/4 or α > −n;
equation (1.17) has a nonoscillatory solution if either α = −n and c <
(1 + λ)(n − 2)!/4 or α < −n.

Let us consider the equation

dn

dtn
[x(t) + λx(t − τ)] + f(t, x(g(t))) = 0,(1.18)

where λ > 0, τ > 0, g ∈ C[t0,∞), limt→∞ g(t) = ∞, f ∈ C([t0,∞) × R),
uf(t, u) ≥ 0 for (t, u) ∈ [t0,∞) × R.

From Theorem 1.1, we obtain the following comparison result.

Corollary 1.4. Suppose that λ ≤ λ, g(t) ≥ g(t) for t ≥ t0, and |f(t, u)| ≥
|f(t, u)| for (t, u) ∈ [t0,∞)×R. If (1.1) is oscillatory, then (1.18) is oscilla-

tory.

The proof of Corollary 1.4 is deferred to the next section.
In Section 3 we investigate the relation between functions u(t) and u(t)+

λu(t − τ). We show the “if” part and the “only if” part of Theorem 1.1 in
Sections 4 and 5, respectively.

Such an approach as Theorem 1.1 has been conducted by Tang and Shen
[23], and Zhang and Yang [25] for odd order neutral differential equations.

2. Proofs of Corollaries 1.1–1.4

In this section we prove Corollaries 1.1–1.4. It is known that equation
(1.12) is oscillatory if and only if (1.6) holds. See, for example, Kitamura
[14, Corollary 3.1]. Hence, Corollary 1.3 follows from Theorem 1.1.

The following oscillation result for equation (1.11) have been established
by M. Naito [17, Theorems 2 and 4] and Kusano [15, Theorems 3 and 4].

Lemma 2.1. (i) Equation (1.11) is oscillatory if (1.13) holds.

(ii) Suppose that (1.13) fails. Equation (1.11) is oscillatory if

lim sup
t→∞

t
∫ ∞

t
sn−2p(s)ds > (n − 1)!,
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or if

lim inf
t→∞

t
∫ ∞

t
sn−2p(s)ds > (n − 1)!/4.

Equation (1.11) has a nonoscillatory solution if

lim sup
t→∞

t
∫ ∞

t
sn−2p(s)ds < (n − 2)!/4.

Combining Theorem 1.1 with Lemma 2.1, we obtain Corollary 1.1.
Now let us show that Corollary 1.1 implies Corollary 1.2.
Suppose that (1.4) holds. From the result of Kitamura [14, Corollary 5.1]

it follows that the equation

x(n)(t) + µp(t)x(t − σ) = 0(2.1)

is oscillatory for all constant µ > 0. M. Naito [17, Theorem 5] and Kusano
[15, Theorem 2] have shown that equation (2.1) is oscillatory for all µ > 0 if
and only if either (1.13) holds or

lim sup
t→∞

t
∫ ∞

t
sn−2p(s)ds = ∞.

This means that if (1.4) holds, then either (1.13) or (1.14) is satisfied, and
so equation (1.2) is oscillatory.

Suppose next that (1.5) holds. Then

0 ≤ lim
t→∞

t
∫ ∞

t
sn−2p(s)ds ≤ lim

t→∞

∫ ∞

t
sn−1p(s)ds = 0.

Consequently, if (1.5) holds, then (1.16) is saisfied, and so (1.2) has a nonoscil-
latory solution.

To prove Corollary 1.4, we need the following result which has been ob-
tained by Onose [20].

Lemma 2.2. If the differential inequality

x(n)(t) + f(t, x(g(t))) ≤ 0

has an eventually positive solution, then the differential equation

x(n)(t) + f(t, x(g(t))) = 0
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has an eventually positive solution.

Proof of Corollary 1.4. Assume that (1.15) has a nonoscillatory solu-
tion. Then Theorem 1.1 implies that

x(n)(t) +
1

1 + λ
f(t, x(g(t))) = 0

has a nonoscillatory solution x(t). Without loss of generality, we may assume
that x(t) > 0 for all large t. For the case where x(t) < 0 for all large t,
y(t) ≡ −x(t) is an eventually positive solution of

y(n)(t) +
1

1 + λ
f̃(t, y(g(t))) = 0,

where f̃(t, u) = −f(t,−u), and hence the case x(t) < 0 can be treated simi-
larly. From Lemma 4.1 below it follows that x(t) is eventually nondecreasing.
In view of the hypothesis of Corollary 1.4, we see that x(g(t)) ≥ x(g(t)) for
all large t ≥ t0, and

−x(n)(t) ≥
1

1 + λ
f(t, x(g(t))) ≥

1

1 + λ
f(t, x(g(t)))

for all large t ≥ t0. By Lemma 2.2 and Theorem 1.1, equation (1.1) has a
nonoscillatory solution. This completes the proof.

3. Relation between u(t) and u(t) + λu(t − τ)

In this section we study the relation between functions u(t) and u(t) +
λu(t − τ).

We use the notation:

(∆u)(t) = u(t) + λu(t − τ).

Lemma 3.1. Let λ 6= 1 and l ∈ N∪{0}. Suppose that u ∈ C[T−τ,∞), ∆u ∈
C1[T,∞), (∆u)(t) ≥ 0, (∆u)′(t) ≥ 0 for t ≥ T , and limt→∞(∆u)′(t)/tl = 0.
For the case λ > 1, assume moreover that limt→∞ λ−t/τu(t) = 0. Then

u(t) =
1

1 + λ
(∆u)(t) + o(tl) (t → ∞).

We divide the proof of Lemma 3.1 into the two cases 0 < λ < 1 and
λ > 1.
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Proof of Lemma 3.1 for the case 0 < λ < 1. Let λ ∈ (0, 1). We see
that

u(t) = (∆u)(t) − λu(t − τ), t ≥ T,

so that

u(t)= (∆u)(t) − λ[(∆u)(t − τ) − λu(t − 2τ)]

= (∆u)(t) − λ(∆u)(t − τ) + λ2u(t − 2τ), t ≥ T + τ,

and

u(t)= (∆u)(t) − λ(∆u)(t − τ) + λ2[(∆u)(t − 2τ) − λu(t − 3τ)]

= (∆u)(t) − λ(∆u)(t − τ) + λ2(∆u)(t − 2τ) − λ3u(t − 3τ)

for t ≥ T + 2τ . We have

u(t) =
m∑

i=0

(−λ)i(∆u)(t − iτ) + (−λ)m+1u(t − (m + 1)τ)(3.1)

for t ≥ T + mτ , m = 0, 1, 2, . . . . Observe that
m∑

i=0

(−λ)i(∆u)(t − iτ) =
m∑

i=0

(−λ)i
[
(∆u)(t) −

∫ t

t−iτ
(∆u)′(s)ds

]
(3.2)

=
1 − (−λ)m+1

1 + λ
(∆u)(t)

−
m∑

i=1

(−λ)i
∫ t

t−iτ
(∆u)′(s)ds

for t ≥ T + mτ , m = 1, 2, . . . . If t ∈ [T + mτ, T + (m + 1)τ ], m = 1, 2, . . .,
then (t − T )τ−1 − 1 ≤ m ≤ (t − T )τ−1. Hence we have

|u(t − (m + 1)τ)| ≤ max
s∈[T+mτ,T+(m+1)τ ]

|u(s − (m + 1)τ)|(3.3)

= max
s∈[T−τ,T ]

|u(s)|

and
|(−λ)m+1| ≤ λm+1 ≤ λ(t−T )τ−1−1+1 = λ(t−T )/τ(3.4)

for t ∈ [T +mτ, T +(m+1)τ ], m = 1, 2, . . . . Combining (3.1) with (3.2)–(3.4),
we obtain

∣∣∣∣∣u(t) −
(∆u)(t)

1 + λ

∣∣∣∣∣ ≤
λ(t−T )/τ

1 + λ
(∆u)(t) +

m∑

i=1

λi
∫ t

t−iτ
(∆u)′(s)ds(3.5)

+λ(t−T )/τ max
s∈[T−τ,T ]

|u(s)|
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for t ∈ [T + mτ, T + (m + 1)τ ], m = 1, 2, . . . . We find that

m∑

i=1

λi
∫ t

t−iτ
(∆u)′(s)ds=

m∑

i=1

λi
i∑

j=1

∫ t−(j−1)τ

t−jτ
(∆u)′(s)ds(3.6)

=
m∑

j=1

m∑

i=j

λi
∫ t−(j−1)τ

t−jτ
(∆u)′(s)ds

=
m∑

j=1

λj − λm+1

1 − λ

∫ t−(j−1)τ

t−jτ
(∆u)′(s)ds

≤
1

1 − λ

m∑

j=1

λj
∫ t−(j−1)τ

t−jτ
(∆u)′(s)ds

for t ∈ [T+mτ, T+(m+1)τ ], m = 1, 2, . . . . Since (t−s)τ−1 ≤ j ≤ (t−s)τ−1+1
for s ∈ [t − jτ, t − (j − 1)τ ], we have

m∑

j=1

λj
∫ t−(j−1)τ

t−jτ
(∆u)′(s)ds≤

m∑

j=1

∫ t−(j−1)τ

t−jτ
λ(t−s)/τ (∆u)′(s)ds(3.7)

= λt/τ
∫ t

t−mτ
λ−s/τ(∆u)′(s)ds

≤ λt/τ
∫ t

T
λ−s/τ (∆u)′(s)ds

for t ∈ [T + mτ, T + (m + 1)τ ], m = 1, 2, . . . . From (3.5)–(3.7) it follows that
∣∣∣∣∣u(t) −

(∆u)(t)

1 + λ

∣∣∣∣∣ ≤
λ(t−T )/τ

1 + λ
(∆u)(t) +

λt/τ

1 − λ

∫ t

T
λ−s/τ (∆u)′(s)ds(3.8)

+λ(t−T )/τ max
s∈[T−τ,T ]

|u(s)|

for t ≥ T + τ . It can be shown that

λt/τ
∫ t

T
λ−s/τ(∆u)′(s)ds = o(tl) (t → ∞).(3.9)

Indeed,

lim
t→∞

∫ t
T λ−s/τ (∆u)′(s)ds

λ−t/τ tl
= lim

t→∞

d
dt

∫ t
T λ−s/τ (∆u)′(s)ds

d
dt

[λ−t/τ tl]

= lim
t→∞

(∆u)′(t)

[log λ−1/τ + lt−1]tl
= 0.
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By limt→∞(∆u)′(t)/tl = 0, we see that limt→∞ λ(t−T )/τ (∆u)(t) = 0. Conse-
quently, the conclusion follows from (3.8) and (3.9).

Proof of Lemma 3.1 for the case λ > 1. Assume that λ > 1, and
that limt→∞ λ−t/τu(t) = 0. Let t ≥ T be fixed. Since

u(t) = λ−1(∆u)(t + τ) − λ−1u(t + τ),

we find that

u(t) = λ−1(∆u)(t + τ) − λ−1[λ−1(∆u)(t + 2τ) − λ−1u(t + 2τ)]

= λ−1(∆u)(t + τ) − λ−2(∆u)(t + 2τ) + λ−2u(t + 2τ)

= λ−1(∆u)(t + τ) − λ−2(∆u)(t + 2τ)

+λ−2[λ−1(∆u)(t + 3τ) − λ−1u(t + 3τ)]

= λ−1(∆u)(t + τ) − λ−2(∆u)(t + 2τ) + λ−3(∆u)(t + 3τ)

−λ−3u(t + 3τ),

so that

u(t) = −
m∑

i=1

(−λ)−i(∆u)(t + iτ) + (−λ)−mu(t + mτ), m ∈ N.(3.10)

We have

m∑

i=1

(−λ)−i(∆u)(t + iτ) =
m∑

i=1

(−λ)−i
[
(∆u)(t) +

∫ t+iτ

t
(∆u)′(s)ds

]
(3.11)

=
−1 + (−λ)−m

1 + λ
(∆u)(t)

+
m∑

i=1

(−λ)−i
∫ t+iτ

t
(∆u)′(s)ds,

and
∣∣∣∣∣

m∑

i=1

(−λ)−i
∫ t+iτ

t
(∆u)′(s)ds

∣∣∣∣∣ ≤
m∑

i=1

λ−i
∫ t+iτ

t
(∆u)′(s)ds(3.12)

=
m∑

i=1

λ−i
i∑

j=1

∫ t+jτ

t+(j−1)τ
(∆u)′(s)ds

=
m∑

j=1

m∑

i=j

λ−i
∫ t+jτ

t+(j−1)τ
(∆u)′(s)ds
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=
m∑

j=1

λ−j+1 − λ−m

λ − 1

∫ t+jτ

t+(j−1)τ
(∆u)′(s)ds

≤
λ

λ − 1

m∑

j=1

λ−j
∫ t+jτ

t+(j−1)τ
(∆u)′(s)ds

for m ∈ N. If s ∈ [t + (j − 1)τ, t + jτ ], then (s− t)τ−1 ≤ j ≤ (s − t)τ−1 + 1.
Thus we obtain

m∑

j=1

λ−j
∫ t+jτ

t+(j−1)τ
(∆u)′(s)ds ≤

m∑

j=1

∫ t+jτ

t+(j−1)τ
λ−(s−t)/τ (∆u)′(s)ds(3.13)

= λt/τ
∫ t+mτ

t
λ−s/τ (∆u)′(s)ds

≤ λt/τ
∫ ∞

t
λ−s/τ (∆u)′(s)ds

for m ∈ N. We note here that λ−t/τ (∆u)′(t) is integrable on [T,∞), because
of limt→∞(∆u)′(t)/tl = 0. Put

A(t) =
λ

λ − 1
λt/τ

∫ ∞

t
λ−s/τ (∆u)′(s)ds.

From (3.10)–(3.13) it follows that

∣∣∣∣∣u(t) −
(∆u)(t)

1 + λ

∣∣∣∣∣ ≤
λ−m

1 + λ
(∆u)(t) + A(t) + λ−m|u(t + mτ)|(3.14)

for m ∈ N. By limt→∞ λ−t/τu(t) = 0, we find that

lim
m→∞

λ−m|u(t + mτ)| = lim
m→∞

λt/τλ−(t+mτ)/τ |u(t + mτ)|

= λt/τ lim
s→∞

λ−s/τ |u(s)| = 0.

Therefore, letting m → ∞ in (3.14), we see that

∣∣∣∣u(t) −
1

1 + λ
(∆u)(t)

∣∣∣∣ ≤ A(t)

for each fixed t ≥ T . In a similar fashion as in the proof of Lemma 3.1 for
the case 0 < λ < 1, we conclude that A(t) = o(tl) (t → ∞). This completes
the proof.
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For the case λ = 1, we have the following results.

Lemma 3.2. Let λ = 1. Suppose that u ∈ C[T − τ,∞), u(t) > 0 for

t ≥ T − τ . If (∆u)(t) is nondecreasing and concave on [T,∞), then there

exists a constant α such that

0 <
1

2
(∆u)(t) − α ≤ u(t) ≤

1

2
(∆u)(t) +

1

2
(∆u)(T + 2τ), t ≥ T + 2τ.

Lemma 3.3. Let λ = 1. Suppose that u ∈ C[T − τ,∞), u(t) > 0 for

t ≥ T − τ . If (∆u)(t) is nondecreasing and convex on [T,∞), then there

exists a constant α such that

0 <
1

2
(∆u)(t) − α ≤ u(t) ≤

1

2
(∆u)(t + τ) +

1

2
(∆u)(T + 2τ), t ≥ T + 2τ.

Proof of Lemma 3.2. Since (∆u)(t) is concave, we find that

1

2
(∆u)(t + τ) +

1

2
(∆u)(t − τ) ≤ (∆u)

(
t + τ

2
+

t − τ

2

)
= (∆u)(t)

for t ≥ T + τ , so that

(∆u)(t) − (∆u)(t − τ) ≥
[
1

2
(∆u)(t + τ) +

1

2
(∆u)(t − τ)

]
(3.15)

−(∆u)(t − τ)

=
1

2
[(∆u)(t + τ) − (∆u)(t − τ)]

for t ≥ T + τ , and

(∆u)(t) − (∆u)(t − τ) ≤ (∆u)(t)(3.16)

−
[
1

2
(∆u)(t) +

1

2
(∆u)(t − 2τ)

]

=
1

2
[(∆u)(t) − (∆u)(t − 2τ)]

for t ≥ T + 2τ . Observe that

u(t) − u(t − 2τ) = u(t) + u(t − τ) − [u(t − τ) + u(t − 2τ)](3.17)

= (∆u)(t) − (∆u)(t − τ), t ≥ T + τ.

Combining (3.15) and (3.16) with (3.17), we have

u(t) − u(t − 2τ) ≥
1

2
[(∆u)(t + τ) − (∆u)(t − τ)], t ≥ T + τ,
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and

u(t) − u(t − 2τ) ≤
1

2
[(∆u)(t) − (∆u)(t − 2τ)], t ≥ T + 2τ.

If t ∈ [T + (2m − 1)τ, T + (2m + 1)τ ], m = 1, 2, . . ., then

u(t) ≥
1

2
[(∆u)(t + τ) − (∆u)(t − τ)] + u(t − 2τ)

≥
1

2
[(∆u)(t + τ) − (∆u)(t − τ)] +

1

2
[(∆u)(t − τ) − (∆u)(t − 3τ)]

+ u(t − 4τ)

=
1

2
[(∆u)(t + τ) − (∆u)(t − 3τ)] + u(t − 4τ)

...

≥
1

2
[(∆u)(t + τ) − (∆u)(t − (2m − 1)τ)] + u(t − 2mτ),

and

u(t) ≥
1

2
[(∆u)(t) − (∆u)(T + 2τ)] + min

T−τ≤s≤T+τ
u(s),

since (∆u)(t) is nondecreasing. In the same way, we see that

u(t) ≤
1

2
[(∆u)(t) − (∆u)(t − 2mτ)] + u(t − 2mτ)

≤
1

2
[(∆u)(t) − (∆u)(t − 2mτ)] + (∆u)(t − 2mτ)

=
1

2
[(∆u)(t) + (∆u)(t − 2mτ)]

≤
1

2
[(∆u)(t) + (∆u)(T + 2τ)]

for t ∈ [T + 2mτ, T + 2(m + 1)τ ], m = 1, 2, . . .. Put

α =
1

2
(∆u)(T + 2τ) − min

T−τ≤s≤T+τ
u(s).

We have

u(t) ≥
1

2
(∆u)(t) − α, t ≥ T + τ.

If t ≥ T + 2τ , then

1

2
(∆u)(t) − α ≥

1

2
(∆u)(T + 2τ) − α = min

T−τ≤s≤T+τ
u(s) > 0.
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This completes the proof.

Proof of Lemma 3.3. We see that

1

2
(∆u)(t + τ) +

1

2
(∆u)(t − τ) ≥ (∆u)

(
t + τ

2
+

t − τ

2

)
= (∆u)(t)

for t ≥ T + τ . By using (3.17) and the same arguments as in the proof of
Lemma 3.2, we conclude that

u(t) − u(t − 2τ) ≥
1

2
[(∆u)(t) − (∆u)(t − 2τ)], t ≥ T + 2τ

and

u(t) − u(t − 2τ) ≤
1

2
[(∆u)(t + τ) − (∆u)(t − τ)], t ≥ T + τ,

and we have

u(t) ≥
1

2
[(∆u)(t) − (∆u)(t − 2mτ)] + u(t − 2mτ)

for t ∈ [T + 2mτ, T + 2(m + 1)τ ], m = 1, 2, . . ., and

u(t) ≤
1

2
[(∆u)(t + τ) − (∆u)(t − (2m − 1)τ)] + u(t − 2mτ)

≤
1

2
[(∆u)(t + τ) − (∆u)(t − (2m − 1)τ)] + (∆u)(t − (2m − 1)τ)

=
1

2
[(∆u)(t + τ) + (∆u)(t − (2m − 1)τ)]

for t ∈ [T + (2m − 1)τ, T + (2m + 1)τ ], m = 1, 2, . . . . In view of the nonde-
creasing nature of (∆u)(t), we obtain

u(t) ≥
1

2
(∆u)(t) −

1

2
(∆u)(T + 2τ) + min

T≤s≤T+2τ
u(s)

≡
1

2
(∆u)(t) − α, t ≥ T + 2τ

and

u(t) ≤
1

2
[(∆u)(t + τ) + (∆u)(T + 2τ)], t ≥ T + τ.

It is easy to see that

u(t) ≥
1

2
(∆u)(T + 2τ) − α = min

T≤s≤T+2τ
u(s) > 0, t ≥ T + 2τ.
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The proof is complete.

From Lemmas 3.2 and 3.3, we obtain the next result.

Lemma 3.4. Let λ = 1 and l ∈ N. Suppose that u ∈ C[T − τ,∞),
u(t) > 0 for t ≥ T − τ . Assume moreover that ∆u ∈ C2[T,∞), (∆u)(t) ≥ 0,
(∆u)′(t) ≥ 0 and either (∆u)′′(t) ≤ 0 or (∆u)′′(t) ≥ 0 for t ≥ T , and

limt→∞(∆u)′(t)/tl = 0. Then

u(t) =
1

2
(∆u)(t) + o(tl) (t → ∞).

Proof. For the case (∆u)′′(t) ≤ 0, the conclusion follows immediately
from Lemma 3.2. Assume that (∆u)′′(t) ≥ 0. From Lemma 3.3 it follows
that

1

2
(∆u)(t) − α ≤ u(t) ≤

1

2
(∆u)(t + τ) +

1

2
(∆u)(T + 2τ), t ≥ T + 2τ

for some constant α. By the mean value theorem, for each large t ≥ T , there
is a number η(t) such that t < η(t) < t + τ and

(∆u)(t + τ) = (∆u)(t) + τ(∆u)′(η(t)).

Since limt→∞(∆u)′(t)/tl = 0, we have

lim
t→∞

(∆u)′(η(t))

tl
= lim

t→∞

(∆u)′(η(t))

[η(t)]l

[
η(t)

t

]l

= 0.

This completes the proof.

4. Proof of the “if” part of Theorem 1.1

In this section we prove the “if” part of Theorem 1.1.
We make use of the following well-known lemma of Kiguradze [13].

Lemma 4.1. Let w ∈ Cn[T,∞) satisfy w(t) 6= 0 and w(t)w(n)(t) ≤ 0 for

t ≥ T . Then there exists an integer k ∈ {1, 3, . . . , n − 1} such that





w(t)w(i)(t) > 0, 0 ≤ i ≤ k − 1,

(−1)i−kw(t)w(i)(t) ≥ 0, k ≤ i ≤ n,
(4.1)

for all large t ≥ T .
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A function w(t) satisfying (4.1) for all large t is called a function of Kig-
uradze degree k. It is known ([11], [12], [13], [19]) that if w(t) is a function
of Kiguradze degree k ∈ {1, 3, . . . , n − 1} and w(t) > 0 for all large t, then

lim
t→∞

w(i)(t) = 0, i = k + 1, k + 2, . . . , n − 1,(4.2)

and that one of the following three cases holds:

lim
t→∞

w(k)(t) = const > 0 and lim
t→∞

w(k−1)(t) = ∞;(4.3)

lim
t→∞

w(k)(t) = 0 and lim
t→∞

w(k−1)(t) = ∞;(4.4)

lim
t→∞

w(k)(t) = 0 and lim
t→∞

w(k−1)(t) = const > 0.(4.5)

Lemma 4.2. Let λ 6= 1. Suppose that u ∈ C[T − τ,∞), ∆u ∈ Cn[T,∞)
and (∆u)(t) > 0 for t ≥ T . For the case λ > 1, assume moreover that

limt→∞ λ−t/τu(t) = 0. If (∆u)(t) is a function of Kiguradze degree k for

some k ∈ {1, 3, . . . , n − 1}, then there exist a constant α and an integer

l ∈ {0, 1, 2, . . . , n − 1} such that

u(t) ≥
1

1 + λ
(∆u)(t) − αtl > 0

for all large t ≥ T .

Proof. We see that one of the following three cases holds:

lim
t→∞

(∆u)(k)(t) = const > 0 and lim
t→∞

(∆u)(k−1)(t) = ∞;(4.6)

lim
t→∞

(∆u)(k)(t) = 0 and lim
t→∞

(∆u)(k−1)(t) = ∞;(4.7)

lim
t→∞

(∆u)(k)(t) = 0 and lim
t→∞

(∆u)(k−1)(t) = const > 0.(4.8)

Put

l = k, α =
1

2(1 + λ)
lim
t→∞

(∆u)(t)

tl
if (4.6) holds,

l = k − 1, α = 1 if (4.7) holds,

l = k − 1, α =
1

2(1 + λ)
lim
t→∞

(∆u)(t)

tl
if (4.8) holds.
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We note here that l ∈ {0, 1, 2, . . . , n − 1}, and that if (4.6) or (4.8) holds,
then limt→∞(∆u)(t)/tl = limt→∞(∆u)(l)(t)/l! = const > 0. It is easy to
verify that limt→∞(∆u)′(t)/tl = 0. Lemma 3.1 implies that

u(t) ≥
1

1 + λ
(∆u)(t) − αtl

for all large t. By the choice of α, we conclude that (1+λ)−1(∆u)(t)−αtl > 0
for all large t. The proof is complete.

Now let us show the “if” part of Theorem 1.1.

Proof of the “if” part of Theorem 1.1. It is sufficient to prove
that if equation (1.1) has a nonoscillatory solution, then equation (1.10)
has a nonoscillatory solution. Let x(t) be a nonoscillatory solution of (1.1).
Without loss of generality, we may assume that x(t) > 0 for all large t. Then
(∆x)(t) > 0 and (∆x)(n)(t) ≤ 0 for all large t. In view of Lemma 4.1, we find
that (∆x)(t) is a function of Kiguradze degree k for some k ∈ {1, 3, . . . , n−1},
and hence limt→∞(∆x)(k)(t) = const. Since 0 < x(t) ≤ (∆x)(t) for all large
t, we have limt→∞ λ−t/τx(t) = 0 if λ > 1. By Lemmas 3.2, 3.3 and 4.2, there
are a constant α and an integer l ∈ {0, 1, 2, . . . , n − 1} such that

x(t) ≥
1

1 + λ
(∆x)(t) − αtl > 0 for all large t.

Put w(t) = (1 + λ)−1(∆x)(t) − αtl. Then x(t) ≥ w(t) > 0 for all large t.
From the monotonicity of f it follows that

−w(n)(t) = −
1

1 + λ
(∆x)(n)(t) =

1

1 + λ
f(t, x(g(t))) ≥

1

1 + λ
f(t, w(g(t)))

for all large t. Lemma 2.2 implies that (1.10) has a nonoscillatory solution.
The proof is complete.

5. Proof of the “only if” part of Theorem 1.1

In this section we give the proof of the “only if” part of Theorem 1.1.
To this end, we require the following result concerning an “inverse” of the
operator ∆.

Lemma 5.1. Let T∗ and T be numbers such that max{t0, 1} ≤ T∗ ≤ T − τ ,

and let k ∈ N and M > 0. Define the set Y as follows:

Y = {y ∈ C[T∗,∞) : y(t) = 0, t ∈ [T∗, T ], and |y(t)| ≤ Mtk, t ≥ T}.
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Then there exists a mapping Φ on Y which has the following properties (i)–
(v):

(i) Φ maps Y into C[T∗,∞);

(ii) Φ is continuous on Y in the C[T∗,∞)-topology;

(iii) Φ satisfies (Φy)(t) + λ(Φy)(t − τ) = y(t) for t ≥ T and y ∈ Y ;

(iv) if λ = 1 and y ∈ Y is nondecreasing on [T∗,∞), then (Φy)(t) ≥ 0 for

t ≥ T∗;

(v) if λ > 1, then limt→∞ λ−t/τ (Φy)(t) = 0 for y ∈ Y .

Here and hereafter, C[T∗,∞) is regarded as the Fréchet space of all con-
tinuous functions on [T∗,∞) with the topology of uniform convergence on
every compact subinterval of [T∗,∞).

We divide the proof of Lemma 5.1 into the two cases 0 < λ ≤ 1 and
λ > 1.

Proof of Lemma 5.1 for the case 0 < λ ≤ 1. For each y ∈ Y , we
define the function Φy on [T∗,∞) by

(Φy)(t) =





m∑

i=0

(−λ)iy(t − iτ), t ∈ [T + mτ, T + (m + 1)τ),

m = 0, 1, . . . ,

0, t ∈ [T∗, T ).

(i) Let y ∈ Y . Note that y(T ) = 0. It is obvious that (Φy)(t) is continuous
on [T∗,∞) − {T + mτ : m = 0, 1, 2, . . .}. We observe that

lim
t→T−0

(Φy)(t) = 0 = y(T ) = lim
t→T+0

(Φy)(t),

and that if m ≥ 1, then

lim
t→T+mτ−0

(Φy)(t) =
m−1∑

i=0

(−λ)iy(T + mτ − iτ)

=
m−1∑

i=0

(−λ)iy(T + mτ − iτ) + (−λ)my(T )

=
m∑

i=0

(−λ)iy(T + mτ − iτ)

= lim
t→T+mτ+0

(Φy)(t).
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Consequently, (Φy)(t) is continuous on [T∗,∞).
(ii) It suffices to show that if {yj}

∞
j=1 is a sequence in C[T∗,∞) converging

to y ∈ C[T∗,∞) uniformly on every compact subinterval of [T∗,∞), then
{Φyj} converges to Φy uniformly on every compact subinterval of [T∗,∞).
Clearly, {Φyj} converges to Φy uniformly on [T∗, T ]. We claim that Φyj → Φy
uniformly on Im ≡ [T + mτ, T + (m + 1)τ ], m = 0, 1, 2, . . . . Then we easily
conclude that {Φyj} converges to Φy uniformly on every compact subinterval
of [T∗,∞). Observe that

sup
t∈Im

|(Φyj)(t) − (Φy)(t)| ≤
m∑

i=0

λi sup
t∈Im

|yj(t − iτ) − y(t − iτ)|

≤
m∑

i=0

λi sup
t∈Im−i

|yj(t) − y(t)|

for m = 0, 1, 2, . . . . Then we see that

sup
t∈Im

|(Φyj)(t) − (Φy)(t)| → 0 (j → ∞), m = 0, 1, 2, . . . ,

so that {Φyj} converges to Φy uniformly on Im for m = 0, 1, 2, . . . .
(iii) Let y ∈ Y . If t ∈ [T, T + τ), then (Φy)(t − τ) = 0 and

(Φy)(t) = y(t) = y(t) − λ(Φy)(t − τ).

It t ∈ [T + mτ, T + (m + 1)τ), m = 1, 2, . . ., then

(Φy)(t) = y(t) +
m∑

i=1

(−λ)iy(t − iτ)

= y(t) − λ
m∑

i=1

(−λ)i−1y(t − τ − (i − 1)τ)

= y(t) − λ
m−1∑

i=0

(−λ)iy(t − τ − iτ)

= y(t) − λ(Φy)(t − τ),

since t − τ ∈ [T + (m − 1)τ, T + mτ).
(iv) Assume that λ = 1. Let y ∈ Y be nondecreasing on [T∗,∞). Notice

that y(t) ≥ y(T∗) = 0 for t ≥ T∗. It is easy to see that (Φy)(t) = y(t) ≥ 0 for
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t ∈ [T, T + τ) and (Φy)(t) = 0 for t ∈ [T∗, T ). Let t ∈ [T +mτ, T +(m+1)τ),
m = 1, 2, . . . . If m ≥ 1 is odd, then

(Φy)(t) =
(m−1)/2∑

j=0

[y(t − 2jτ) − y(t − (2j + 1)τ)] ≥ 0.

If m ≥ 2 is even, then

(Φy)(t) =
(m/2)−1∑

j=0

[y(t − 2jτ) − y(t − (2j + 1)τ)] + y(t − mτ) ≥ 0.

Therefore we obtain (Φy)(t) ≥ 0 for t ≥ T∗. The proof for the case 0 < λ ≤ 1
is complete.

Proof of Lemma 5.1 for the case λ > 1. For each y ∈ Y , we assign
the function Φy on [T∗,∞) as follows:

(Φy)(t) =






−
∞∑

i=1

(−λ)−iy(t + iτ), t ∈ [T − τ,∞),

(Φy)(T − τ), t ∈ [T∗, T − τ).

Let y ∈ Y . Then

|(−λ)−iy(t + iτ)| ≤ λ−iM(t + iτ)k ≤ 2k−1Mλ−i(tk + ikτk)(5.1)

for t ≥ T − τ , i = 1, 2, . . . . Thus we see that the series
∑∞

i=1(−λ)−iy(t + iτ)
converges uniformly on every compact subinterval of [T − τ,∞), so that Φ is
well-defined, and (Φy)(t) is continuous on [T∗,∞) and satisfies

|(Φy)(t)| ≤
2k−1M

λ − 1
tk + L, t ≥ T − τ

for each y ∈ Y , where L = 2k−1Mτ k ∑∞
i=1 λ−iik. This means that (i) and (v)

follow. Now we show (ii) and (iii).
(ii) Take an arbitrary compact subinterval I of [T − τ,∞). Let ε > 0.

There is an integer q ≥ 1 such that

∞∑

i=q+1

λ−iM(t + iτ)k <
ε

3
, t ∈ I.(5.2)
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Let {yj}
∞
j=1 be a sequence in Y converging to y ∈ Y uniformly on every

compact subinterval of [T∗,∞). There exists an integer j0 ≥ 1 such that

q∑

i=1

λ−i|yj(t + iτ) − y(t + iτ)| <
ε

3
, t ∈ I, j ≥ j0.

It follows from (5.1) and (5.2) that

|(Φyj)(t) − (Φy)(t)| ≤
q∑

i=1

λ−i|yj(t + iτ) − y(t + iτ)|

+

∣∣∣∣∣

∞∑

i=q+1

(−λ)−iyj(t + iτ)

∣∣∣∣∣

+

∣∣∣∣∣

∞∑

i=q+1

(−λ)−iy(t + iτ)

∣∣∣∣∣

≤
ε

3
+ 2 ·

ε

3
= ε, t ∈ I, j ≥ j0,

which implies that Φyj converges Φy uniformly on I. We see that Φyj → Φy
uniformly on [T∗, T − τ ], because of (Φy)(t) = (Φy)(T − τ) on [T∗, T − τ ] for
y ∈ Y . Consequently, we conclude that Φ is continuous on Y .

(iii) Let y ∈ Y . Observe that

λ(Φy)(t − τ) =
∞∑

i=1

(−λ)−(i−1)y(t + (i − 1)τ)

= y(t) +
∞∑

i=1

(−λ)−iy(t + iτ)

= y(t) − (Φy)(t), t ≥ T.

The proof for the case λ > 1 is complete.

Lemma 5.2. Let w ∈ Cn[T,∞) be a function of Kiguradze degree k for

some k ∈ {1, 3, . . . , n − 1}. Then limt→∞ w(t + ρ)/w(t) = 1 for each ρ > 0.

Proof. We may assume that w(t) > 0 for all large t. Recall that w(t)
satisfies one of (4.3)–(4.5). If (4.3) holds, then

lim
t→∞

w(t + ρ)

w(t)
=

limt→∞ w(k)(t + ρ)

limt→∞ w(k)(t)
= 1.
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In exactly the same way, we have limt→∞ w(t+ρ)/w(t) = 1 for the case (4.5).
Assume that (4.4) holds. By the mean value theorem, for each large fixed
t ≥ T , there is a number η(t) such that

w(t + ρ) − w(t) = ρw′(η(t)) and t < η(t) < t + ρ.

Thus we obtain

w(t + ρ)

w(t)
− 1 = ρ

w′(η(t))

[η(t)]k−1

tk−1

w(t)

[
η(t)

t

]k−1

.

By (4.4) we conclude that limt→∞ w′(t)/tk−1 = 0 and limt→∞ w(t)/tk−1 = ∞,
so that limt→∞ w(t + ρ)/w(t) = 1.

Now we prove the “only if” part of Theorem 1.1.

Proof of the “only if” part of Theorem 1.1. We show that if
equation (1.10) has a nonoscillatory solution, then equation (1.1) has a
nonoscillatory solution. Let z(t) be a nonoscillatory solution of (1.10). With-
out loss of generality, we may assume that z(t) is eventually positive. Set
w(t) = (1 + λ)z(t). Then w(t) is an eventually positive solution of

w(n)(t) + f(t, (1 + λ)−1w(g(t))) = 0.(5.3)

Lemma 4.1 implies that w(t) is a function of Kiguradze degree k for some
k ∈ {1, 3, . . . , n − 1}, and one of the cases (4.3)–(4.5) holds. Hence,
limt→∞ w(t)/tk = const ≥ 0. From Lemma 5.2 it follows that

w(t + 2τ) ≤
3

2
w(t), t ≥ T1(5.4)

for some T1 ≥ t0.
We can take a sufficiently large number T ≥ T1 such that w(i)(t) > 0

(i = 0, 1, 2, . . . , k − 1), w(g(t)) > 0 for t ≥ T , and

T∗ ≡ min{T − τ, inf{g(t) : t ≥ T}} ≥ max{T1, 1}.

Recall (4.2). Integrating (5.3), we have

w(t) − P (t) =
∫ t

T

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f

(
r,

w(g(r))

1 + λ

)
drds
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for t ≥ T , where

P (t) =
(t − T )k

k!
w(k)(∞) +

k−1∑

i=0

(t − T )i

i!
w(i)(T ), t ≥ T∗,

and w(k)(∞) = limt→∞ w(k)(t) ≥ 0.
Consider the set Y of functions y ∈ C[T∗,∞) which satisfies

y(t) = 0 for t ∈ [T∗, T ] and 0 ≤ y(t) ≤ w(t) − P (t) for t ≥ T.

Then Y is closed and convex. Note that there is a constant M > 0 such that
|y(t)| ≤ Mtk on [T,∞) for y ∈ Y , by limt→∞ w(t)/tk = const ≥ 0. Lemma
5.1 implies that there exists a mapping Φ on Y satisfying (i)–(v) of Lemma
5.1. Put

(Ψy)(t) = (Φy)(t) +
P (t)

4(1 + λ)
, t ≥ T∗, y ∈ Y.

For each y ∈ Y , we define the mapping F : Y −→ C[T∗,∞) as follows:

(Fy)(t) =





∫ t

T

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f(r, (Ψy)(g(r)))drds, t ≥ T,

0, t ∈ [T∗, T ],

where

f(t, u) =





f(t, (1 + λ)−1w(g(t))), u ≥ (1 + λ)−1w(g(t)),

f(t, u), 0 ≤ u ≤ (1 + λ)−1w(g(t)),

0, u ≤ 0,

for t ≥ T and u ∈ R. In view of the fact that

0 ≤ f(t, u) ≤ f(t, (1 + λ)−1w(g(t))), (t, u) ∈ [T,∞) × R,

we see that F is well defined on Y and maps Y into itself. Since Φ is
continuous on Y , by the Lebesgue dominated convergence theorem, we can
show that F is continuous on Y as a routine computation.

Now we claim that F(Y ) is relatively compact. We note that F(Y )
is uniformly bounded on every compact subinterval of [T∗,∞), because of
F(Y ) ⊂ Y . By the Ascoli-Arzelà theorem, it suffices to verify that F(Y ) is
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equicontinuous on every compact subinterval of [T∗,∞). Let I be an arbitrary
compact subinterval of [T,∞). If k = 1, then

0 ≤ (Fy)′(t) ≤
∫ ∞

t

(s − t)n−2

(n − 2)!
f

(
s,

w(g(s))

1 + λ

)
ds, t ≥ T, y ∈ Y.

If k ≥ 3, then

0 ≤ (Fy)′(t) ≤
∫ t

T

(t − s)k−2

(k − 2)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f

(
r,

w(g(r))

1 + λ

)
drds

for t ≥ T and y ∈ Y . Thus we see that {(Fy)′(t) : y ∈ Y } is uniformly
bounded on I. The mean value theorem implies that F(Y ) is equicontinuous
on I. Since |(Fy)(t1) − (Fy)(t2)| = 0 for t1, t2 ∈ [T∗, T ], we conclude that
F(Y ) is equicontinuous on every compact subinterval of [T∗,∞).

By applying the Schauder-Tychonoff fixed point theorem to the operator
F , there exists a ỹ ∈ Y such that ỹ = F ỹ.

Put x(t) = (Ψỹ)(t). Then we obtain

(∆x)(t) = ỹ(t) +
P (t) + λP (t − τ)

4(1 + λ)
, t ≥ T,(5.5)

by Lemma 5.1 (iii), and hence (∆x)(t) is a function of Kiguradze degree k.
Since P (t) is nondecreasing in t ∈ [T,∞), we find that P (t) ≥ P (t − τ) ≥
P (T ) = w(T ) > 0 for t ≥ T + τ , so that

0 < (∆x)(t) ≤ w(t) − P (t) +
P (t) + λP (t)

4(1 + λ)
= w(t) −

3

4
P (t)(5.6)

for t ≥ T + τ . We will show that

0 < x(t) ≤ (1 + λ)−1w(t) for all large t.(5.7)

Then the proof of the “only if” part of Theorem 1.1 will be complete, since
(5.5) and (5.7) imply that

dn

dtn
[x(t) + λx(t − τ)] = ỹ(n)(t) = (F ỹ)(n)(t) = −f(t, x(g(t)))

= −f(t, x(g(t)))

for all large t, which means x(t) is a nonoscillatory solution of (1.1).
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If w(k)(∞) > 0, then we put l = k, and if w(k)(∞) = 0, then we put
l = k − 1. It can be shown that limt→∞(∆x)′(t)/tl = 0. Indeed, since

lim
t→∞

(∆x)(k)(t) = lim
t→∞

ỹ(k)(t) + lim
t→∞

P (k)(t) + λP (k)(t − τ)

4(1 + λ)

= lim
t→∞

(F ỹ)(k)(t) +
w(k)(∞)

4
=

w(k)(∞)

4
,

we see that if l = k, then limt→∞(∆x)′(t)/tl = limt→∞(∆x)(k)(t)/(k!t) = 0,
and that if l = k−1, then limt→∞(∆x)′(t)/tl = limt→∞(∆x)(k)(t)/(k−1)! = 0.

First assume that λ 6= 1. From Lemma 4.2 it follows that x(t) > 0 for
all large t ≥ T∗. In view of Lemma 3.1 and the fact that limt→∞ P (t)/tl =
const > 0, we have

x(t) ≤
1

1 + λ
(∆x)(t) +

3

4(1 + λ)
P (t)

for all large t. Hence, by (5.6), we obtain x(t) ≤ (1+λ)−1w(t) for all large t.
Next we assume that λ = 1 and l 6= 0. Since ỹ(t)(= (F ỹ)(t)) is nonde-

creasing in t ∈ [T∗,∞), from Lemma 5.1 (iv), we see that (Φỹ)(t) ≥ 0 for
t ≥ T∗, so that x(t) ≥ P (t)/[4(1 + λ)] for t ≥ T∗. Hence, x(t) > 0 for t ≥ T .
By using Lemma 3.4 and the same argument as in the case λ 6= 1, we can
show that x(t) ≤ (1 + λ)−1w(t) for all large t.

Finally we suppose that λ = 1 and l = 0. Then k = 1 and w(k)(∞) = 0.
Therefore, P (t) = w(T ) on [T∗,∞). As in the case λ = 1 and l 6= 0, we have
x(t) ≥ P (t)/[4(1 + λ)] for t ≥ T∗, which implies that x(t) > 0 for t ≥ T∗.
Note that (∆x)′(t) ≥ 0 and (∆x)′′(t) ≤ 0 for t > T , since k = 1. By Lemma
3.2, (5.6) and (5.4), we conclude that

x(t) ≤
1

2
(∆x)(t) +

1

2
(∆x)(T + 2τ)

≤
1

2

[
w(t) −

3

4
w(T ) + w(T + 2τ) −

3

4
w(T )

]

≤
1

2
w(t), t ≥ T + 2τ.

The proof is complete.

Acknowledgment

The author thanks the referee for many helpful suggestions.

EJQTDE, 2000 No. 4, p. 25



References

[1] Y. Chen, Existence of nonoscillatory solutions of nth order neutral delay
differential equations, Funkcial. Ekvac. 35 (1992), 557–570.

[2] Q. Chuanxi and G. Ladas, Oscillations of higher order neutral differ-
ential equations with variable coefficients, Math. Nachr. 150 (1991),
15–24.

[3] L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory for Functional

Differential Equations, Marcel Dekker, Inc., New York, Basel and Hong
Kong, 1995.

[4] J. R. Graef, M. K. Grammatikopoulos and P. W. Spikes, Asymptotic
properties of solutions of nonlinear neutral delay differential equations
of the second order, Rad. Mat. 4 (1988), 133–149.

[5] J. R. Graef and P. W. Spikes, On the oscillation of an nth-order nonlinear
neutral delay differential equation, J. Comput. Appl. Math. 41 (1992),
35–40.

[6] M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillations of
second order neutral delay differential equations, Rad. Mat. 1 (1985),
267–274.

[7] M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation
and asymptotic behavior of second order neutral differential equations,
Ann. Mat. Pura Appl. 148 (1987), 29–40.

[8] M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation
and asymptotic behavior of higher order neutral equations with variable
coefficients, Chinese Ann. Math. Ser. B 9 (1988), 322–338.
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