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Abstract. We study the Cauchy problem of the 3D incompressible Navier–Stokes equa-
tions with nonlinear damping term α|u|β−1u (α > 0 and β ≥ 1). It is shown that the
strong solution exists globally for any β ≥ 1.
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1 Introduction

We are concerned with the following incompressible Navier–Stokes equations with damping
in R3: 

∂tu− µ∆u + u · ∇u + α|u|β−1u +∇P = 0,

div u = 0,

u(0, x) = u0(x),

lim
|x|→∞

|u(t, x)| = 0,

(1.1)

where u = (u1(t, x), u2(t, x), u3(t, x)) is the velocity field, P(t, x) is a scalar pressure. t ≥ 0 is
the time, x ∈ R3 is the spatial coordinate. In the damping term, α > 0 and β ≥ 1 are two
constants. The prescribed function u0(x) is the initial velocity field with div u0 = 0, while the
constant µ > 0 represents the viscosity coefficient of the flow.

This model comes from porous media flow, friction effects, or some dissipative mecha-
nisms, mainly as a limiting system from compressible flows (see [1] for the physical back-
ground). The problem (1.1) was studied firstly by Cai and Jiu [1], they showed the existence
of a global weak solution for any β ≥ 1 and global strong solutions for β ≥ 7

2 . Moreover,
the uniqueness is shown for any 7

2 ≤ β ≤ 5. In [8], Zhang et al. proved for β > 3 and
u0 ∈ H1 ∩ Lβ+1 that the system (1.1) has a global strong solution and the strong solution is
unique when 3 < β ≤ 5. Later, Zhou [9], Gala and Ragusa [3, 4], improved the results in
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[1, 8]. He obtained that the strong solution exists globally for β ≥ 3 and u0 ∈ H1. Moreover,
regularity criteria for (1.1) is also established for 1 ≤ β < 3 as follows: if u(t, x) satisfies

u ∈ Ls(0, T; Lγ) with
2
s
+

3
γ
≤ 1, 3 < γ < ∞, (1.2)

or

∇u ∈ Ls̃(0, T; Lγ̃) with
2
s̃
+

3
γ̃
≤ 1, 3 < γ̃ < ∞, (1.3)

then the solution remains smooth on [0, T]. However, the global existence of strong solution
to the problem (1.1) for 1 ≤ β < 3 is still unknown. In fact, this is the main motivation of this
paper.

Before stating our main result, we first explain the notations and conventions used
throughout this paper. We denote by ∫

· dx =
∫

R3
· dx.

For 1 ≤ p ≤ ∞ and integer k ≥ 0, the standard Sobolev spaces are denoted by:

Lp = Lp(R3), Hk = Hk,2(R3).

Now we define precisely what we mean by strong solutions to the problem (1.1).

Definition 1.1 (Strong solutions). A pair (u, P) is called a strong solution to (1.1) in R3× (0, T)
if (1.1) holds almost everywhere in R3 × (0, T) and

u ∈ L∞(0, T; H1(R3)) ∩ L2(0, T; H2(R3)).

Our main result reads as follows.

Theorem 1.2. Suppose that 1 ≤ β < 3 and u0 ∈ H1(R3) with div u0 = 0. Then there exists an
absolute constant ε0 independent of u0, µ, α, and β, such that if

µ−4‖u0‖2
L2

(
‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1

)
≤ ε0, (1.4)

the problem (1.1) has a unique global strong solution.

Remark 1.3. Due to 1 ≤ β < 3, we get from Hölder’s and Sobolev’s inequalities that

‖u0‖β+1
Lβ+1 ≤ ‖u0‖

5−β
2

L2 ‖u0‖
3β−3

2
L6 ≤ C‖u0‖

5−β
2

L2 ‖∇u0‖
3β−3

2
L2 .

Consequently, for the given initial velocity u0 ∈ H1(R3) with div u0 = 0, it follows from (1.4)
that the problem (1.1) has a unique global strong solution when the viscosity constant µ is
sufficiently large or ‖u0‖L2‖∇u0‖L2 is small enough.

The rest of this paper is organized as follows. In Section 2, we collect some elementary
facts and inequalities that will be used later. In Section 3, we show the local existence and
uniqueness of solutions of the Cauchy problems (1.1). Finally, we give the proof of Theo-
rem 1.2 in Section 4.
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2 Preliminaries

In this section, we will recall some known facts and elementary inequalities that will be used
frequently later.

We begin with the following Gronwall’s inequality, which plays a central role in proving a
priori estimates on strong solutions (u, P).

Lemma 2.1. Suppose that h and r are integrable on (a, b) and nonnegative a.e. in (a, b). Further
assume that y ∈ C[a, b], y′ ∈ L1(a, b), and

y′(t) ≤ h(t) + r(t)y(t) for a.e. t ∈ (a, b).

Then

y(t) ≤
[

y(a) +
∫ t

a
h(s) exp

(
−
∫ s

a
r(τ)dτ

)
ds
]

exp
(∫ t

a
r(s)ds

)
, t ∈ [a, b].

Proof. See [7, pp. 12–13].

Next, the following Gagliardo–Nirenberg inequality will be used later.

Lemma 2.2. Let 1 ≤ p, q, r ≤ ∞, and j, m are arbitrary integers satisfying 0 ≤ j < m. Assume that
v ∈ C∞

c (Rn). Then
‖Djv‖Lp ≤ C‖v‖1−a

Lq ‖Dmv‖a
Lr ,

where
−j +

n
p
= (1− a)

n
q
+ a

(
−m +

n
r

)
,

and

a ∈


[

j
m , 1

)
, if m− j− n

r is an nonnegative integer,[
j

m , 1
]

, otherwise.

The constant C depends only on n, m, j, q, r, a.

Proof. See [5, Theorem].

Finally, we need the following lemma to obtain the uniform bounds in the next section.

Lemma 2.3. Let g ∈W1,1(0, T) and k ∈ L1(0, T) satisfy

dg
dt
≤ F(g) + k in [0, T], g(0) ≤ g0,

where F is bounded on bounded sets from R into R. Then for every ε > 0, there exists Tε independent
of g such that

g(t) ≤ g0 + ε, ∀t ≤ Tε.

Proof. See [6, Lemma 6].

3 Local existence and uniqueness of solutions

In this section, we shall prove the following local existence and uniqueness of strong solutions
to the Cauchy problem (1.1).

Theorem 3.1. Suppose that 1 ≤ β < 3, u0 ∈ H1(R3) with div u0 = 0. Then there exist a small
positive time T0 > 0 and a unique strong solution (u, P) to the Cauchy problem (1.1) in R3 × (0, T0].
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3.1 A priori estimates

The main goal of this subsection is to derive the following key a priori estimates on Φ(t)
defined by

Φ(t) , ‖u(t)‖2
H1 + 1,

which are needed for the proof of Theorem 3.1.

Proposition 3.2. Assume that u0 ∈ H1(R3) with div u0 = 0. Let (u, P) be a solution to the problem
(1.1) on R3 × (0, T]. Then there exist a small time T0 ∈ (0, T] and a positive constant C depending
only on µ, α, β, and E0 , ‖u0‖H1 + 1 such that

sup
0<t≤T0

Φ(t) ≤ C. (3.1)

Proof. Multiplying (1.1)1 by u and integrating (by parts) the resulting equation over R3, we
obtain that

1
2

d
dt

∫
|u|2dx + α

∫
|u|β+1dx + µ

∫
|∇u|2dx = −

∫
(u · ∇)u · udx. (3.2)

By the divergence theorem and (1.1)2, we have

−
∫
(u · ∇)u · udx = −

∫
ui∂iujujdx =

∫
ui∂iujujdx =

∫
(u · ∇)u · udx.

Thus

−
∫
(u · ∇)u · udx = 0. (3.3)

Inserting (3.3) into (3.2) and integrating with respect to t, we get

‖u(t)‖2
L2 + α

∫ t

0
‖u‖β+1

Lβ+1 ds + µ
∫ t

0
‖∇u‖2

L2 ds ≤ ‖u0‖2
L2 . (3.4)

Multiplying (1.1)1 by ut and integrating (by parts) the resulting equation over R3, we
obtain from Cauchy–Schwartz inequality that

µ

2
d
dt

∫
|∇u|2dx +

α

β + 1
d
dt

∫
|u|β+1dx +

∫
|ut|2dx = −

∫
(u · ∇)u · utdx

≤ 1
2

∫
|ut|2dx +

1
2

∫
|u · ∇u|2dx.

Thus

µ
d
dt

∫
|∇u|2dx +

2α

β + 1
d
dt

∫
|u|β+1dx +

∫
|ut|2dx ≤

∫
|u · ∇u|2dx. (3.5)

Similarly, multiplying (1.1)1 by −∆u and integrating the resulting equations over R3, we have

1
2

d
dt

∫
|∇u|2dx + αβ

∫
|u|β−1|∇u|2dx + µ

∫
|∆u|2dx =

∫
(u · ∇)u · ∆udx

≤ µ

2

∫
|∆u|2dx +

1
2µ

∫
|u · ∇u|2dx.
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Hence, we get

µ
d
dt

∫
|∇u|2dx + 2µαβ

∫
|u|β−1|∇u|2dx + µ2

∫
|∆u|2dx ≤

∫
|u · ∇u|2dx, (3.6)

which combined with (3.5) yields

2µ
d
dt

∫
|∇u|2dx +

2α

β + 1
d
dt

∫
|u|β+1dx +

∫
|ut|2dx + 2µαβ

∫
|u|β−1|∇u|2dx + µ2

∫
|∆u|2dx

≤ 2
∫
|u · ∇u|2dx. (3.7)

Applying the Gagliardo–Nirenberg inequality and Sobolev’s inequality, the right hand side of
(3.7) can be bounded as

J , 2
∫
|u · ∇u|2dx

≤ C‖u‖L6‖∆u‖L2‖∇u‖2
L2

≤ C‖∆u‖L2‖∇u‖3
L2

≤ µ2

2
‖∆u‖2

L2 +
C
µ2 ‖∇u‖6

L2 . (3.8)

Substituting (3.8) into (3.7), we deduce that

d
dt
‖∇u‖2

L2 +
α

µ(β + 1)
d
dt

∫
|u|β+1dx +

1
2µ
‖ut‖2

L2 +
µ

4
‖∆u‖2

L2 ≤
C
µ3 ‖∇u‖4

L2‖∇u‖2
L2 . (3.9)

Then integrating (3.9) with respect to t, we have

‖∇u(t)‖2
L2 ≤ C + C exp

(
C
∫ t

0
Φ(s)2ds

)
. (3.10)

Combining (3.4) and (3.10), we deduce

Φ(t) ≤ C + C exp
(

C
∫ t

0
Φ(s)2ds

)
. (3.11)

Let us define Ψ(t) ,
∫ t

0 Φ(s)2ds, then we infer from (3.11) that

d
dt

Ψ(t) ≤ [C + C exp (CΨ(t))]2 .

Hence, the desired (3.1) follows from this inequality and Lemma 2.3. This completes the proof
of Proposition 3.2.

3.2 Proof of Theorem 3.1

Since a priori estimates in higher norms have been derived, the local existence of strong
solutions can be established by a standard Galerkin method (see for example [2]), and we
omit the details. Thus we complete the proof of the existence part of Theorem 3.1.

The uniqueness part of Theorem 3.1 is an immediate consequence of the weak-strong
unique result in [9, Theorem 3.1]. This finishes the proof of Theorem 3.1. �
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4 Proof of Theorem 1.2

Throughout this section, we denote
C0 , ‖u0‖2

L2 .

Sometimes we use C( f ) to emphasize the dependence on f . Let (u, P) be the strong solution
to the problem (1.1) on R3 × (0, T), then one has the following results.

Lemma 4.1. For any t ∈ (0, T), there holds

‖u(t)‖2
L2 + α

∫ t

0
‖u‖β+1

Lβ+1 ds + µ
∫ t

0
‖∇u‖2

L2 ds ≤ C0. (4.1)

Proof. This follows from (3.4).

Lemma 4.2. There exists an absolute constant C independent of T, u0, µ, α, and β, such that for any
t ∈ (0, T), there holds

sup
0≤s≤t

‖∇u‖2
L2 ≤ ‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1 +
CC0

µ4 sup
0≤s≤t

‖∇u‖4
L2 . (4.2)

Proof. We infer from (3.7) that

2µ
d
dt

∫
|∇u|2dx +

2α

β + 1
d
dt

∫
|u|β+1dx +

∫
|ut|2dx + 2µαβ

∫
|u|β−1|∇u|2dx + µ2

∫
|∆u|2dx

≤ 2
∫
|u · ∇u|2dx. (4.3)

Then we obtain after integrating (4.3) with respect to t that

2µ sup
0≤s≤t

‖∇u‖2
L2 +

2α

β + 1
sup

0≤s≤t
‖u‖β+1

Lβ+1 + µ2
∫ t

0
‖∆u‖2

L2 ds

≤ 2µ‖∇u0‖2
L2 +

2α

β + 1
‖u0‖β+1

Lβ+1 + 2
∫ t

0
‖u · ∇u‖2

L2 ds. (4.4)

By virtue of the Gagliardo–Nirenberg and Sobolev’s inequalities, one finds that

2‖u · ∇u‖2
L2 ≤ C‖u‖2

L∞‖∇u‖2
L2

≤ C‖u‖L6‖∆u‖L2‖∇u‖2
L2

≤ C‖∆u‖L2‖∇u‖3
L2

≤ µ2

2
‖∆u‖2

L2 + Cµ−2‖∇u‖6
L2 . (4.5)

Substituting (4.5) into (4.4) and employing (4.1), we derive that

2µ sup
0≤s≤t

‖∇u‖2
L2 +

2α

β + 1
sup

0≤s≤t
‖u‖β+1

Lβ+1 +
µ2

2

∫ t

0
‖∆u‖2

L2 ds

≤ 2µ‖∇u0‖2
L2 +

2α

β + 1
‖u0‖β+1

Lβ+1 + Cµ−2
∫ t

0
‖∇u‖6

L2 ds

≤ 2µ‖∇u0‖2
L2 +

2α

β + 1
‖u0‖β+1

Lβ+1 + Cµ−3 sup
0≤s≤t

‖∇u‖4
L2

∫ t

0
µ‖∇u‖2

L2 ds

≤ 2µ‖∇u0‖2
L2 +

2α

β + 1
‖u0‖β+1

Lβ+1 + CC0µ−3 sup
0≤s≤t

‖∇u‖4
L2 .

This implies the desired (4.2) and finishes the proof of Lemma 4.2.
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Lemma 4.3. There exists a positive constant ε0 independent of T, u0, µ, α, and β, such that

sup
0≤t≤T

‖∇u‖2
L2 ≤ 2‖∇u0‖2

L2 +
2α

µ(β + 1)
‖u0‖β+1

Lβ+1 , (4.6)

provided that

µ−4C0

(
‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1

)
≤ ε0. (4.7)

Proof. Define function E(t) as follows

E(t) , sup
0≤s≤t

‖∇u‖2
L2 .

In view of the regularity of u, one can easily check that E(t) is a continuous function on [0, T].
By (4.2), there is an absolute constant M such that

E(t) ≤ ‖∇u0‖2
L2 +

α

µ(β + 1)
‖u0‖β+1

Lβ+1 + Mµ−4C0E2(t). (4.8)

Now suppose that

Mµ−4C0

(
‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1

)
≤ 1

8
, (4.9)

and set

T∗ , max
{

t ∈ [0, T] : E(s) ≤ 4‖∇u0‖2
L2 +

4α

µ(β + 1)
‖u0‖β+1

Lβ+1 , ∀s ∈ [0, t]
}

. (4.10)

We claim that
T∗ = T.

Otherwise, we have T∗ ∈ (0, T). By the continuity of E(t), it follows from (4.8)–(4.10) that

E(T∗) ≤ ‖∇u0‖2
L2 +

α

µ(β + 1)
‖u0‖β+1

Lβ+1 + Mµ−4C0E2(T∗)

≤ ‖∇u0‖2
L2 +

α

µ(β + 1)
‖u0‖β+1

Lβ+1 + Mµ−4C0E(T∗)
(

4‖∇u0‖2
L2 +

4α

µ(β + 1)
‖u0‖β+1

Lβ+1

)
= ‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1 + 4Mµ−4C0

(
‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1

)
E(T∗)

≤ ‖∇u0‖2
L2 +

α

µ(β + 1)
‖u0‖β+1

Lβ+1 +
1
2

E(T∗),

and thus
E(T∗) ≤ 2‖∇u0‖2

L2 +
2α

µ(β + 1)
‖u0‖β+1

Lβ+1 .

This contradicts with (4.10).
Choosing ε0 = 1

8M , by virtue of the claim we showed in the above, we derive that

E(t) ≤ 2‖∇u0‖2
L2 +

2α

µ(β + 1)
‖u0‖β+1

Lβ+1 , 0 < t < T,

provided that (4.7) holds true. This gives the desired (4.6) and consequently completes the
proof of Lemma 4.3.
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Now, we can give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let ε0 be the constant stated in Lemma 4.3 and suppose that the initial
velocity u0 ∈ H1(R3) with div u0 = 0, and

µ−4C0

(
‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1

)
≤ ε0.

According to Theorem 3.1, there is a unique local strong solution (u, P) to the system (1.1).
Let T∗ be the maximal existence time to the solution. We will show that T∗ = ∞. Suppose, by
contradiction, that T∗ < ∞, then by (1.2), we deduce that for any (s, γ) with 2

s +
3
γ ≤ 1, 3 <

γ < ∞, ∫ T∗

0
‖u‖s

Lγ dt = ∞,

which combined with the Sobolev inequality ‖u‖L6 ≤ C‖∇u‖L2 leads to∫ T∗

0
‖∇u‖4

L2 dt = ∞. (4.11)

By Lemma 4.3, for any 0 < T < T∗, there holds

sup
0≤t≤T

‖∇u‖2
L2 ≤ 2‖∇u0‖2

L2 +
2α

µ(β + 1)
‖u0‖β+1

Lβ+1 ,

which together with Hölder’s and Sobolev’s inequalities implies that∫ T∗

0
‖∇u‖4

L2 dt ≤ 4
(
‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖β+1

Lβ+1

)
T∗

≤ 4
(
‖∇u0‖2

L2 +
α

µ(β + 1)
‖u0‖

5−β
2

L2 ‖u0‖
3β−3

2
L6

)
T∗

≤ C(µ, α, β)

(
‖∇u0‖2

L2 + ‖u0‖
5−β

2
L2 ‖∇u0‖

3β−3
2

L2

)
T∗

< +∞,

contradicting to (4.11). This contradiction provides us that T∗ = ∞, and thus we obtain the
global strong solution. This finishes the proof of Theorem 1.2.
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