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Abstract. In this article, we are interested in a fractional Laplacian system in RN , which
involves critical Sobolev-type nonlinearities and critical Hardy–Sobolev-type nonlinear-
ities. By using variational methods, we investigate the extremals of the corresponding
best fractional Hardy–Sobolev constant and establish the existence of solutions. To
our best knowledge, our main results are new in the study of the fractional Laplacian
system.
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1 Introduction and main result

In this article, we are concerned with the existence of solutions for the following fractional
Laplacian system in RN :

(−∆)su− µ
u
|x|2s = (Ia ∗ |u|2

]
h,a)|u|2

]
h,a−2u +

|u|2∗s,b−2u
|x|b +

ηα

α + β

|u|α−2u|v|β
|x|b ,

(−∆)sv− µ
v
|x|2s = (Ia ∗ |v|2

]
h,a)|v|2

]
h,a−2v +

|v|2∗s,b−2v
|x|b +

ηβ

α + β

|u|α|v|β−2v
|x|b ,

(1.1)

where Ia(x) = Γ( N−2
2 )

2aπN/2Γ( a
2 )|x|N−a is a Riesz potential, for simplicity, we set Ia(x) = 1

|x|N−a , µ, η ∈
R+

0 , 0 < a, b < 2s < N, α > 1, β > 1, α + β = 2∗s,b = 2(N−b)
N−2s and 2]h,a = N+a

N−2s are fractional
critical exponents for Sobolev-type embeddings. The fractional Laplace operator (−∆)s is
defined by

(−∆)s = F−1(|ξ|2sFu(ξ)) for all u ∈ C∞
0 (RN), ξ ∈ RN ,
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where Fu denotes the Fourier transform of u. Weak solutions of (1.1) will be found in the
space H = Ḣs(RN)× Ḣs(RN), where Ḣs(RN) is defined as the completion of C∞

0 (RN) under
the norm

‖u‖2
Ḣs(RN) =

∫
RN
|ξ|2s|û(ξ)|2dξ. (1.2)

Therefore, for s > 0, we have

‖(−∆)
s
2 u‖2

L2(RN) =
∫

RN
|ξ|2s|û(ξ)|2dξ. (1.3)

By a (weak) solution (u, v) of problem (1.1), we mean that (u, v) ∈ H satisfies

∫
RN

[
(−∆)

s
2 u(−∆)

s
2 φ1 + (−∆)

s
2 v(−∆)

s
2 φ2 − µ

(
uφ1 + vφ2

|x|2s

)]
dx

=
∫∫

R2N

|u(y)|2
]
h,a |u(x)|2

]
h,a−2u(x)φ1(x) + |v(y)|2

]
h,a |v(x)|2

]
h,a−2v(x)φ2(x)

|x− y|N−a dxdy

+
∫

RN

|u|2∗s,b−2uφ1 + |v|2
∗
s,b−2vφ2 + η(α|u|α−2uφ1|v|β + β|u|α|v|β−2vφ2)

|x|b dx

for all φ1, φ2 ∈ Ḣs(RN).
In recent years, much attention has been paid to fractional and non-local operators. More

precisely, this type of operators arises in a quite natural way in many different applications,
such as, finance, physics, fluid dynamics, population dynamics, image processing, minimal
surfaces and game theory, see [4, 11] and the references therein. In particular, there are some
remarkable mathematical models involving the fractional Laplacian, such as, the fractional
Schrödinger equation (see [18, 31]), the fractional Kirchhoff equation (see [1, 13, 24, 25]), the
fractional porous medium equation (see [5]) and so on.

Problems with one nonlinearity or two nonlinearities involving the Laplacian and the frac-
tional Laplacian have been studied by many authors. For example, we refer, in bounded
domains to [14, 20, 21, 27, 28, 30], while in the entire space to [12, 16, 22]. In [8], Filippucci,
Pucci and Robert proved that there exists a positive solution for a p-Laplacian problem with
critical Sobolev and Hardy–Sobolev terms. In [15], Fiscella, Pucci and Saldi dealt with the
existence of nontrivial nonnegative solutions of Schrödinger–Hardy systems driven by two
possibly different fractional ℘-Laplacian operators, also including critical nonlinear terms,
where the nonlinearities do not necessarily satisfy the Ambrosetti–Rabinowitz condition. It is
natural to consider the concentration–compactness principle for critical problems. However,
due to the nonlocal feature of the fractional Laplacian, it is difficult to use the concentration–
compactness principle directly, since one needs to estimate commutators of the fractional
Laplacian and smooth functions. A natural strategy, which is named by the s-harmonic ex-
tension, is to transform the nonlocal problem into a local problem, as Caffarelli and Silvestre
performed in [3]. Since that, many interesting results in the classical elliptic problems have
been extended to the setting of the fractional Laplacian. For example, Ghoussoub and Shake-
rian in [16] combined the s-harmonic extension with the concentration-compactness principle
to investigate the existence of solutions for a doubly critical problem involving the fractional
Laplacian. It is worthy pointing out that Yang and Wu in [33] showed the existence of so-
lutions for problem (1.1) with η = 0, by using the elementary approach without the use of
the concentration-compactness principle or the extension argument of Caffarelli and Silvestre
in [3].
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In the doubly critical case, two critical nonlinearities interact to each other. There is an
asymptotic competition between the energy carried by the two critical nonlinearities. Obvi-
ously, the combination of the two critical exponents induces more difficulties. When one crit-
ical exponent is only involved, there are solutions to the corresponding equations: in general,
these solutions are radially symmetric with respect to the origin of the domain and are ex-
plicit, see for instance [23] for the details. However, very few information have been known in
our setting, especially for system, here we just refer the reader to an interesting literature [12].

In this paper, we are interested in the existence of solutions for system (1.1) involving
doubly critical exponents, by using a refinement of the Sobolev inequality which is related to
the Morrey space. A measurable function u : RN → R belongs to the Morrey space Lp,γ(RN)

with p ∈ [1,+∞) and γ ∈ (0, N], if and only if

‖u‖p
Lp,γ(RN)

= sup
R>0,x∈RN

Rγ−N
∫

BR(x)
|u(y)|pdy < ∞. (1.4)

By the Hölder inequality, we can verify that L2∗s (RN) ↪→ Lp, N−2s
2 p(RN) for 1 ≤ p < 2∗s = 2N

N−2s ,
and for 1 < q < p < 2∗s we have

Lp, N−2s
2 p(RN) ↪→ Lq, N−2s

2 q(RN).

Moreover, here holds Lp,γ(RN) ↪→ L1, γ
p (RN) provided that p ∈ (1,+∞) and γ ∈ (0, N).

The following refinement of Hardy–Sobolev inequalities were proved in [19] and [32].

Proposition 1.1. ([32, Theorem 1.1]). For any 0 < b < 2s < N, there exists C > 0 such that for θ

and r satisfying max{N−2s
N−b , 2s−b

N−b} ≤ θ < 1 ≤ r < 2∗s,b, there holds(∫
RN

|u|2∗s,b

|x|b dx

) 1
2∗s,b

≤ C‖u‖θ
Ḣs(RN)

‖u‖1−θ

Lr, r(N−2s)
2 (RN )

(1.5)

for any u ∈ Ḣs(RN).

In the present paper, we work in the product space H = Ḣs(RN)× Ḣs(RN) be the Carte-
sian product of two Hilbert spaces, which is a reflexive Banach space endowed with the norm

‖(u, v)‖2 = ‖(u, v)‖2
H = ‖u‖2

Ḣs(RN) + ‖v‖
2
Ḣs(RN),

where

‖u‖2
Ḣs(RN) =

∫
RN

(
|(−∆)

s
2 u|2 − µ

|u|2
|x|2s

)
dx.

Solutions of (1.1) are equivalent to a nonzero critical points of the functional

I(u, v) =
1
2
‖(u, v)‖2 − 1

2 · 2]h,a

∫∫
R2N

|u(x)|2
]
h,a |u(y)|2

]
h,a + |v(x)|2

]
h,a |v(y)|2

]
h,a

|x− y|N−a dxdy

− 1
2∗s,b

∫
RN

|u|2∗s,b + |v|2∗s,b + η|u|α|v|β
|x|b dx,

which is defined on H, and I ∈ C1(H, R). We say a pair of functions (u, v) ∈ H is called to be
a solution of (1.1) if

u 6= 0, v 6= 0, 〈I′(u, v), (φ1, φ2)〉 = 0, ∀(φ1, φ2) ∈ H. (1.6)
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If (u, v) = (u, 0) or (u, v) = (0, v), we say that they are the semi-nontrivial solution. In this
case, system can be seen as a singular equation, that is η = 0, see [33] for the details.

The main result of this paper can be concluded in the following theorem.

Theorem 1.2. If 0 ≤ µ < µ∗ = 4s Γ2( N+2s
4 )

Γ2( N−2s
4 )

, then problem (1.1) possesses at least one nontrivial
solution in H.

Remark 1.3. To the best of our knowledge, Theorem 1.2 is new in the study of the fractional
Laplacian system involving doubly critical nonlinearities in the whole space. We mainly
follow the idea of [33] to prove our main result.

This paper is organized as follows. In Section 2, some preliminary results are presented.
In Section 3, the extremals of the corresponding best fractional Hardy–Sobolev constant are
achieved. In Section 4, we give the proof of Theorem 1.2.

Throughout this paper, we will use the following notations: tz := t(u, v) = (tu, tv) for all
(u, v) ∈ H and t ∈ R; (u, v) is said to be nonnegative in RN if u ≥ 0 and v ≥ 0 in RN ; (u, v) is
said to be positive in RN if u > 0 and v > 0 in RN ; Br(0) = {x ∈ RN : |x| < r} is a ball in RN

of radius r > 0 at the origin; o(1) is a generic infinitesimal value. We always denote positive
constants as C for convenience.

2 Preliminaries

In this section, we recall the fractional Sobolev inequality. For N > 2s, the fractional Sobolev
embedding Ḣs(RN) ↪→ L

2N
N−2s (RN) was considered in [6, 7]. The continuity of this inclusion

corresponds to the inequality
‖u‖2

2∗s (RN) ≤ Sµ‖u‖2
Ḣs(RN). (2.1)

The best constant Sµ in (2.1) was computed (see Theorem 1.1 in [7]). Using the moving plane
method for integral equations, Chen, Li and Ou in [6] classified the solutions of an integral
equation, which is related to the problem

(−∆)su = |u|2∗s−2u in RN . (2.2)

The positive regular solutions of (2.2), which verify the equality in (2.1), are precisely given by

U(x) =
1

(λ2 + |x− x0|2)
N−2s

2
(2.3)

for λ > 0 and x0 ∈ RN .
On the other hand, the Hardy–Littlewood–Sobolev inequality yields(∫∫

R2N

|u(x)|2
]
h,a |u(y)|2

]
h,a

|x− y|N−a dxdy

) 1

2]h,a
≤ ‖u‖2

2N
N−2s
≤ C‖(−∆)

s
2 u‖2

2 , (2.4)

and the equality in (2.4) holds if and only if u is given by (2.3). Thus, the exponent 2]h,a is
critical in the sense that it is the limit exponent for the Sobolev-type inequality (2.4). Taking
into account Proposition 1.1 and (2.4), we obtain the following inequality:

(∫∫
R2N

|u(x)|2
]
h,a |u(y)|2

]
h,a

|x− y|N−a dxdy

) 1

2]h,a
≤ C‖u‖2θ

Ḣs‖u‖2(1−θ)
L2,N−2s (2.5)

for u ∈ Ḣs(RN).
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3 Minimizers of Ss,b

In this section, we show that the best constant Ss,b in our context can be achieved. Moreover, we
investigate the intrinsic relation between Ss,b and the best fractional Hardy–Sobolev constant
with single equation.

For µ > 0, we define

µ∗ = inf


∫

RN |(−∆)
s
2 u|2dx∫

RN
|u|2
|x|2s dx

, u ∈ Ḣs(RN) \ {0}

 . (3.1)

Here we remark that µ∗ in (3.1) was showed in [34] that

µ∗ = 4s Γ2(N+2s
4 )

Γ2(N−2s
4 )

.

Evidently, from (3.1) we have the fractional Hardy–Sobolev inequality

∫
RN

|u|2
|x|2s dx ≤ µ−1

∗

∫
RN
|(−∆)

s
2 u|2dx. (3.2)

If 0 ≤ µ < µ∗, by the fractional Sobolev inequality(∫
RN
|u|2∗s dx

) 2
2∗s ≤ S−1

∫
RN
|(−∆)

s
2 u|2dx (3.3)

and (3.2), we have

S
(

1− µ

µ∗

)(∫
RN
|u|2∗s dx

) 2
2∗s ≤

∫
RN

(
|(−∆)

s
2 u|2 − µ

|u|2
|x|2s

)
dx. (3.4)

Then, for 0 ≤ µ < µ∗, we define the functional

Is,a(u, v) =

∫
RN

(
|(−∆)

s
2 u|2 − µ |u|

2

|x|2s + |(−∆)
s
2 v|2 − µ |v|

2

|x|2s

)
dx( ∫∫

R2N
|u(x)|2

]
h,a |u(y)|2

]
h,a+|v(x)|2

]
h,a |v(y)|2

]
h,a

|x−y|N−a dxdy
) 1

2]h,a

(3.5)

and

Is,b(u, v) =

∫
RN

(
|(−∆)

s
2 u|2 − µ |u|

2

|x|2s + |(−∆)
s
2 v|2 − µ |v|

2

|x|2s

)
dx(∫

RN
|u(x)|2

∗
s,b+|v(x)|2

∗
s,b+η|u(x)|α|v(x)|β
|x|b dx

) 2
2∗s,b

. (3.6)

Consider the minimization problem

Ss,a = inf
{

Is,a(u, v) : u, v ∈ Ḣs(RN) \ {0}
}

, (3.7)

and
Ss,b = inf

{
Is,b(u, v) : u, v ∈ Ḣs(RN) \ {0}

}
. (3.8)

The following result shows that for 0 ≤ µ < µ∗, Ss,a, Ss,b are achieved.
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Lemma 3.1. If 0 ≤ µ < µ∗, then Ss,a and Ss,b are achieved respectively by a pair of radially symmetric
and nonnegative functions.

Proof. Here we only give the proof of process for Ss,a being achieved. With minor changes, we
can also get that Ss,b is achieved by a pair of radially symmetric nonnegative functions.

Let {(un, vn)}n be a minimizing sequence of Ss,a, that is∫
RN

[
|(−∆)

s
2 un|2 − µ

|un|2
|x|2s + |(−∆)

s
2 vn|2 − µ

|vn|2
|x|2s

]
dx → Ss,a

as n→ ∞ and ∫∫
R2N

|un(x)|2
]
h,a |un(y)|2

]
h,a + |vn(x)|2

]
h,a |vn(y)|2

]
h,a

|x− y|N−a dxdy = 1.

Inequality in (2.5) enables us to find C > 0 such that

‖un‖L2,N−2s(RN) ≥ C,

and the Sobolev embedding Ḣs(RN) ↪→ L2,N−2s(RN) gives

‖un‖2
L2,N−2s(RN) ≤ C.

So we may find λn > 0 and xn ∈ RN such that

λ−2s
n

∫
Bλn (xn)

|un|2dy ≥ ‖un‖2
L2,N−2s(RN) −

C
2n
≥ C1 > 0.

Let ũn(x) = λ
N−2s

2
n un(λnx). Then

λ−2s
n

∫
B1(

xn
λn )
|ũn|2dy ≥ C1 > 0.

Similarly, we can get that

λ−2s
n

∫
B1(

xn
λn )
|ṽn|2dy ≥ C1 > 0,

where ṽn(x) = λ
N−2s

2
n vn(λnx).

By simple computation, we can get I(un, vn) = I(ũn(x), ṽn(x)), and then {(ũn(x), ṽn(x))}n

is also a minimizing sequence of Ss,a. We can also show that {(ũn(x), ṽn(x))}n is bounded
in H. Hence, we may assume

(ũn(x), ṽn(x)) ⇀ (ũ(x), ṽ(x)) weakly in Ḣs(RN)× Ḣs(RN),

(ũn(x), ṽn(x)) ⇀ (ũ(x), ṽ(x)) weakly in
(

Lp
loc(R

N)
)2

for all 1 ≤ p < 2∗s ,

(ũn(x), ṽn(x))→ (ũ(x), ṽ(x)) a.e. in RN × RN .

We claim that { xn
λn
}n is uniformly bounded in n. Indeed, for any 0 < κ < 2s, we observe, by

the Hölder inequality, that

0 < C1 ≤
∫

B1(
xn
λn )
|ũn|2dy =

∫
B1(

xn
λn )
|y|2κ/2∗s,κ

|ũn|2

|y|2κ/2∗s,κ
dy

≤
(∫

B1(
xn
λn )
|y|

κ(N−2s)
2s−κ dy

) 2s−κ
N−κ
(∫

B1(
xn
λn )

|ũn|2
∗
s,κ

|y|κ dy

) 2
2∗s,κ

.
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By the rearrangement inequality, see [17, Theorem 3.4], we have

∫
B1(

xn
λn )
|y|

κ(N−2s)
2s−κ dy ≤

∫
B1(0)
|y|

κ(N−2s)
2s−κ dy ≤ C.

Therefore, ∫
B1(

xn
λn )

|ũn(y)|2
∗
s,κ

|y|κ dy ≥ C > 0. (3.9)

Now, suppose on the contrary, that | xn
λn
| → ∞ as n → ∞. Then, for any y ∈ B1(

xn
λn
), we have

|y| ≥ | xn
λn
| − 1 for n large. Thus by the Hölder inequality, it follows that

∫
B1(

xn
λn )

|ũn(y)|2
∗
s,κ

|y|κ dy ≤ 1
(| xn

λn
| − 1)κ

∫
B1(

xn
λn )
|ũn(y)|2

∗
s,κ dy

≤ 1
(| xn

λn
| − 1)κ

(∫
B1(

xn
λn )
|ũn(y)|2

∗
s dy

) N−κ
N

≤ 1
(| xn

λn
| − 1)κ

‖ũn‖
N−κ

N
Ḣs(RN)

≤ C
(| xn

λn
| − 1)κ

→ 0 as n→ ∞,

which contradicts (3.9). Hence, { xn
λn
}n is uniformly bounded, and there exists R > 0 such that

∫
BR(0)

|ũn(y)|2dy ≥
∫

B1(
xn
λn )
|ũn(y)|2dy ≥ C1 > 0.

The compact Sobolev embedding Ḣs(RN) ↪→ L2
loc(R

N) implies that there exists ũ satisfing

∫
BR(0)

|ũ(y)|2dy ≥ C1 > 0,

which means ũ 6≡ 0. Similarly we can get ṽ 6≡ 0. By a Brézis–Lieb-type lemma, see [19,
Lemma 2.4], we obtain

∫
RN

(Ia ∗ |ũn − ũ|2
]
h,a)|ũn − ũ|2

]
h,a dx +

∫
RN

(Ia ∗ |ũ|2
]
h,a)|ũ|2

]
h,a dx

=
∫

RN
(Ia ∗ |ũn|2

]
h,a)|ũn|2

]
h,a dx + o(1),

and

∫
RN

(Ia ∗ |ṽn − ṽ|2
]
h,a)|ṽn − ṽ|2

]
h,a dx +

∫
RN

(Ia ∗ |ṽ|2
]
h,a)|ṽ|2

]
h,a dx

=
∫

RN
(Ia ∗ |ṽn|2

]
h,a)|ṽn|2

]
h,a dx + o(1).
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Therefore,

Ss,a =
∫

RN

[
|(−∆)

s
2 ũn|2 − µ

|ũn|2
|x|2s + |(−∆)

s
2 ṽn|2 − µ

|ṽn|2
|x|2s

]
dx + o(1)

=
∫

RN

[
|(−∆)

s
2 (ũn − ũ)|2 − µ

|ũn − ũ|2
|x|2s + |(−∆)

s
2 |ṽn − ṽ|2 − µ

|ṽn − ṽ|2
|x|2s

]
dx

+
∫

RN

[
|(−∆)

s
2 ũ|2 − µ

|ũ|2
|x|2s + |(−∆)

s
2 |ṽ|2 − µ

|ṽ|2
|x|2s

]
dx + o(1)

≥ Ss,a

(∫
RN

(
Ia ∗ |ũn − ũ|2

]
h,a

)
|ũn − ũ|2

]
h,a dx +

∫
RN

(
Ia ∗ |ṽn − ṽ|2

]
h,a

)
|ṽn − ṽ|2

]
h,a

) 1

2]h,a

+ Ss,a

(∫
RN

(
Ia ∗ |ũ|2

]
h,a

)
|ũ|2

]
h,a dx +

∫
RN

(
Ia ∗ |ṽ|2

]
h,a

)
|ṽ|2

]
h,a dx

) 1

2]h,a + o(1)

≥ Ss,a

[∫
RN

[(
Ia ∗ |ũn − ũ|2

]
h,a

)
|ũn − ũ|2

]
h,a +

(
Ia ∗ |ṽn − ṽ|2

]
h,a

)
|ṽn − ṽ|2

]
h,a

]
dx

+
∫

RN

[(
Ia ∗ |ũ|2

]
h,a

)
|ũ|2

]
h,a +

(
Ia ∗ |ṽ|2

]
h,a

)
|ṽ|2

]
h,a

]
dx
] 1

2]h,a + o(1)

= Ss,a.

Since ũ, ṽ 6≡ 0, we obtain

Ss,a =
∫

RN

[
|(−∆)

s
2 ũ|2 − µ

|ũ|2
|x|2s + |(−∆)

s
2 ṽ|2 − µ

|ṽ|2
|x|2s

]
dx,

and ∫
RN

[
(Ia ∗ |ũ|2

]
h,a)|ũ|2

]
h,a + (Ia ∗ |ṽ|2

]
h,a)|ṽ|2

]
h,a

]
dx = 1.

Hence, Ss,a is achieved.
Let (ũ, ṽ) be a minimizer. By inequality (A.11) in [26], we get∫

RN

[
|(−∆)

s
2 |ũ||2 + |(−∆)

s
2 |ṽ||2

]
dx ≤

∫
RN

[
|(−∆)

s
2 ũ|2 + |(−∆)

s
2 ṽ|2

]
dx,

which implies that (|ũ|, |ṽ|) is also a minimizer of Ss,a and hence ũ ≥ 0, ṽ ≥ 0. All argument
of rearrangement (see [11, 26]) shows that (ũ, ṽ) is radially symmetric. The proof is therefore
complete.

For any α, β > 1 with α + β = 2∗s,b, and 0 < µ < µ∗, we define the following best Hardy–
Sobolev-type constant:

Λs,b := inf
u∈Ḣs(RN)\{0}

∫
RN

(
|(−∆)

s
2 u|2 − µ |u|

2

|x|2s

)
dx(∫

RN
|u|2

∗
s,b

|x|b dx
) 2

2∗s,b

. (3.10)

We may prove, as in [32] with minor changes, that Λs,b is achieved by a radially symmetric
nonnegative function. From this and the definition of Ss,b, we can get the following relation
between Λs,b and Ss,b.
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Theorem 3.2. Ss,b = f (τmin)Λs,b. Here

f (τ) :=
1 + τ2

(1 + ητβ + τα+β)
2

α+β

, τ ≥ 0, (3.11)

f (τmin) := min
τ≥0

f (τ) > 0, (3.12)

where τmin ≥ 0 is a minimal point of f (τ) and therefore a root of the equation

2∗s,bτ2∗s,b−2 + ηβτβ−2 − ηατβ − 2∗s,b = 0 , τ ≥ 0. (3.13)

Proof. We mimic the proof of Theorem 1.1 in [10]. By the definition of f (τ) defined in (3.11),
it follows that

lim
τ→0+

f (τ) = lim
τ→+∞

f (τ) = 1.

Thus minτ≥0 f (τ) must be achieved at τmin ≥ 0. Furthermore, direct calculation shows that
there exists a positive constant C such that

0 < C ≤ f (τmin) := min
τ>0

f (τ) ≤ 1, 0 < τmin < ∞.

From the fact that f ′(τmin) = 0, we deduce that τmin is a root of the following equation

2∗s,bτ2∗s,b−2 + ηβτβ−2 − ηατβ − 2∗s,b = 0, τ ≥ 0.

Suppose that {wn}n ⊂ Ḣs(RN) is a minimizing sequence for Λs,b. Let τ1, τ2 > 0 to be chosen
later. Taking un = τ1wn and vn = τ2wn in (3.8), we have

τ2
1 + τ2

2(
τ

2∗s,b
1 + τ

2∗s,b
2 + ητα

1 τ
β
2

) 2
2∗s,b

·
‖wn‖2

Ḣs(∫
RN
|wn|

2∗s,b

|x|b dx
) 2

2∗s,b

≥ Ss,b. (3.14)

Note that

f
(

τ2

τ1

)
=

τ2
1 + τ2

2(
τ

α+β
1 + ητα

1 · τ
β
2 + τ

2∗s,b
2

) 2
2∗s,b

.

Choose τ1 and τ2 in (3.14) such that τ2
τ1

= τmin. Passing to the limit as n→ ∞ we have

f (τmin)Λs,b ≥ Ss,b. (3.15)

On the other hand, let {(un, vn)}n be a minimizing sequence of Ss,b and define zn = τnvn,
where

τ
α+β
n =

∫
RN
|un|α+β

|x|b dx∫
RN
|vn|α+β

|x|b dx
.

Then ∫
RN

|zn|α+β

|x|b dx =
∫

RN

|un|α+β

|x|b dx. (3.16)

From the Young inequality it follows that∫
RN

|un|α · |zn|β
|x|b dx ≤ α

α + β

∫
RN

|un|α+β

|x|b dx +
β

α + β

∫
RN

|zn|α+β

|x|b dx.



10 L. Wang, B. Zhang and H. Zhang

Thus by (3.16) we have∫
RN

|un|α · |zn|β
|x|b dx ≤

∫
RN

|un|α+β

|x|b dx =
∫

RN

|zn|α+β

|x|b dx. (3.17)

Consequently,

‖un‖2
Ḣs + ‖vn‖2

Ḣs(∫
RN
|un|

2∗s,b+|vn|
2∗s,b+η|un|α|vn|β
|x|b dx

) 2
2∗s,b

=
‖un‖2

Ḣs + ‖vn‖2
Ḣs[(

1 + ητ
−β
n + τ

−(α+β)
n

) ∫
RN
|un|

2∗s,b

|x|b dx
] 2

2∗s,b

=
‖un‖2

Ḣs[(
1 + ητ

−β
n + τ

−(α+β)
n

) ∫
RN
|un|

2∗s,b

|x|b dx
] 2

2∗s,b

+
τ−2

n ‖zn‖2
Ḣs[(

1 + ητ
−β
n + τ

−(α+β)
n

) ∫
RN
|zn|

2∗s,b

|x|b dx
] 2

2∗s,b

≥ f (τ−1
n )Λs,b ≥ f (τmin)Λs,b.

As n→ ∞, we have
Ss,b ≥ f (τmin)Λs,b. (3.18)

From (3.15) and (3.18) it follows that

Ss,b = f (τmin)Λs,b. (3.19)

Thus, the proof is complete.

4 Proof of Theorem 1.2

In this section, we investigate the existence of solutions for problem (1.1). We first give some
technical lemmas so that we can use the mountain pass lemma to seek critical points of prob-
lem (1.1).

The Nehari manifold related to I is given by

N =
{
(u, v) ⊂ Ḣs(RN)\{0} × Ḣs(RN)\{0} : 〈I′(u, v), (u, v)〉 = 0

}
.

Then a minimizer of the minimization problem

c0 = inf
u∈N

I(u, v)

is a solution of problem (1.1). In order to establish the existence of solutions for problem (1.1),
we set

cγ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], Ḣs(RN)) : γ(0) = 0, γ(e) < 0} and

cs = inf
(u,v)∈H

max
t≥0

I(t(u, v)),

and

c∗ := min
{

a + 2s
2(N + a)

S
N+a
a+2s
s,a ,

2s− b
2(N − b)

S
N−b
2s−b
s,b

}
.

Then we have the following result.
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Lemma 4.1. Suppose 0 < a, b < 2s < N. Then we have

c0 = cγ = cs. (4.1)

The proof of Lemma 4.1 is standard. The further details with minor changes can be derived
as in the proof of [29, Theorem 4.2].

However, the following lemma reveals that cs < c∗.

Lemma 4.2. If 0 < a, b < 2s < 2N, then cs < c∗.

Proof. By Lemma 3.1, there exist minimizers (u1, v1) ∈ Ḣs(RN) \ {0} × Ḣs(RN) \ {0} of Ss,a

and (u2, v2) ∈ Ḣs(RN) \ {0} × Ḣs(RN) \ {0} of Ss,b. For t ≥ 0, we define

fa(t) =
1
2

t2
∫

RN

[
|(−∆)

s
2 u1|2 − µ

|u1|2
|x|2s + |(−∆)

s
2 v1|2 − µ

|v1|2
|x|2s

]
dx

− t2·2]h,a

2 · 2]h,a

∫∫
R2N

|u1(x)|2
]
h,a |u1(y)|2

]
h,a + |v1(x)|2

]
h,a |v1(y)|2

]
h,a

|x− y|N−a dxdy,

and

fb(t) =
1
2

t2
∫

RN

[
|(−∆)

s
2 u2|2 − µ

|u2|2
|x|2s + |(−∆)

s
2 v2|2 − µ

|v2|2
|x|2s

]
dx

− t2∗s,b

2∗s,b

∫
RN

|u2|2
∗
s,b + |v2|2

∗
s,b + η|u|α|v2|β
|x|b dx.

Obviously,
max
t≥0

I(t(u1, v1)) ≤ max
t≥0

fa(t),

and
max
t≥0

I(t(u2, v2) ≤ max
t≥0

fb(t).

We may verify that the function fa(t) attains its maximum at

ta =


∫

RN

[
|(−∆)

s
2 u1|2 − µ |u1|2

|x|2s + |(−∆)
s
2 v1|2 − µ |v1|2

|x|2s

]
dx∫∫

R2N
|u1(x)|2

]
h,a |u1(y)|

2]h,a+|v1(x)|2
]
h,a |v1(y)|

2]h,a

|x−y|N−a dxdy


1

2·2]h,a−2

,

and the function fb(t) attains its maximum at

tb =


∫

RN

[
|(−∆)

s
2 u2|2 − µ |u2|2

|x|2s + |(−∆)
s
2 v2|2 − µ |v2|2

|x|2s

]
dx∫

RN
|u2|

2∗s,b+|v2|
2∗s,b+η|u2|α|v2|β
|x|b dx


1

2∗s,b−2

.

Thus it yields that

max
t≥0

fa(t) = fa(ta) =
a + 2s

2(N + a)
S

N+a
a+2s
s,a ,

and
max
t≥0

fb(t) = fb(tb) =
2s− b

2(N − b)
S

N−b
2s−b
s,b .

Now we show
max
t≥0

I(t(u1, v1)) < fa(ta),
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and
max
t≥0

I(t(u2, v2)) < fb(tb).

Indeed, if there exist t1 > 0, t2 > 0 such that I(t1(u1, v1)) = fa(ta), I(t2(u2, v2)) = fb(tb), that
is,

fa(t1)−
t2∗s,b

2∗s,b

∫
RN

|u1|2
∗
s,b + |v1|2

∗
s,b + η|u1|α|v1|β
|x|b dx = fa(ta),

and

fb(t2)−
t
2·2]h,a
2

2 · 2]h,a

∫∫
R2N

|u2(x)|2
]
h,a |u2(y)|2

]
h,a + |v2(x)|2

]
h,a |v2(y)|2

]
h,a

|x− y|N−a dxdy = fb(tb).

which yields a contradiction and hence the assertion follows.

Next we show that the functional I satisfies the geometrical conditions in the mountain
pass lemma without the (PS) condition in [2].

Lemma 4.3. Suppose 0 < a, b < 2s < N.

(i) There exist positive numbers ρ and α0 such that I(u, v)|‖(u,v)‖H=ρ ≥ α0 for all u, v ∈ Ḣs(RN).

(ii) There exists e ∈ H with ‖e‖ > ρ such that I(e) < 0.

Proof. Let us show (i). From (2.4) and Proposition 1.1, it is simple to see that

I(u, v) =
1
2
‖(u, v)‖2 − 1

2∗s,b

∫
RN

|u|2∗s,b + |v|2∗s,b + η|u|α|v|β
|x|b dx

− 1

2 · 2]h,a

∫∫
R2N

|u(x)|2
]
h,a |u(y)|2

]
h,a + |v(x)|2

]
h,a |v(y)|2

]
h,a

|x− y|N−a dxdy

≥ 1
2

(
‖u‖2

Ḣs(RN) + ‖v‖
2
Ḣs(RN)

)
− C1

2 · 2]h,a

(
‖u‖22]h,a

Ḣs(RN)
+ ‖v‖22]h,a

Ḣs(RN)

)
− C2

2∗s,b

(
‖u‖2∗s,bθ

Ḣs(RN)
+ ‖v‖2∗s,bθ

Ḣs(RN)

)
≥ 1

2

(
‖u‖2

Ḣs(RN) + ‖v‖
2
Ḣs(RN)

)
− C3

2 · 2]h,a

(
‖u‖2

Ḣs(RN) + ‖v‖
2
Ḣs(RN)

)2]h,a

− C4

2∗s,b

(
‖u‖2

Ḣs(RN) + ‖v‖
2
Ḣs(RN)

) 2∗s,bθ

2

≥ α0 > 0

for ‖(u, v)‖ = ρ > 0 small. The first assertion is proved.
For (ii), notice that

I(t(u0, v0)) =
t2

2
‖(u0, v0)‖2 − t2∗s,b

2∗s,b

∫
RN

|u0|2
∗
s,b + |v0|2

∗
s,b + η|u0|α|v0|β
|x|b dx

− t2·2]h,a

2 · 2]h,a

∫∫
R2N

|u0(x)|2
]
h,a |u0(y)|2

]
h,a + |v0(x)|2

]
h,a |v0(y)|2

]
h,a

|x− y|N−a dxdy

→ −∞ as t→ ∞.
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Taking t0 large enough such that ‖t0(u0, v0)‖ > ρ and I(t0(u0, v0)) < 0. Put e = t0(u0, v0),
then the assertion (ii) follows.

The following result implies the non-vanishing of (PS)c sequences.

Lemma 4.4. Suppose 0 < a, b < 2s < N. Let {(un, vn)} ⊂ H be a (PS)c sequence of I with
c ∈ (0, c∗). Then ∫

RN

|u|2∗s,b + |v|2∗s,b + η|u|α|v|β
|x|b dx > 0, (4.2)

and ∫∫
R2N

|u(x)|2
]
h,a |u(y)|2

]
h,a + |v(x)|2

]
h,a |v(y)|2

]
h,a

|x− y|N−a dxdy > 0. (4.3)

Proof. Since
I(un, vn)→ c, I′(un, vn)→ 0

as n→ ∞, in particular,

o(1) + 〈I′(un, vn), (un, vn)〉 = ‖(un, vn)‖2 +
∫

RN

|un|2
∗
s,b + |vn|2

∗
s,b + η|un|α|vn|β
|x|b dx

−
∫∫

R2N

|un(x)|2
]
h,a |un(y)|2

]
h,a + |vn(x)|2

]
h,a |vn(y)|2

]
h,a

|x− y|N−a dxdy,

we get

c + o(1)‖(un, vn)‖ = I(un, vn)−
1

2∗s,b
〈I′(un, vn), (un, vn)〉

≥
(

1
2
− 1

2∗s,b

)
‖(un, vn)‖2,

which implies that {(un, vn)}n is uniformly bounded in H.
Now we give the proof by contradiction. Suppose∫

RN

|un|2
∗
s,b + |vn|2

∗
s,b + η|un|α|vn|β
|x|b dx = 0,

then, from I(un, vn)→ c and I′(un, vn)→ 0, we have

c + o(1) =
1
2
‖(un, vn)‖2 − 1

2 · 2]h,a

∫∫
R2N

|un(x)|2
]
h,a |un(y)|2

]
h,a + |vn(x)|2

]
h,a |vn(y)|2

]
h,a

|x− y|N−a dxdy,

and

o(1) = ‖(un, vn)‖2 −
∫∫

R2N

|un(x)|2
]
h,a |un(y)|2

]
h,a + |vn(x)|2

]
h,a |vn(y)|2

]
h,a

|x− y|N−a dxdy. (4.4)

Thus we get

c + o(1) =

(
1
2
− 1

2 · 2]h,a

)
‖(un, vn)‖2. (4.5)

Moreover, by (4.4) and the definition of Ss,a, we have

‖(un, vn)‖2 ≥ Ss,a‖(un, vn)‖
2

2]h,a ⇒ ‖(un, vn)‖2 ≥ S
N+a
a+2s
s,a .
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Therefore, from (4.5) it follows that

c ≥ a + 2s
2(N + a)

S
N+a
a+2s
s,a ,

which is a contradiction. Similarly, we can prove (4.3). Hence the proof is complete.

We are now ready to prove the existence of solutions for problem (1.1).

Proof of Theorem 1.2. By Lemma 4.3, there exists a (PS)cs sequence {(un, vn)}n, which is
bounded in H. Thus we may assume that

un ⇀ u, vn ⇀ v weakly in Ḣs(RN) ,

un → u, vn → v a.e. in RN ,

un → u, vn → v in Lp
loc(R

N) for all 1 ≤ p < 2∗s .

We claim that (u, v) is a nontrivial solution of (1.1). Indeed, by Lemma 4.2 and Lemma 4.4,
we claim that (4.2) and (4.3) hold true. Hence, by (2.5), there exists C > 0 such that

‖un‖L2,N−2s(RN) ≥ C, ‖vn‖L2,N−2s(RN) ≥ C.

So we can find λn > 0 and xn ∈ RN such that

λ−2s
n

∫
Bλn (xn)

|un|2dy ≥ ‖un‖2
L2,N−2s(RN) −

C
2n
≥ C1 > 0. (4.6)

Let ũn(x) = λ
N−2s

2
n un(xn + λnx), ṽn(x) = λ

N−2s
2

n vn(xn + λnx). We may readily verify that as
n→ ∞

Ĩ(ũn, ṽn) = I(un, vn)→ cs, |〈 Ĩ′(ũn, ṽn), (ϕ1, ϕ2)〉 → 0

for all (ϕ1, ϕ2) ∈ C∞
0 (RN)× C∞

0 (RN), where

Ĩ(ũn, ṽn) =
1
2

∫
RN
|(−∆)

s
2 ũn|2dx− 1

2
µ
∫

RN

|ũn|2
|x + xn

λn
|2s dx

+
1
2

∫
RN
|(−∆)

s
2 ṽn|2dx− 1

2
µ
∫

RN

|ṽn|2
|x + xn

λn
|2s dx

− 1

2 · 2]h,a

∫∫
R2N

|ũn(x)|2
]
h,a |ũn(y)|2

]
h,a + |ṽn(x)|2

]
h,a |ṽn(y)|2

]
h,a

|x− y|N−a dxdy

− 1
2∗s,b

∫
RN

|ũn|2
∗
s,b + |ṽn|2

∗
s,b + η|ũn|α|ṽn|β

|x + xn
λn
|b dx.

Then by the same processes in Lemma 4.4, we get that {(un, vn)}n is uniformly bounded in
H. Thus there exists {(ũ, ṽ)} such that

ũn ⇀ ũ, ṽn ⇀ ṽ weakly in Ḣs(RN) ,

ũn → u, vn → ṽ a.e. in RN ,

ũn → ũ, ṽn → ṽ in Lp
loc(R

N) for all 1 ≤ p < 2∗s ,

and by ∫
BR(0)

|ũn(y)|2dy ≥ C1 > 0,
∫

BR(0)
|ṽn(y)|2dy ≥ C1 > 0,
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it yields that ũ 6≡ 0, ṽ 6≡ 0. We claim that { xn
λn
}n is bounded. Indeed, if xn

λn
→ ∞, then for any

ϕ1, ϕ2 ∈ C∞
0 (RN), we have ∫

RN

ũn ϕ1 + ṽn ϕ2

|x + xn
λn
|2s dx → 0,

∫
RN

|ũn|2
∗
s,b−2ũn ϕ1 + |ṽn|2

∗
s,b−2ṽn ϕ2 + η(α|ũn|α−2ũn ϕ1|ṽn|β + β|ũn|α|ṽn|β−2ṽn ϕ2)

|x + xn
λn
|b dx → 0

as n→ ∞. Hence (ũ, ṽ) solves the equation

(−∆)sũ− µ
ũ
|x|2s + (−∆)sṽ− µ

ṽ
|x|2s =

(
Ia ∗ |ũ|2

]
h,a

)
|ũ|2

]
h,a−2ũ +

(
Ia ∗ |ṽ|2

]
h,a

)
|ṽ|2

]
h,a−2ṽ in RN ,

and we obtain

cs = Ĩ(ũn, ṽn)−
1
2
〈 Ĩ′(ũn, ṽn), (ũn, ṽn)〉+ o(1)

=

(
1
2
− 1

2 · 2]h,a

) ∫∫
R2N

|ũn(x)|2
]
h,a |ũn(y)|2

]
h,a + |ṽn(x)|2

]
h,a |ṽn(y)|2

]
h,a

|x− y|N−a dxdy

+

(
1
2
− 1

2∗s,b

) ∫
RN

|ũn|2
∗
s,a + |ṽn|2

∗
s,a + η|ũn|α|ṽn|β

|x + xn
λn
|b dx + o(1)

≥
(

1
2
− 1

2 · 2]h,a

) ∫∫
R2N

|ũn(x)|2
]
h,a |ũn(y)|2

]
h,a + |ṽn(x)|2

]
h,a |ṽn(y)|2

]
h,a

|x− y|N−a dxdy + o(1)

= I(ũ, ṽ) ≥ c∗,

which contradicts Lemma 4.2. Let ûn(x) = λ
N−2s

2
n un(λnx), v̂n(x) = λ

N−2s
2

n vn(λnx). Then we can
verify that

I(ûn, v̂n) = I(un, vn)→ cm, I′(ûn, v̂n)→ 0 as n→ ∞.

Arguing as before, we have ûn ⇀ û, v̂n ⇀ v̂ in Ḣs(RN), which implies that (û, v̂) is a solution
of (1.1). Furthermore, there exists R > 0 such that∫

BR(0)
|ûn(y)|2dy = λ−2s

n

∫
Bλn (xn)

|un(y)|2dy ≥ C1 > 0,
∫

BR(0)
|v̂n(y)|2dy > 0. (4.7)

The compact embedding Ḣs(RN) ↪→ L2
loc(R

N) implies that un → û, vn → v̂ in L2(BR(0)) and
û, v̂ 6≡ 0. Moreover,

cs ≥ I(û, v̂) ≥ c0 = cs.

Hence, (û, v̂) is a nontrivial solution of (1.1) satisfying I(û, v̂) = cs. This ends the proof of
Theorem 1.2.
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[20] G. Molica Bisci, R. Servadei, A Brézis–Nirenberg splitting approach for nonlocal frac-
tional problems, Nonlinear Anal. 119(2015), 341–353. MR3334193
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