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On the Dirichlet problem for a Duffing type

equation

Marek Galewski

Abstract

We use direct variational method in order to investigate the de-

pendence on parameter for the solution for a Duffing type equation

with Dirichlet boundary value conditions.

1 Introduction

Recently the classical variational problem for a Duffing type equation re-
ceived again some attention. In [1], [2], [7], some variational approaches
were used in order to receive the existence of solutions for both periodic and
Dirichlet type boundary value problems. Mainly direct method is applied
under various conditions pertaining to at most quadratic growth imposed on
the nonlinear term given in [2] and further relaxed in [7]. Dirichlet problems
for such equations could also be considered by some other methods, for exam-
ple min-max theorem due to Manashevich, [8]. In [6] the author gives some
historical results concerning the Dirichlet problem for Duffing type equations
and discusses the methods which are used in reaching the existence results
which are different from the ones which we use and comprise the classical
variational approach, the topological method.

In the boundary value problems for differential equations it is also im-
portant to know whether the solution, once its existence is proved, depends
continuously on a functional parameter. This question has a great impact
on future applications of any model since it is desirable to know whether the
solution to the small deviation from the model would return, in a continu-
ous way, to the solution of the original model. This is known in differential
equation as stability or continuous dependence on parameter, see [4]. We
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will investigate the dependence on a functional parameter for a Duffing type
equations basing on some results developed for different kind of problems in
[4]. However we provide some general principle which will allow for investi-
gation of dependence on parameters for other problems also. In [4] and also
in other papers by these authors, it is required that each problem should be
investigated separately as far as the dependence on parameters is concerned.
Here we aim at providing some hint how to obtain a general rule, which
will allow to investigate the dependence on parameters for various types of
nonlinear problems. We will demonstrate our results on the Duffing type
boundary value problem.

To be precise, in this paper we will consider the Dirichlet problem for a
forced Duffing type equation with a functional parameter u. We investigate
the problem

d2

dt2
x (t) + r (t) d

dt
x (t) + F 2

x (t, x (t)) u (t) − F 1
x (t, x (t)) = f (t) ,

x (0) = x (1) = 0
(1)

with u : [0, 1] → R belonging to the set

LM = {u : [0, 1] → R : u is measurable, |u (t)| ≤ m for a.e. t ∈ [0, 1]}

and where m > 0 is a fixed real number. Here f ∈ L2 (0, 1) is the forcing
term and r ∈ C1 (0, 1) denotes the friction; r (τ) ≥ 0 for τ ∈ [0, 1]. Here we
do not assume anything about the monotonicity of r, but instead we require
that

1

4
r2 (t) +

1

2

d

dt
r (t) > 0 (2)

for all t ∈ [0, 1]. We denote w (t) = 1
4
r2 (t) + 1

2
d
dt
r (t). Of course, when

r is nondecreasing we obviously have (2). Following [7] we denote R (t) =

e
R t

0
1
2
r(τ)dτ . Since r (τ) ≥ 0 on [0, 1] we see that

Rmax = emaxτ∈[0,1] r(τ) ≥ R (t) ≥ R (0) = 1. (3)

Upon putting y = R (t) x boundary problem (1) reads

− d2

dt2
y (t) + w (t) y (t) = R (t)F 2

x

(

t,
y(t)
R(t)

)

u (t) −R (t)F 1
x

(

t,
y(t)
R(t)

)

− R (t) f (t) ,

y (0) = y (1) = 0.
(4)
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Therefore instead of (1) in this paper we will investigate (4). In what follows
(F 1)

∗
denotes the Fenchel-Young transform (see for example [5]) of a function

F 1 with respect to the second variable, namely

(

F 1
)

∗

(t, v) = sup
x∈R

{

xv − F 1 (t, x)
}

for a.e. t ∈ [0, 1] .

As an application, we finally consider the existence to some optimal control
problem.

2 The assumptions and examples

In order to apply a direct variational method to a Dirichlet problem (4) we
will employ the following assumptions besides the assumptions given at the
beginning of the paper.

F1 F 1, F 1
x , F

2, F 2
x : [0, 1] × R → R are Caratheodory functions; t →

F 1 (t, 0) is integrable on [0, 1]; for any d > 0 there exists a function fd ∈
L2 (0, 1) (depending on d), fd (t) > 0 for a.e. t ∈ [0, 1], such that

∣

∣F 1
x (t, x)

∣

∣ ≤ fd (t) for all x ∈ [−d, d], for a.e. t ∈ [0, 1] ; (5)

F2 either t→ (F 1)
∗

(t, 0) is integrable on [0, 1] or else F 1 is convex in x

for a.e. t ∈ [0, 1];

F3 there exist functions a, b ∈ L2 (0, 1) such that

∣

∣F 2 (t, x)
∣

∣ ≤ a (t) ,
∣

∣F 2
x (t, x)

∣

∣ ≤ b (t) for a.e. t ∈ [0, 1] and all x ∈ R. (6)

With assumptions F1, F2, F3 we get for any fixed u ∈ LM the existence of

an argument of a minimum for an Euler functional Ju : H1
0 (0, 1) → R

Ju (x) =
1

2

∫ 1

0

(

d
dt
x (t)

)2
dt+

1

2

∫ 1

0

w (t)x2 (t) dt+

−

∫ 1

0

R2 (t)F 2
(

t,
x(t)
R(t)

)

u (t) dt+

∫ 1

0

R2 (t)F 1
(

t,
x(t)
R(t)

)

dt−
∫ 1

0
R (t) f (t) x (t) dt.
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A weak solution to (4) is understood as such a function x ∈ H1
0 (0, 1) that

for all g ∈ H1
0 (0, 1) the following relation holds:

∫ 1

0

d
dt
x (t) d

dt
g (t) dt+

∫ 1

0

w (t) x (t) g (t) dt−

∫ 1

0

R (t)F 2
x

(

t,
x(t)
R(t)

)

u (t) g (t) dt

+

∫ 1

0

R (t)F 1
x

(

t,
x(t)
R(t)

)

g (t) dt−
∫ 1

0
R (t) f (t) g (t) dt = 0.

(7)

Lemma 1 We assume F1, F2, F3. For any fixed u ∈ LM functional Ju

is well defined and Gâteaux differentiable onto H1
0 (0, 1). Moreover, weak

solutions to (4) correspond to critical points of Ju.

Proof. Let us fix any x ∈ H1
0 (0, 1). Since |u (t)| ≤ m we see that

F 2
x (·, x (·)) u (·) ∈ L2 (0, 1). We further observe by inequality

max
t∈[0,1]

|x (t)| ≤ ‖ẋ‖L2(0,1)

that there exists a number du > 0 such that |x (t)| ≤ du. Hence by the Mean
Value Theorem, by integrability of t→ F (t, 0) it follows by (5) that

1
∫

0

∣

∣

∣

∣

R2 (t)F 1

(

t,
x (t)

R (t)

)
∣

∣

∣

∣

dt ≤

1
∫

0

∣

∣R2 (t)F 1 (t, 0)
∣

∣ dt+ du

1
∫

0

∣

∣R2 (t) fdu
(t)

∣

∣ dt

(8)

the integral

∫ 1

0

R2 (t)F 1
(

t,
x(t)
R(t)

)

dt is finite. By (6) we have also the integral
∫ 1

0

R2 (t)F 2
(

t,
x(t)
R(t)

)

u (t) dt exists. Thus Ju is well defined. The Gâteaux

differentiability follows since F 1
x (·, x (·)) ∈ L2 (0, 1) and since F 2

x (·, x (·)) ∈
L2 (0, 1) by (6). A direct calculation shows

〈

d
dx
Ju (xu) , g

〉

= 0 equals exactly
(7).

We conclude this section with examples of nonlinearities satisfying our
assumptions.

Let F 2 (t, x) = f (t) g(x), where g ∈ C1 (R) has a bounded derivative and

F 1 (t, x) =
1

2s
g1 (t)x2s −

1

s
g2 (t) xs,
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where s is an even number, f ∈ L2 (0, 1) , g1, g2 ∈ L∞ (0, 1), g1 (t) , g2 (t) > 0
for a.e. t ∈ [0, 1]. Then

∣

∣F 2
x (t, x)

∣

∣ =

∣

∣

∣

∣

f (t)
d

dx
g (x)

∣

∣

∣

∣

≤ |f (t)| sup
x∈R

∣

∣

∣

∣

d

dx
g (x)

∣

∣

∣

∣

= a (t) and a ∈ L2 (0, 1) ,

and
F 1

x (t, x) = g1 (t)x2s−1 − g2 (t) xs−1.

Again for any fixed d > 0 function t→ maxx∈[−d,d] (|g1 (t)|x2s−1 + |g2 (t)| xs−1)
belongs to L2 (0, 1). We remark that F 1 need not be convex on R and that
t → (F 1)

∗

(t, 0) is integrable. Indeed, for a.e. (fixed) t ∈ [0, 1] function
x → − 1

2s
g1 (t) x2s + 1

s
g2 (t) xs has its maximum xM satisfying g1 (t) x2s−1 −

g2 (t) xs−1 = 0 so either

xM = 0 and
(

F 1
)

∗

(t, 0) = sup
x∈R

{

−
1

2s
g1 (t) x2s +

1

s
g2 (t) xs

}

= 0

or

xs
M =

g2 (t)

g1 (t)
and

(

F 1
)

∗

(t, 0) = −
1

2

(g2 (t))2

g1 (t)
.

3 Dependence on parameters for action func-

tionals

In order to derive the results concerning the dependence on parameters for
problem (4), we employ the following general principle. Let E be a Hilbert
space with inner product 〈·, ·〉 and with the induced norm ‖·‖ . Let C be a
Banach space with norm ‖·‖C . Let us consider a family of action functionals
x→ J (x, u), where x ∈ E and where u ∈ C is a parameter.

Theorem 2 Assume that E ∋ x → J (x, u) satisfies Palais-Smale condi-
tion, is weakly lower semicontinuous and bounded from below for any fixed
u ∈ M , where M ⊂ C. Then x → J (x, u) has the argument of a min-
imum over E. Suppose further that there exists a constant α > 0 such
that the set {(x, u) : J (x, u) ≤ α} is bounded in E uniformly in u ∈ M .
Let {un}

∞

n=1 ⊂ M be a weakly convergent sequence of parameters, where a
weak limit limn→∞ un = u ∈ M . Let {xn}

∞

n=1 ⊂ E be the corresponding
sequence of the arguments of minimum to E ∋ x → J (x, un). Then, there
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is a convergent subsequence {xni
}∞i=1 ⊂ E and an element x ∈ E such that

limi→∞ xni
= x. If additionally

J (x, uni
) → J (x, u) and J (xni

, uni
) → J (x, uni

) as i→ ∞, (9)

we obtain that x is an argument of a minimum to x→ J (x, u).

Proof. Let us fix u ∈ M . Since x → J (x, u) satisfies Palais-Smale
condition, is weakly lower semicontinuous and bounded from below, it follows
that J (·, u) has an argument of a minimum.

Let {un}
∞

n=1 ⊂ M be a weakly convergent sequence of parameters with
limn→∞ un = u. Now since the set {x : J (x, u) ≤ α} is bounded it follows
that sequence {xn}

∞

n=1 ⊂ {x : J (x, u) ≤ α} of the arguments of a minimum
to x → J (x, un) has a weakly convergent subsequence {xni

}∞i=1 ⊂ E. Let us
denote x = limi→∞ xni

, where x denotes the weak limit.
We will prove that x is an argument of a minimum to x → J (x, u). We

see that there exists x0 ∈ E such that J (x0, u) = infy∈E J (y, u) and there
are two possibilities: either J (x0, u) < J (x, u) or J (x0, u) = J (x, u). If we
have J (x0, u) = J (x, u), then we have the assertion. Let us suppose that
J (x0, u) < J (x, u), so there exists δ > 0 such that

J (x, u) − J (x0, u) > δ > 0. (10)

We investigate the inequality

δ < (J (xni
, uni

) − J (x0, u)) − (J (xni
, uni

) − J (x, uni
))

− (J (x, uni
) − J (x, u))

(11)

which is equivalent to (10). In view of (9) we see that the second and third
term converge to 0. Finally, since xni

minimizes x → J (x, uni
) over E we

get J (xni
, uni

) ≤ J (x0, uni
) and next

lim
i→∞

(J (xni
, uni

) − J (x0, u)) ≤ lim
i→∞

(J (x0, uni
) − J (x0, u)) = 0.

Summarizing, we see that we have δ ≤ 0 in (11), which is a contradiction.
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4 Existence result

Theorem 3 Let u ∈ LM be arbitrarily fixed. Assume F1, F2, F3 . There
exists xu ∈ H1

0 (0, 1) such that Ju (xu) = infx∈H1
0 (0,1) Ju (x) and

xu ∈ Vu =

{

x ∈ H1
0 (0, 1) : Ju (x) = inf

v∈H1
0 (0,1)

Ju (v) and
d

dx
Ju (x) = 0

}

Moreover, xu satisfies (4) for a.e. t ∈ [0, 1].

Proof. First we show that Ju is weakly l.s.c. on H1
0 (0, 1). Let us take

any sequence {xn}
∞

n=1 ⊂ H1
0 (0, 1) such that xn converges weakly in H1

0 (0, 1)
to x. Then {xn}

∞

n=1 contains by the Arzela-Ascoli Theorem a subsequence
convergent uniformly and which we denote by {xn}

∞

n=1. Now since {xn}
∞

n=1

is convergent in C (0, 1) it follows that there exist a number d such that
maxt∈[0,1] |xn (t)| ≤ d for sufficiently large n. By (6) and by the Lebesgue
Dominated Convergence Theorem that

1
∫

0

R2 (t)F 2

(

t,
xn (t)

R (t)

)

u (t) dt→

1
∫

0

R2 (t)F 2

(

t,
x (t)

R (t)

)

u (t) dt as n→ ∞.

Now by (8) we see that

lim
n→∞

1
∫

0

R2 (t)F 1

(

t,
xn (t)

R (t)

)

dt =

1
∫

0

R2 (t)F 1

(

t,
x (t)

R (t)

)

dt as n→ ∞.

Since the remaining terms of Ju are convex and defined on H1
0 (0, 1), these

are also weakly l.s.c. on H1
0 (0, 1). Thus Ju is weakly l.s.c. on H1

0 (0, 1).

We observe that Ju is coercive on H1
0 (0, 1) in both cases.

Indeed, in case F 1 is convex for any v ∈ R we get

F 1 (t, v) ≥ F 1 (t, 0) + Fx (t, 0) v (12)

and further since t → F 1
x (t, 0) is integrable with square on [0, 1], the same

follows for t→ R (t)F 1
x (t, 0). Thus for any x ∈ H1

0 (0, 1)
∫ 1

0

R2 (t)F 1
(

t,
x(t)
R(t)

)

dt ≥

∫ 1

0

R2 (t)F 1 (t, 0) dt+

∫ 1

0

R (t)F 1
x (t, 0)x (t) dt ≥

∫ 1

0

R2 (t)F 1 (t, 0) dt− ‖R (·)F 1
x (·, 0)‖L2(0,1) ‖x‖L2(0,1)
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and by (6)

−

1
∫

0

∣

∣

∣

∣

R2 (t)F 2

(

t,
x (t)

R (t)

)

u (t)

∣

∣

∣

∣

dt ≥ −m (Rmax)
2

∫ 1

0

|a (t)| dt. (13)

In case t → (F 1)
∗

(t, 0) is integrable we obtain by inequality Fenchel-Young
inequality

1
∫

0

R2 (t)F 1

(

t,
x (t)

R (t)

)

dt ≥ −

1
∫

0

R2 (t)
(

F 1
)

∗

(t, 0) dt. (14)

It follows that there exists xu ∈ H1
0 (0, 1) such that Ju (xu) = infx∈H1

0 (0,1) Ju (x)
and obviously xu is a weak solution to (4). Applying the fundamental lemma
of the calculus of variations we obtain that xu satisfies (4) for a.e. t ∈ [0, 1].

5 Dependence on a functional parameter

Theorem 4 We assume F1, F2, F3. Let {uk}
∞

k=1, uk ∈ LM , be such a
sequence that limk→∞ uk = u weakly in L2 (0, 1). For each k = 1, 2, ... the
set Vuk

is nonempty and for any sequence {xk}
∞

k=1 of solutions xk ∈ Vuk
to

the problem (4) corresponding to uk, there exists a subsequence {xkn
}∞n=1 ⊂

H1
0 (0, 1) and an element x ∈ H1

0 (0, 1) such that limn→∞ xkn
= x (strongly in

L2 (0, 1), weakly in H1
0 (0, 1), strongly in C (0, 1)) and Ju (x) = infx∈H1

0 (0,1) Ju (x).
Moreover, x ∈ Vu, i.e.

− d2

dt2
x (t) + w (t) x (t) = R (t)F 2

x

(

t,
x(t)
R(t)

)

u (t) − R (t)F 1
x

(

t,
x(t)
R(t)

)

− R (t) f (t) ,

x (0) = x (1) = 0.
(15)

Proof. We will verify the assumptions of Theorem 2. By Theorem
3 for each k = 1, 2, ... there exists a solution xk ∈ Vuk

to (4). We see
that xk ∈ Vuk

⊂ Sk = {x : Juk
(x) ≤ Juk

(0)} . We shall show that sequence
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{xk}
∞

k=1 is bounded in H1
0 (0, 1). In case F 1 is convex for any x ∈ Sk we have

−

∫ 1

0

R2 (t)F 2 (t, 0)uk (t) dt+

∫ 1

0

R2 (t)F 2 (t, x (t))uk (t) dt ≤

2m (Rmax)
2

∫ 1

0

|a (t)| dt.

(16)

By (12) and since F 1
x (·, 0) ∈ L2 (0, 1) we see by Poincaré inequality

‖x‖L2(0,1) ≤
1

π
‖ẋ‖L2(0,1)

that
∫ 1

0

R2 (t)F 1 (t, 0) dt−

∫ 1

0

R2 (t)F 1
(

t,
x(t)
R(t)

)

dt ≤

−

∫ 1

0

R (t)F 1
x (t, 0)x (t) dt ≤ 1

π
‖R (·)F 1

x (·, 0)‖L2(0,1)

∥

∥

d
dt
x
∥

∥

L2(0,1)
.

Therefore writing 0 ≤ Juk
(0) − Juk

(x) explicitly and using Schwartz and
Poincaré inequalities we have

1

2

∥

∥

d
dt
x
∥

∥

2

L2(0,1)
− 1

π

∥

∥

d
dt
x
∥

∥

L2(0,1)
‖f‖L2(0,1)

− 1
π
‖R (·)F 1

x (·, 0)‖L2(0,1)

∥

∥

d
dt
x
∥

∥

L2(0,1)
≤ 2m (Rmax)

2

∫ 1

0

|a (t)| dt.

(17)

Thus we see that the term
∥

∥

d
dt
x
∥

∥

L2(0,1)
is in fact bounded disregarding of uk.

In case t → (F 1)
∗

(t, 0) is integrable we also have (16) and by (14) we see
that

1

2

∥

∥

d
dt
x
∥

∥

2

L2(0,1)
− 1

π

∥

∥

d
dt
x
∥

∥

L2(0,1)
‖f‖L2(0,1)

− 1
π
‖R (·)F 1

x (·, 0)‖L2(0,1)

∥

∥

d
dt
x
∥

∥

L2(0,1)
≤ 2m (Rmax)

2

∫ 1

0

|a (t)| dt+

∫ 1

0

R2 (t)F 1 (t, 0) dt+

∫ 1

0

R2 (t) (F 1)
∗

(t, 0) dt.

(18)
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Therefore, either by (17) or by (18) there exists a subsequence {xkn
}∞n=1 of

{xk}
∞

k=1 ⊂ H1
0 (0, 1) weakly convergent in H1

0 (0, 1) to x ∈ H1
0 (0, 1), which up

to a subsequence may be assumed uniformly convergent and thus strongly
convergent to L2 (0, 1).

Next, by Lebesgue Dominated Convergence Theorem we see that

lim
kn→∞

1
∫

0

R2 (t)F 1

(

t,
xkn

(t)

R (t)

)

dt =

1
∫

0

R2 (t)F 1

(

t,
x (t)

R (t)

)

dt, (19)

and lim
kn→∞

1
∫

0

R2 (t)F 2

(

t,
xkn

(t)

R (t)

)

u (t) (t) dt =

1
∫

0

R2 (t)F 2

(

t,
x (t)

R (t)

)

u (t) dt.

Thus
lim

kn→∞

(

Jukn
(x) − Ju (x)

)

.

By the generalized Krasnosel’skij Theorem, see [3], and by (6) we see that

lim
kn→∞

R2 (·)F 2

(

·,
xkn

(·)

R (·)

)

= R2 (·)F 2

(

·,
x (·)

R (·)

)

strongly in L2 (0, 1). Thus limk→∞ uk = u weakly in L2 (0, 1) provides that

lim
n→∞

1
∫

0

R2 (t)F 2

(

t,
xkn

(t)

R (t)

)

ukn
(t) dt =

1
∫

0

R2 (t)F 2

(

t,
x (t)

R (t)

)

u (t) dt.

So by (19) we have

limkn→∞

(

Jukn
(xkn

) − Jukn
(x)

)

= 0.

The same arguments lead to conclusion that

lim
kn→∞

(

Jukn
(x0) − Ju (x0)

)

= 0.

Hence all the assumptions of Theorem 2 are satisfied. Thus x ∈ Vu and so x
necessarily satisfies (15).
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6 Applications to optimal control

We now show the existence of an optimal process for an optimal control
problem in which the dynamics is described by the Duffing equation, i.e. we
will minimize the following action functional

J (x, u) =

1
∫

0

f0 (t, x (t) , u (t)) dt (20)

subject to (4) and where

f0 f0 : [0, 1] × R ×M → R is measurable with respect to the first vari-
able and continuous with respect to the two last variables and convex in u.
Moreover, for any d > 0 there exists a function ψd ∈ L1 (0, 1) such that
|f0 (t, x, u)| ≤ ψ (t) a.e. on [0, 1] for all x ∈ [−d, d] and for all u ∈M .

We define a set A consisting of pairs (xu, u) ∈ Vu × LM on which we
consider the existence of an optimal process to (20)-(4); xu is a solution to
(4) corresponding to u. We mention here that since the functions from LM are
equibounded we get limk→∞ uk = u weakly in L2 (0, 1), up to a subsequence,
for any sequence {uk}

∞

k=1 ⊂ LM . Moreover, any sequence {xk}
∞

k=1 , xk ∈ Vuk

or xk ∈ X, of solutions to (4) corresponding to such {uk}
∞

k=1 is necessarily
bounded in H1

0 (0, 1) as follows from the proof of Theorem 4. Thus there
exists a d > 0 such that xk (t) ∈ [−d, d] for all k = 1, 2, ... and for a.e.
t ∈ [0, 1].

Theorem 5 We assume f0, F1, F2, F3. There exists a pair (x, u) ∈ A

such that J (x, u) = inf(xu,u)∈A J (xu, u).

Proof. Since any bounded sequence in H1
0 (0, 1) has a uniformly conver-

gent subsequence and by convexity of f0 with respect to u we see that J is
weakly l.s.c. on H1

0 (0, 1) × L2 (0, 1). Assumption f0 and remarks proceed-
ing the formulation of the theorem provide that the functional J is bounded
from below on A. Thus we may choose a minimizing sequence

{

xk
u, u

k
}

∞

k=1

for a functional J such that
{

uk
}

∞

k=1
is weakly convergent in L2 (0, 1) to a

certain u ∈ LM . Theorem 4 asserts that
{

xk
u

}

∞

k=1
converges, possibly up to

a subsequence, strongly in H1
0 (0, 1), weakly in H1

0 (0, 1), strongly in C (0, 1)
to a certain x solving (4) for u. Thus

J (x, u) = lim inf
k→∞

J
(

xk
u, u

k
)

≥ J (x, u) ≥ inf
(x,u)∈A

J (x, u) .
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