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Abstract. In this paper, we study the existence and non-existence of traveling waves for
a delayed epidemic model with spatial diffusion. That is, by using Schauder’s fixed-
point theorem and the construction of Lyapunov functional, we prove that when the
basic reproduction number R0 > 1, there exists a critical number c∗ > 0 such that for
all c > c∗, the model admits a non-trivial and positive traveling wave solution with
wave speed c. And for c < c∗, by the theory of asymptotic spreading, we further show
that the model admits no non-trivial and non-negative traveling wave solution. And
also, some numerical simulations are performed to illustrate our analytic results.
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1 Introduction

In [3], the authors derived the following delayed epidemic model with the Beddington–
DeAngelis incidence rate

dS
dt

= A− µS(t)− βS(t)I(t)
1 + α1S(t) + α2 I(t)

,

dI
dt

=
βe−µτS(t− τ)I(t− τ)

1 + α1S(t− τ) + α2 I(t− τ)
− (µ + α + γ)I(t),

(1.1)

where S(t), I(t) represent the number of susceptible individuals and infective individuals
at time t, respectively. A is the recruitment rate of the population, µ is the natural death
of the population, α is the death rate due to disease, β is the transmission rate, α1 and α2

are the parameters that measure the inhibitory effect, γ is the recovery rate of the infectious
individuals, and τ is the incubation period.
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By constructing the suitable Lyapunov functional, the authors [3] determined the global
asymptotic stability of model (1.1). Clearly, model (1.1) is one of ODE type, which could
only reflect the epidemiological and demographic process as the time changes. We note that
the spatial content of the environment has been ignored in model (1.1). To closely match
the reality, considering a diffusive epidemic model of PDE type is natural and reasonable,
therefore, it gives us the motivation to investigate the PDE type of model (1.1). Here, we
propose the following delayed disease model with spatial diffusion

∂S
∂t

= d1∆S(t, x) + A− µS(t, x)− βS(t, x)I(t, x)
1 + α1S(t, x) + α2 I(t, x)

,

∂I
∂t

= d2∆I(t, x) +
βe−µτS(t− τ, x)I(t− τ, x)

1 + α1S(t− τ, x) + α2 I(t− τ, x)
− (µ + α + γ)I(t, x),

(1.2)

in which S(t, x) and I(t, x) denote the number of susceptible individuals and infective indi-
viduals at time t and position x ∈ Rn, respectively. d1, d2 > 0 are the diffusion rates, ∆ is the
Laplacian operator. The parameters A, µ, β, α1, α2, γ, τ are positive constants as in model (1.1).

In the biological context, to better understand the geographic spread of infectious dis-
eases, epidemic waves play a key role in studying the spatial spread of infectious diseases.
Biologically speaking, the existence of an epidemic wave implies that the disease can invade
successfully and an epidemics arises. The traveling wave describes the epidemic wave mov-
ing out from an initial disease-free equilibrium to the endemic equilibrium with a constant
speed. The wave speed c may explain the spatial spread speed of the disease, which may
measure how fast the disease invades geographically. Recently, many authors have stud-
ied the existence of traveling wave solutions of various epidemic models, see, for example,
[1, 2, 4, 5, 7, 9, 10, 13, 15–19, 21–25] and references therein.

In this paper, we will study the existence and non-existence of traveling waves for model
(1.2). We employ Schauder’s fixed point theorem combining with the upper-lower solutions
to establish the existence theorem (Theorem 3.2). Namely, we will show that when the basic
reproduction number R0 > 1, there exists c∗ > 0 such that (1.2) has a positive traveling wave
solution if c > c∗. Further, we shall construct the appropriate Lyapunov functional to show
that the traveling wave converges to the endemic steady state E∗ = (S∗, I∗) as t → +∞.
Moreover, by the theory of asymptotic spreading, we conclude the non-existence of traveling
wave solutions for model (1.2) when R0 > 1 and c ∈ (0, c∗) (Theorem 3.3). Some numerical
simulations are carried out to validate the theoretical results.

This paper is organized as follows. In Section 2, we give some preliminaries, that is, we
establish the well-posedness for model (1.2), construct a pair of upper-lower solutions, and
verify the conditions of the Schauder fixed point theorem. In Section 3, we give and show the
existence and non-existence of traveling waves of model (1.2). Some numerical simulations
are given in Section 4.

2 Preliminaries

2.1 The well-posedness

For simplicity, let

S =
µ

A
S, I =

µ

A
I, α1 =

α1

µ
A, α2 =

α2

µ
A, β =

β

µ
A, r = µ + α + γ,
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and dropping the bars on S, I, α1, α2, β, we obtain the following model
∂S
∂t

= d1∆S(t, x) + µ(1− S(t, x))− β f (S, I)(t, x),

∂I
∂t

= d2∆I(t, x) + βe−µτ f (S, I)(t− τ, x)− rI(t, x),
(2.1)

where

f (S, I)(t, x) =
S(t, x)I(t, x)

1 + α1S(t, x) + α2 I(t, x)
,

under the initial conditions

S(t, x) = ϕ1(t, x) ≥ 0, I(t, x) = ϕ2(t, x) ≥ 0 (2.2)

for all (t, x) ∈ [−τ, 0] × Rn, where ϕi(t, x) (i = 1, 2) are nonnegative and continuous in
[−τ,+∞)×R, but not identically zero.

As in [3], we define the basic reproduction number R0 as

R0 =
βe−µτ

r(1 + α1)
.

By a direct computation, we get the following conclusion.

Lemma 2.1.

(1) System (2.1) always has a disease-free equilibrium E0 = (1, 0).

(2) If R0 > 1, then system (2.1) has a unique endemic equilibrium E∗ = (S∗, I∗), where

S∗ =
r + µα2e−µτ

r[α1(R0 − 1) + R0] + µα2e−µτ
, I∗ =

µe−µτ(α1 + 1)(R0 − 1)
r[α1(R0 − 1) + R0] + µα2e−µτ

.

Next, we consider the positive invariance and uniform boundedness of solutions for the
initial value problem of system (2.1)–(2.2).

Let X := BUC(Rn, R2) be the set of all bounded and uniformly continuous functions from
Rn to R2, and X+ := BUC(Rn, R2

+). Then X+ is a closed cone of X and induces a partial
ordering on X. With the usual supremum norm, it follows that (X, ‖ · ‖X) is a Banach space.
Clearly, any vector in R2 can be regarded as an element in X. For u = (u1, u2), v = (v1, v2) ∈
X, we write u ≥ v(u ≤ v) provided ui(x) ≥ vi(x) (ui(x) ≤ vi(x)), i = 1, 2, x ∈ Ω. For
τ ≥ 0, we define C = C([−τ, 0], X) with the supremum norm and C+ = C([−τ, 0], X+). Then
(C, C+) is an ordered Banach space. As usual, we identify an element ϕ ∈ C as a function from
[−τ, 0]×X+ into R2 by ϕ(x, s) = ϕ(s)(x). For any given function u : [−τ, σ) → X for σ > 0,
we define ut ∈ C by ut(θ) = u(t + θ), θ ∈ [−τ, 0]. Let D = (d1, d2)T. By [6, Theorem 1.5], it
follows that X-realization D∆X of D∆ generates an analytic semigroup T (t) on X.

For any ϕ = (ϕ1, ϕ2) ∈ C+ and x ∈ Rn, define F = ( f1, f2) : C+ → X by

f1(ϕ)(x) = µ(1− ϕ1(0, x))− β f (ϕ1, ϕ2)(0, x),

f2(ϕ)(x) = βe−µτ f (ϕ1, ϕ2)(−τ, x)− rϕ2(0, x).

Then F is Lipschitz continuous in any bounded subset of C+. Rewriting (2.1) and (2.2) as the
following abstract functional differential equation

du
dt

= Au + F(ut), t ≥ 0, ut ∈ C,

u0 = ϕ ∈ C,
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where u = (S, I), Au := (d1∆u1, d2∆u2)T, ϕ = (ϕ1, ϕ2). Define

[0, M]C =
{

ϕ ∈ C : 0 ≤ ϕ(θ, x) ≤M, ∀x ∈ Rn, θ ∈ [−τ, 0]
}

with 0 := (0, 0), and M :=
(
1, 1

α2

( β
r e−µτ − α1 − 1

))
for R0 > 1.

Theorem 2.2. For any given initial function ϕ = (ϕ1, ϕ2) ∈ [0, M]C, there exists a unique nonnega-
tive solution u(t, x; ϕ) of (2.1)–(2.2) on [0, ∞) and ut ∈ [0, M]C for t ≥ 0.

Proof. For any given ϕ = (ϕ1, ϕ2) ∈ [0, M]C and κ ≥ 0, we have

ϕ(0, x) + κF(ϕ)(x) =
(

ϕ1(0, x) + κ(µ(1− ϕ1(0, x)− β f (ϕ1, ϕ2)(0, x)
ϕ2(0, x) + κ(βe−µτ f (ϕ1, ϕ2)(−τ, x)− rϕ2(0, x))

)

≥
(

ϕ1(0, x)
(

1− κ
(

µ + β
α2

))
(1− κr)ϕ2(0, x)

)
.

Hence, for 0 ≤ κ < min
{ 1

r , α2
α2µ+β

}
, it follows

ϕ(0, x) + κF(ϕ)(x) ≥
(

0
0

)
.

On the other hand, for any sufficiently small κ > 0 and any fixed u2 > 0, the functions
u1 + κ(µ(1 − u1) − β f (u1, u2) is increasing for u1 > 0; and (1 − κr)u2 + κβe−µτ f (u1, u2) is
increasing for u1. Then, for 0 < κ < 1

r ,

ϕ(0, x) + κF(ϕ)(x) ≤
(

1
(1− κr)ϕ2(0, x) + κβe−µτ f (1, ϕ2)(−τ, x)

)

≤
(

1
1
α2

(
β
r e−µτ − α1 − 1

)) .

Hence, ϕ(0, x) + κF(ϕ)(x) ∈ [0, M]C. This implies

lim
κ→0+0

1
κ

dist(ϕ(0, x) + κF(ϕ)(x), [0, M]C) = 0, ∀ ϕ ∈ [0, M]C.

Let K = [0, M]C, S(t, x) = T (t − s) and B(t, ϕ) = F(ϕ). It follows from [11, Corollary 4]
that (2.1)–(2.2) admit a unique mild solution u(t, ϕ) with u(t, ϕ) ∈ [0, M]C for any t ∈ [0, ∞).
Furthermore, since the semigroup T (t) is analytic, the mild solution u(t, ϕ) of (2.1)–(2.2) is
classic for t > τ (see [20, Corollary 2.2.5]).

2.2 The wave equations and the upper and lower solutions

In this paper, we mainly deal with the existence of traveling waves of system (2.1) connecting
the disease-free equilibrium E0(1, 0) and the endemic equilibrium E∗(S∗, I∗). Without loss
generality, we consider n = 1. A traveling wave solution of (2.1) is a special type of solution
of system (2.1) with the form (S(t, x), I(t, x)) = (S(x + ct), I(x + ct)), here c > 0 is the wave
speed, and letting x + ct by t, which satisfies the following wave equation{

cS′(t) = d1S′′(t) + µ(1− S(t))− β f (S, I)(t),

cI′(t) = d2 I′′(t) + βe−µτ f (S, I)(t− cτ)− r I(t),
(2.3)
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and the boundary conditions

S(−∞) = 1, S(+∞) = S∗, I(−∞) = 0, I(+∞) = I∗. (2.4)

Linearizing of the second equation of (2.3) at E0(1, 0), we get the characteristic equation

∆(λ, c) = d2λ2 − cλ +
β

1 + α1
e−(λc+µ)τ − r = 0.

It is easy to show the following lemma, see, [13, Lemma 4.4] or [21, Lemma 3.1].

Lemma 2.3. Assume that R0 > 1. Then there exist two positive constants λ∗ > 0 and c∗ > 0 such
that

∆(λ∗, c∗) = 0,
∂∆
∂λ

(λ, c)|(λ∗,c∗) = 0.

Furthermore,

(1) If 0 < c < c∗, then ∆(λ, c) > 0 for all λ ∈ [0, ∞).

(2) If c > c∗, then the equation ∆(λ, c) = 0 has two positive roots λ1(c) and λ2(c) with 0 <

λ1(c) < λ∗ < λ2(c) such that

∆(λ, c)

{
> 0, ∀ λ ∈ (0, λ1(c)) ∪ (λ2(c),+∞),

< 0, ∀ λ ∈ (λ1(c), λ2(c)).

In this subsection, we assume that R0 > 1. In addition, we fix a positive constant c > c∗

and always denote λi(c) = λi, i = 1, 2.
Now, we define four continuous functions as following

S(t) = 1, S(t) = max
{

1− 1
σ

eσt,
µα2

µα2 + β

}
,

and

I(t) = min
{

eλ1t,
1
α2

(
β

r
e−µτ − α1 − 1

)}
, I(t) = max{eλ1t(1−Meεt), 0}

for t ∈ R, where σ, M, ε are three positive constants to be determined in the following lemmas.

Lemma 2.4. The functions S(t) and I(t) satisfy the inequality

d2 I ′′(t)− c I ′(t) + βe−µτ f (S, I)(t− cτ)− rI(t) ≤ 0, (2.5)

for all t 6= t1 := 1
λ1

ln 1
α2

( β
r e−µτ − α1 − 1

)
.

Proof. If t < t1, then I(t) = eλ1t. Note that S(t) = 1 and I(t) ≤ eλ1t for all t ∈ R, then

d2 I ′′(t)− cI ′(t) + βe−µτ f (S, I)(t− cτ)− r I(t)

≤ d2 I ′′(t)− cI ′(t) +
β

1 + α1
e−µτ I(t− cτ)− r I(t)

≤ eλ1t∆(λ1, c)

= 0.
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If t > t1, then I(t) = 1
α2

( β
r e−µτ − α1 − 1

)
. In view of the fact that S(t) = 1 and I(t) ≤

1
α2

( β
r e−µτ − α1 − 1

)
for all t ∈ R, then

d2 I ′′(t)− cI ′(t) + βe−µτ f (S, I)(t− cτ)− rI(t)

≤ d2 I ′′(t)− cI ′(t) + βe−µτ

1
α2

(
β
r e−µτ − α1 − 1

)
1 + α1 +

α2
α2

(
β
r e−µτ − α1 − 1

) − rI(t)

=
r

α2

(
β

r
e−µτ − α1 − 1

)
− r

α2

(
β

r
e−µτ − α1 − 1

)
= 0.

This completes the proof.

Lemma 2.5. Let σ ∈ (0, λ1) be sufficiently small. Then the functions S(t), I(t) satisfy the inequality

d1S ′′(t)− cS ′(t) + µ(1− S(t))− β f (S, I)(t) ≥ 0, (2.6)

for all t 6= t2 := 1
σ ln σβ

µα2+β < 0.

Proof. If t ≥ t2, then S(t) = µα2
µα2+β . Hence,

d1S ′′(t)− cS ′(t) + µ(1− S(t))− β f (S, I)(t)

≥ d1S ′′(t)− cS ′(t) + µ(1− S(t))− β

α2
S(t)

= µ(1− S(t))− β

α2
S(t)

= 0.

If t < t2, then S(t) = 1− 1
σ eσt. Note that I(t) ≤ eλ1t for all t ∈ R, we have

d1S ′′(t)− cS ′(t) + µ(1− S(t))− β f (S, I)(t)

≥ d1S ′′(t)− cS ′(t) + µ(1− S(t))− βS(t)I(t)

≥
(
− d1σ + c +

µ

σ

)
eσt − βeλ1t

=
(
− d1σ + c +

µ

σ
− βe(λ1−σ) t

)
eσt.

It follows from the fact that e(λ1−σ)t < ( σβ
β+µα2

)
λ1−σ

σ for t < t2 that

d1S ′′(t)− cS ′(t) + µ(1− S(t))− β f (S, I)(t) ≥ eσt

−d1σ + c +
µ

σ
− β

(
σβ

β + µα2

) λ1−σ
σ

 .

Note that limσ→0+0
( σβ

β+µα2

) λ1−σ
σ = 0. Then, for sufficiently small σ > 0,

−d1σ + c +
µ

σ
− β

(
σβ

β + µα2

) λ1−σ
σ

> 0, ∀ t < t2,

which implies (2.6) holds for t < t2. This completes the proof.
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Lemma 2.6. Let 0 < ε < min{σ, λ1, λ2 − λ1} and M > 1 sufficiently large. Then functions
S(t), I(t) satisfy the inequality

d2 I ′′(t)− cI ′(t) + βe−µτ f (S, I)(t− cτ)− rI(t) ≥ 0, (2.7)

for all t 6= t3 := 1
ε ln 1

M .

Proof. If t ≥ t3, then inequality (2.7) holds immediately since I(t) = 0 on [t3, ∞).
If t < t3, then I(t) = eλ1t(1−Meεt). In view of the facts

eλ1t(1−Meεt) ≤ I(t) ≤ eλ1t, 1− 1
σ

eσt ≤ S(t) ≤ 1, ∀ t ∈ R,

then, for t < t3,

f (S, I)(t− cτ) ≥ S(t− cτ)I(t− cτ)

1 + α1 + α2 I(t− cτ)

≥ 1
1 + α1

S(t− cτ)I(t− cτ)
(
1− α2

1 + α1
I(t− cτ)

)
≥ 1

1 + α1

(
1− 1

σ
eσ(t−cτ)

)
I(t− cτ)

(
1− α2

1 + α1
I(t− cτ)

)
≥ 1

1 + α1

(
I(t− cτ)− 1

σ
eσ(t−cτ) I(t− cτ)− α2

1 + α1
I2(t− cτ)

)
.

Hence, for t < t3,

d2 I ′′(t)− cI ′(t) + βe−µτ f (S, I)(t− cτ)− rI(t)

≥ d1 I ′′(t)− cI ′(t) +
β

1 + α1
e−µτ I(t− cτ)− rI(t)

− β

σ(1 + α1)
e−µτeσ(t−cτ) I(t− cτ)− βα2

(1 + α1)2 e−µτ I2(t− cτ)

≥ −M∆(λ1 + ε, c)e(λ1+ε)t − β

σ(1 + α1)
eσ(t−cτ)−µτeλ1(t−cτ)

− βα2

(1 + α1)2 e2λ1(t−cτ)−µτ

= e(λ1+ε)t
(
−M∆(λ1 + ε, c)− β

σ(1+α1)
e−(c(λ1+σ)+µ)τe(σ−ε)t − α2

(1+α1)2 e−(2cλ1+µ)τe(λ1−ε)t
)

.

Note that 0 < ε < min{σ, λ1} and t3 < 0, it follows that e(σ−ε)t < 1 and e(λ1−ε)t < 1 for all
t < t3. Therefore,

−M∆(λ1 + ε, c)− β

σ(1 + α1)
e−cτ(λ1+σ)−µτe(σ−ε)t − α2

(1 + α1)2 e−(2cλ1+µ)τe(λ1−ε)t

≥ −M∆(λ1 + ε, c)− β

σ(1 + α1)
− α2

(1 + α1)2 .

Consequently, we only choose

M > max
{

1,− 1
(1 + α1)∆(λ1 + ε, c)

(β

σ
+

α2

1 + α1

)}
,

then (2.7) holds.
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2.3 The verification of the Schauder fixed point theorem

In this subsection, we will use the upper and lower solutions (S(t), I(t)) and (S(t), I(t)) con-
structed in Section 2.2 to verify that the conditions of Schauder fixed point theorem hold.
Denote

H1(S, I)(t) := β1S(t) + µ(1− S(t))− β f (S, I)(t),

H2(S, I)(t) := β2 I(t) + βe−µτ f (S, I)(t− cτ)− rI(t).

Choose two constants β1 > µ + β
α2

and β2 > r such that H1 is nondecreasing with respect
to the first variable S(t) ∈ [0, 1] and H1 is nonincreasing with respect to the second variable
I(t) ∈ [0, 1

α2
( β

r e−µτ − α1 − 1)] for all t ∈ R. H2 is nondecreasing with respect to both S(t) ∈
[0, 1] and I(t) ∈ [0, 1

α2
( β

r e−µτ − α1 − 1)] for all t ∈ R. Clearly, (2.3) is equal to{
d1S ′′(t)− c S ′(t)− β1S(t) + H1(S, I)(t) = 0,

d2 I ′′(t)− c I ′(t)− β2 I(t) + H2(S, I)(t) = 0.
(2.8)

Define the set

Γ =
{
(S, I) ∈ [0, M]C : S(t) ≤ S(t) ≤ S(t), I(t) ≤ I(t) ≤ I(t)

}
.

Then the set Γ is nonempty, closed and convex in [0, M]C. Furthermore, define an operator
F : Γ→ C(R, R2) by

F(S, I)(t) = (F1(S, I), F2(S, I))(t),

where

Fi(S, I)(t) =
1
ρi

( ∫ t

−∞
eλi1(t−s) +

∫ +∞

t
eλi2(t−s)

)
Hi(S, I)(s)ds, i = 1, 2,

and

λi1 =
c−

√
c2 + 4diβi

2di
, λi2 =

c +
√

c2 + 4diβi

2di
, ρi = di(λi2 − λi1), i = 1, 2.

Lemma 2.7. The operator F maps Γ into Γ.

Proof. For (S, I) ∈ Γ, we only need to prove the following inequalities hold.

S(t) ≤ F1(S, I)(t) ≤ S(t), I(t) ≤ F2(S, I)(t) ≤ I(t), t ∈ R.

We only prove the first inequality since the proof of the second inequality is similar to that
of the first. Indeed, according to the monotonicity of H1 with respect to S and I, we have

F1(S, I)(t) ≤ F1(S, I)(t) ≤ F1(S, I)(t), t ∈ R.

Thus it is sufficient to verify

S(t) ≤ F1(S, I)(t) ≤ F1(S, I)(t) ≤ 1, t ∈ R. (2.9)

In fact, for t 6= t2, by (2.6), we have

F1(S, I)(t) =
1
ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)
H1(S, I)(s)ds

≥ 1
ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)(
β1S(s) + cS ′(s)− d1S ′′(s)

)
ds.
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For t > t2, since S ′(t2−) ≤ 0 and λ12 > 0 > λ11, we have

F1(S, I)(t) ≥ 1
ρ1

( ∫ t2

−∞
+
∫ t

t2

)
eλ11(t−s)(β1S(s) + cS ′(s)− d1S ′′(s)

)
ds

+
1
ρ1

∫ +∞

t
eλ12(t−s)(β1S(s) + cS ′(s)− d1S ′′(s)

)
ds

=
β1

ρ1

(
1

λ12
− 1

λ11

)
S(t)− d1

ρ1
eλ11(t−t2)S ′(t2−)

= S(t)− d1

ρ1
eλ11(t−t2)S ′(t2−)

≥ S(t).

Similarly, we also have F1(S, I)(t) ≥ S(t) for t < t2. By the continuity of both S(t) and
F1(S, I)(t), we obtain F1(S, I)(t) ≥ S(t) for all t ∈ R.

On the other hand, note that H1 is nondecreasing with respect to S(t) ∈ [0, 1], we get

H1(S, I)(t) ≤ β1S(t) + µ(1− S(t)) = β1

for t ∈ R, then

F1(S, I)(t) =
1
ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)
H1(S, I)(s)ds

≤ β1

ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)
ds

=
β1

ρ1

(
1

λ12
− 1

λ11

)
= 1.

This completes the proof of (2.9).

Let ν > 0 be a constant such that ν < min{−λ11,−λ21}. Define

Bν(R, R2) =

{
(S, I) ∈ [0, M]C : sup

t∈R

|S(t)|e−ν|t| < +∞, sup
t∈R

|I(t)|e−ν|t| < +∞
}

,

with norm

|(S, I)|ν = max
{

sup
t∈R

|S(t)|e−ν|t|, sup
t∈R

|I(t)|e−ν|t|
}

.

It is easy to check that Bν(R, R2) is a Banach space with the decay norm | · |ν.

Lemma 2.8. The operator F is continuous with respect to the norm | · |ν in Bν(R, R2).

Proof. For any (S1, I1), (S2, I2) ∈ [0, M]C, since

| f (S1, I1)(t)− f (S2, I2)(t)|

=

∣∣∣∣ I1(t)(1 + α2 I2(t))(S1(t)− S2(t)) + S2(t)(1 + α1S1(t))(I1(t)− I2(t))
(1 + α1S1(t) + α2 I1(t))(1 + α1S2(t) + α2 I2(t))

∣∣∣∣
≤
( 1

α1
|I1(t)− I2(t)|+

1
α2
|S1(t)− S2(t)|

)
,
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let L = max{β1 − µ + β
α2

, β
α1
} > 0, then, for all t ∈ R,

|H1(S1, I1)(t)− H1(S2, I2)(t)| ≤ L(|S1(t)− S2(t)|+ |I1(t)− I2(t)|).

For any (S1, I1), (S2, I2) ∈ Γ, then

|F1(S1, I1)(t)− F1(S2, I2)(t)|

≤ 1
ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)
|H1(S1, I1)(s)− H1(S2, I2)(s)|ds

≤ L
ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)
(|S1(s)− S2(s)|+ |I1(s)− I2(s)|)ds.

Consequently,

|F1(S1, I1)(t)− F1(S2, I2)(t)|e−ν|t|

≤ L
ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)(
eν|s|−ν|t| + eν|s|−ν|t|)ds|S− I|ν

=
2L
ρ1

(
1

λ12 − ν
− 1

λ11 + ν

)
|S− I|ν,

which follows F1 : Γ → Γ is continuous with respect to the norm | · |ν. By the similar way, we
also prove that F2 : Γ→ Γ is continuous with respect to the norm | · |ν.

Lemma 2.9. The operator F is compact with respect to the norm | · |ν in Bν(R, R2).

Proof. For any (S, I) ∈ Γ, in view of λ11 < 0 < λ12, we have, for all t ∈ R,

|F ′1 (S, I)(t)| = 1
ρ1

∣∣∣∣( ∫ t

−∞
λ11eλ11(t−s) +

∫ +∞

t
λ12eλ12(t−s)

)
H1(S, I)(s)ds

∣∣∣∣
≤ α2β1 + β

α2ρ1

( ∫ t

−∞
|λ11|eλ11(t−s)ds +

∫ +∞

t
λ12eλ12(t−s)ds

)
≤ α2β1 + β

α2ρ1
. (2.10)

Similarly, we also get, for all t ∈ R,

|F ′2 (S, I)(t)| ≤ β2 + 2r
α2ρ2

(
β

r
e−µτ − α1 − 1

)
. (2.11)

It follows that {Fi(S, I)(t) : (S, I) ∈ Γ} is a family of equicontinuous functions. Thus,
{F(S, I)(t) : (S, I) ∈ Γ} represents a family of equicontinuous functions.

On the other hand, for any (S, I) ∈ Γ, it is easy to see that F : Γ→ Γ follows that

|F1(S, I)(t)| ≤ 1, |F2(S, I)(t)| ≤ 1
α2

(β

r
e−µτ − α1 − 1

)
, ∀t ∈ R.

Hence, for any ε > 0, we can find an N > 0(N ∈N) satisfies

(|F1(S, I)(t)|+ |F2(S, I)(t)|)e−ν|t| <
(

1 +
1
α2

(β

r
e−µτ − α1 − 1

))
e−νN < ε, |t| > N. (2.12)

By (2.10), (2.11) and the Arzelà–Ascoli theorem, we can choose finite elements in F(Γ) such
that there are a finite ε-net of F(Γ)(t) in sense of supremum norm if we restrict them on
t ∈ [−N, N], which is also a finite ε-net of F(Γ)(t)(t ∈ R) in sense of the norm | · |ν (by (2.12))
and implies F is compact with respect to the norm | · |ν in Bν(R, R2).
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3 Existence and non-existence of the traveling wave solution

First, using the ideas in [7], we derive some boundedness property of the solution (S(t), I(t))
of system (2.1). That is, we give the following lemma.

Lemma 3.1. Assume that (S, I) is a positive and bounded solution of (2.1). Then there exist positive
constants Li, i = 1, 2, 3, 4, such that

− L1S(t) < S ′(t) < L2S(t), −L3 I(t) < I ′(t) < L4 I(t), ∀ t ≥ 0. (3.1)

Proof. We first show that −L1S(t) < S′(t) for all t ≥ 0, where L1 is a positive constant suffi-
ciently large such that both −L1S(0) < S′(0) and L1 ≥ 2β

cα2
hold. Let

Φ(t) := S ′(t) + L1S(t), ∀ t ≥ 0.

We next show that Φ(t) > 0 for all t ≥ 0 in the following. If not, by Φ(0) > 0, then there
exists t1 ≥ 0 such that Φ(t1) = 0, hence there exist two cases:

Case (i): Φ(t) ≤ 0, ∀ t ≥ t1.
Case (ii): Φ(t) is an oscillatory function. i.e., there exist some t2 ≥ t1 satisfy Φ(t2) = 0 and

Φ′(t2) ≥ 0.
For case (i), by the definition of Φ(t) and in view of Φ(t) ≤ 0, we get

cS ′(t) ≤ −2β

α2
S(t), ∀ t ≥ t1,

since L1 ≥ 2β
cα2

. Together with 0 < S ≤ 1 and I
1+α1S+α2 I ≤

1
α2

, we deduce that

d1S ′′(t) = cS ′(t) + β f (S, I)(t) + µ(S(t)− 1) ≤ − β

α2
S(t) < 0, ∀ t ≥ t1,

which implies that S′(t) is decreasing on [t1,+∞). Hence

S ′(t) ≤ S ′(t1) ≤ −L1S(t1) < 0, ∀ t ≥ t1.

This implies that S(t) is decreasing and convex, which contradicts the boundedness of S(t).
For case (ii), since Φ(t2) = 0, Φ ′(t2) ≥ 0, we get

S ′(t2) = −L1S(t2) < 0, S ′′(t2) ≥ −L1S′(t2) > 0.

Hence, we obtain

0 = d1S ′′(t2)− cS ′(t2) + µ(1− S(t2))− β f (S, I)(t2)

≥ cL1S(t2)−
β

α2
S(t2) ≥

β

α2
S(t2) > 0.

This is a contradiction. Similarly, we also can show that the other inequations of (3.1) hold for
t ≥ 0.

Now we are in a position to state and show our main results.

Theorem 3.2. Assume that R0 > 1 holds. Then there exists a constant c∗ > 0 such that for every c >
c∗, system (2.1) admits a nontrivial positive traveling wave solution

(
S(x + ct), I(x + ct)

)
satisfying

the asymptotic boundary condition (2.4), and

lim
t→−∞

e−λ1t I(t) = 1, lim
t→−∞

e−λ1t I′(t) = λ1.
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Proof. In view of Lemmas 2.6–2.9, it follows from Schauder’s fixed point theorem that there
exists a pair of (S, I) ∈ Γ, which is a fixed point of the operator F. Further, (S, I) is a solution
of (2.1). Consequently, the solution

(
S(x + ct), I(x + ct)

)
is a traveling wave solution of system

(2.1). Moreover, (S, I) satisfies the following inequalities

1− 1
σ

eσt ≤ S(t) ≤ 1, eλ1t(1−Meεt) ≤ I(t) ≤ eλ1t, ∀ t ∈ R,

which follows that

S(−∞) = 1, I(−∞) = 0, lim
t→−∞

e−λ1t I(t) = 1.

Note that (S, I) ∈ Γ is a fixed point of the operator of F. Applying L’Hospital’s rule to the
maps F1 and F2, it is easy to see that S′(−∞) = 0 and I′(−∞) = 0. Integrating both sides of
the second equation of (2.3) from −∞ to t gives

d2 I ′(t) = cI(t)− βe−µτ
∫ t

−∞
f (S, I)(s− cτ)ds + r

∫ t

−∞
I(s)ds.

Hence, by lim
t→−∞

e−λ1t I(t) = 1,

lim
t→−∞

e−λ1t I′(t) =
c

d2
− β

d2
e−µτ lim

t→−∞
e−λ1t

∫ t

−∞
f (S, I)(s− cτ)ds

+
r

d2
lim

t→−∞
e−λ1t

∫ t

−∞
I(s)ds

=
c

d2
− β

d2λ1
e−µτ lim

t→−∞
e−λ1t f (S, I)(t− cτ) +

r
d2λ1

=
1

d2λ1

(
cλ1 + r− β

1 + α1
e−cτλ1−µτ

)
= λ1.

Next we claim that, for all t ∈ R,

µα2

µα2 + β
< S(t) < 1, 0 < I(t) <

1
α2

(βe−µτ

r
− α1 − 1

)
. (3.2)

That is, the traveling wave solution of (2.1) is nontrivial positive. Indeed,

S(t) = F1(S, I)(t) ≥ F1(S, I)(t)

=
1
ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)
H1(S, I)(s)ds

≥
β1 − µ− β

α2

ρ1

( ∫ t

−∞
eλ11(t−s) +

∫ +∞

t
eλ12(t−s)

)
S(s)ds

>
µα2

µα2 + β
.

Similarly, we can prove another inequality is also true.
In the following, motivated by the ideas [3–5, 7, 10], we construct the Lyapunov functional

to show that the obtained positive traveling wave solutions of model (2.1) connect the endemic
equilibrium E∗ = (S∗, I∗). That is, we shall show limt→+∞(S(t), I(t)) = (S∗, I∗) holds.
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To simplify the notation, let

g(x) = x− 1− ln x, x > 0,

it is easy to see that

g(x) ≥ 0, x > 0, and g(x) = 0 if and only if x = 1.

By (3.2), we see that (S, I) is a positive and bounded solution of (2.1). Define

D =

{
(S, I) :

µα2

µα2 + β
< S(t) < 1, 0 < I(t) <

1
α2

( βe−µτ

µ + α + γ
− α1 − 1

)
,

− L1S(t) < S ′(t) < L2S(t),−L3 I(t) < I ′(t) < L4 I(t), t ≥ 0
}

.

By Lemma 3.1, we see that D 6= ∅. For each (S, I) ∈ D, we consider the following Lyapunov
functional V(S, I) : R+ → R as follows

V(S, I)(t) = cV1(S, I)(t) + crI∗V2(S, I)(t) + V3(S, I)(t),

where

V1(S, I)(t) = e−µτ

(
S− S∗ −

∫ S

S∗

1 + α1θ + α2 I∗

1 + α1S∗ + α2 I∗
S∗

θ
dθ

)
+ I − I∗ − I∗ ln

I
I∗

,

V2(S, I)(t) =
∫ t

t−cτ
g
( β

rI∗
e−µτ f (S, I)(y)

)
dy,

V3(S, I)(t) = d1e−µτS ′
(

1 + α1S + α2 I∗

1 + α1S∗ + α2 I∗
S∗

S
− 1
)
+ d2 I ′

(
I∗

I
− 1
)

.

By a direct calculation, we have

c
dV1

dt
= e−µτ

(
1− S∗

S
1 + α1S + α2 I∗

1 + α1S∗ + α2 I∗

)
(d1S ′′ + µ(1− S)− β f (S, I)(t))

+

(
1− I∗

I

)
(d2 I ′′ + βe−µτ f (S, I)(t− cτ)− rI).

From the fact that

µ(1− S∗) = eµτrI∗, βe−µτS∗ I∗ = rI∗(1 + α1S∗ + α2 I∗),

we get

c
dV1

dt
= e−µτ

(
1− S∗

S
1 + α1S + α2 I∗

1 + α1S∗ + α2 I∗

)
d1S ′′ +

(
1− I∗

I

)
d2 I ′′

+ µe−µτ(S∗ − S) + r(I∗ − I) + βe−µτ( f (S, I)(t− cτ)− f (S, I)(t))

− rI∗
S∗

S
1 + α1S + α2 I∗

1 + α1S∗ + α2 I∗
1− S
1− S∗

+ rI
1 + α1S + α2 I∗

1 + α1S + α2 I

− rI∗
1 + α1S∗ + α2 I∗

S∗ I
f (S, I)(t− cτ) + rI∗, (3.3)

crI∗
dV2

dt
= rI∗

d
dt

∫ t

t−cτ

(βe−µτ

rI∗
f (S, I)(y)− 1− ln

βe−µτ

rI∗
f (S, I)(y)

)
dy

= βe−µτ f (S, I)(t)− βe−µτ f (S, I)(t− cτ) + rI∗ ln
f (S, I)(t− cτ)

f (S, I)(t)
, (3.4)
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and

dV3

dt
= d1e−µτ

( 1 + α1S + α2 I∗

1 + α1S∗ + α2 I∗
S∗

S
− 1)

)
S ′′ − d1e−µτ 1 + α2 I∗

1 + α1S∗ + α2 I∗
S∗(S′)2

S2

+ d2

(
I∗

I
− 1
)

I ′′ − d2
I∗(I′)2

I2 . (3.5)

Combining (3.3)–(3.5), we obtain

dV
dt

= − d1e−µτ 1 + α2 I∗

1 + α1S∗ + α2 I∗
S∗(S ′)2

S2 − d2
I∗(I ′)2

I2 + µe−µτ(S∗ − S) + r(I∗ − I)

− rI∗
S∗

S
1 + α1S + α2 I∗

1 + α1S∗ + α2 I∗
1− S
1− S∗

+ rI
1 + α1S + α2 I∗

1 + α1S + α2 I
+ rI∗ ln

f (S, I)(t− cτ)

f (S, I)(t)

− rI∗
1 + α1S∗ + α2 I∗

S∗ I
f (S, I)(t− cτ) + rI∗

= − d1e−µτ 1 + α2 I∗

1 + α1S∗ + α2 I∗
S∗(S ′)2

S2 − d2
I∗(I ′)2

I2 − µe−µτ(1 + α2 I∗)(S− S∗)2

S(1 + α1S∗ + α2 I∗)

+ rI∗
(

2− S∗(1 + α1S + α2 I∗)
S(1 + α1S∗ + α2 I∗)

− 1 + α1S∗ + α2 I∗

S∗ I
f (S, I)(t− cτ)

)
+ rI∗

(
− I

I∗
+

I(1 + α1S + α2 I∗)
I∗(1 + α1S + α2 I)

)
+ rI∗ ln

f (S, I)(t− cτ)

f (S, I)(t)
.

Note that

ln
f (S, I)(t− cτ)

f (S, I)(t)
= ln

S∗(1 + α1S + α2 I∗)
S(1 + α1S∗ + α2 I∗)

+ ln
1 + α1S∗ + α2 I∗

S∗ I
f (S, I)(t− cτ)

+ ln
1 + α1S + α2 I
1 + α1S + α2 I∗

.

Hence, we get

dV
dt

= − d1e−µτ 1 + α1I∗

1 + α1S∗ + α2 I∗
S∗(S ′)2

S2 − d2
I∗(I ′)2

I2 − µe−µτ(1 + α2 I∗)(S− S∗)2

S(1 + α1S∗ + α∗I )

+ rI∗
(

1− S∗(1 + α1S + α2 I∗)
S(1 + α1S∗ + α2 I∗)

+ ln
S∗(1 + α1S + α2 I∗)
S(1 + α1S∗ + α2 I∗)

)
+ rI∗

(
1− 1 + α1S∗ + αI∗

S∗ I
f (S, I)(t− cτ) + ln

1 + α1S∗ + α2 I∗

S∗ I
f (S, I)(t− cτ)

)
+ rI∗

(
1− 1 + α1S + α2 I

1 + α1S + α2 I∗
+ ln

1 + α1S + α2 I
1 + α1S + α2 I∗

)
+ rI∗

(
− 1− I

I∗
+

1 + α1S + α2 I
1 + α1S + α2 I∗

+
I(1 + α1S + α2 I∗)
I∗(1 + α1S + α2 I)

)
= − d1e−µτ 1 + α2 I∗

1 + α1S∗ + α2 I∗
S∗(S ′)2

S2 − d2
I∗(I ′)2

I2 − µe−µτ(1 + α2 I∗)(S− S∗)2

S(1 + α1S∗ + α2 I∗)

− rI∗g
(

S∗(1 + α1S + α2 I∗)
S(1 + α1S∗ + α2 I∗)

)
− rI∗g

(
1 + α1S∗ + α2 I∗

S∗ I
f (S, I)(t− cτ)

)
− rI∗g

(
1 + α1S + α2 I
1 + α1S + α2 I∗

)
− rα2(1 + α1S)

(1 + α1S + α2 I)(1 + α1S + α2 I∗)
(I − I∗)2

≤ 0.



Traveling waves of a delayed epidemic model 15

Thus, V(t) is non-increasing in t ∈ R+. Furthermore, by Lemma 3.1, one could show that
V(S, I)(t) is bounded below on R+. And also, it is clear that

dV(t)
dt

= 0 if and only if S(t) ≡ S∗, I(t) ≡ I∗, S ′(t) = 0, I ′(t) = 0 for t ∈ R,

and the maximal invariant set of {
(S, I) :

dV(t)
dt

= 0
}

consists of only point, i.e., the equilibrium (S∗, I∗). Then LaSalle’s invariance principle
[8, Theorem 4.3.4] implies that (S, I) → (S∗, I∗) as t → +∞. Therefore, limt→+∞(S(t), I(t)) =
(S∗, I∗). This completes the proof.

Finally, we apply the ideas of [10] to establish the non-existence of traveling wave solutions
of system (2.1).

Theorem 3.3. Assume that R0 > 1 holds. Then there exists a constant c∗ > 0 such that for c ∈ (0, c∗),
system (2.1) does not admit a traveling wave solution (S(x + ct), I(x + ct)) satisfying (2.4).

Proof. For some c1 ∈ (0, c∗), assume there exists a traveling wave solution (S(x + ct), I(x + ct))
of system (2.1) satisfying (2.4). Let ε > 0 such that equation

d2λ2 − cλ +
β

1 + α1
(1− 2ε)e−(λc+µ)τ − r = 0

has no real solution for c ∈ (0, c1+2c∗
3 ), which is admissible by Lemma 2.3. By (2.4), we can

take T(ε) < 0 large enough such that

1− ε ≤ S(t) < 1 for any t < T(ε).

Thus, for t < T(ε), we have

c1 I′(t) ≥ d2 I′′(t) +
βe−µτ(1− ε)I(t− c1τ)

1 + α1 + α2 I(t− c1τ)
− rI(t). (3.6)

According to (3.2), there exists a constant h > 0 large enough, such that

βe−µτ I(t− c1τ)

[1 + α1 + α2 I(t− c1τ)]h+1 ≤
βe−µτS(t− c1τ)I(t− c1τ)

1 + α1 + α2 I(t− c1τ)
, t ≥ T(ε).

In fact, it is equivalent to the following inequality

1
[1 + α1 + α2 I(t− c1τ)]h

≤ S(t− c1τ), t ≥ T(ε),

which is available for h large enough. Then, by (3.6),

c1 I′(t) ≥ d2 I′′(t) +
βe−µτ I(t− c1τ)

[1 + α1 + α2 I(t− c1τ)]h+1 − rI(t), t ≥ T(ε). (3.7)

Define

b(u) = inf
v∈
(

u, 1
α2

(
β
r e−µτ−α1−1

)) βe−µτ(1− ε)v
[1 + α1 + α2v]h+1 . (3.8)
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Combining (3.7) and (3.8), we can obtain that u(x, t) = I(x + c1t) > 0 satisfies
∂u(x, t)

∂t
≥ d2

∂2u(x, t)
∂x2 + b(u(x, t− τ))− ru(x, t), x ∈ R, t > 0,

u(x, s) = I(x + c1s) > 0, x ∈ R, s ∈ (−τ, 0).

By the comparison principle (see [12, Theorem 2.2]), u(x, t) is an upper solution of the follow-
ing initial value problem

∂ω(x, t)
∂t

≥ d2
∂2ω(x, t)

∂x2 + b(ω(x, t− τ))− rω(x, t), x ∈ R, t > 0,

ω(x, s) = I(x + c1s) > 0, x ∈ R, s ∈ (−τ, 0).

By the theory of asymptotic spreading (see [14, Theorem 2.5]), we obtain that

lim inf
t→∞

ω(x, t) > 0, |x| ≤ c1 + c∗

2
t.

Hence,

lim inf
t→∞

u(x, t) ≥ lim inf
t→∞

ω(x, t) > 0, |x| ≤ c1 + c∗

2
t. (3.9)

Let −x = c1+c∗
2 t, then t→ ∞ implies that x + c1t→ −∞. Consequently,

lim
t→∞

I(x, t) = 0,

which contradicts (3.9). This completes the proof.

4 Numerical simulations

In this section, we carry out numerical simulations to illustrate the theoretical results obtained
in Sections 3. For simplify, we use the following trivial functions as initial conditions

S(x, θ) =

{
0.1, x = 0,

0, x > 0,
I(x, θ) =

{
0.0000001, x = 0,

0, x > 0
(4.1)

for θ ∈ [−τ, 0].
In view of [3], for system (2.1), we set

d1 = 0.2, d2 = 0.4, µ = 0.25, β = 20, r = 0.95, α1 = 0.9, α2 = 0.2, τ = 0.875.

Thus, system (2.1) with above coefficients has a disease-free steady state E0 = (1, 0) and a
unique endemic E∗ = (0.0649, 0.1977). By the direct computation, one gets R0 = 8.9033 > 1.
It follows from Theorem 3.2 that system (2.1) always has a traveling wave solution with speed
c ≥ c∗ connecting E0 and E∗. The fact is illustrated by the numerical simulation in Figure 4.1.
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Figure 4.1: The traveling wave is observed in the system (2.1) with initial condi-
tions (4.1).
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