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1 Introduction

This work is concerned with the construction of the minimal and the maximal
solutions of the following nonlinear boundary value problem






− (ϕp (u′))
′
= f (x, u, u′) , x ∈ (0, 1) ,

u (0) − a0u
′ (0) =

1∫

0

g1 (x) u (x) dx,

u (1) + a1u
′ (1) =

1∫

0

g2 (x) u (x) dx,

(1)

where ϕp (y) = |y|
p−2

y, p > 1, f : [0, 1] × R
2 → R and gi : [0, 1] → R+ are a

continuous functions (i = 1, 2 ) and a0 and a1 are two positive real numbers.
Problems with integral boundary conditions arise naturally in thermal con-

duction problems [13], semiconductor problems [21], hydrodynamics problems
[15], underground water flow [18] and medical sciences [see [14] and [23]].

It is well know that the method of upper and lower solutions coupled with
monotone iterative technique has been used to prove existence of solutions of
nonlinear boundary value problems by various authors ( see [3], [6], [9], [16] and
[17]).

The purpose of this work is to show that it can be applied successfully to
problems with integral boundary conditions of type (1). Our results improve
and generalize those obtained in [6], [7] and [9].

The plan of this paper is as follows: In section 2, we give some preliminary
results that will be used throughout the paper. In section 3, we state and prove
our main result. Finally in section 4, we give an example to illustrate our results.

2 Preliminary results

In this section, we give some preliminary results that will be used in the remain-
der of this paper.

We consider the following problem





− (ϕp (u′))
′
= F (x, u′) − ĥ (x, u) , x ∈ (0, 1) ,

u (0) − a2u
′ (0) = a,

u (1) + a3u
′ (1) = b,

(2)

where F : [0, 1] × R → R is a continuous function, ĥ : [0, 1] × R → R is a
continuous function and strictly increasing in its second variable, a2 and a3 are
a positive real numbers, a ∈ R and b ∈ R.

Lemma 1 (Weak comparison principle).
Let u1, u2 are such that ui ∈ C1 ([0, 1]), ϕp (u′

i) ∈ C1 (0, 1), i = 1, 2, and
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− (ϕp (u′

1))
′
− F (x, u′

1) + ĥ (x, u1) ≤ − (ϕp (u′
2))

′
− F (x, u′

2) + ĥ (x, u2) , x ∈ (0, 1) ,

u1 (0) − a2u
′
1 (0) ≤ u2 (0) − a2u

′
2 (0) ,

u1 (1) + a3u
′
1 (1) ≤ u2 (1) + a3u

′
2 (1) ,

then u1 (x) ≤ u2 (x), for all x ∈ [0, 1] .

Proof. Assume that there exists x0 ∈ [0, 1] such that

u2 (x0) − u1 (x0) = min
0≤x0≤1

(u2 (x) − u1 (x)) < 0.

Then since (u2 − u1) ∈ C1 ([0, 1]), we have (u2 − u1)
′ (x0) = 0.

If x0 = 0, we obtain the contradiction

0 > u2 (0) − u1 (0) ≥ a2

(
u

′

2 (0) − u
′

1 (0)
)

= 0.

A similar argument holds if x0 = 1.

If x0 ∈ (0, 1), we have

ϕp (u′
2 (x0)) = ϕp (u′

1 (x0)) ,

then since ϕp is strictly increasing, we obtain that

− (ϕp (u′
2))

′
(x0) + (ϕp (u′

1))
′
(x0) = lim

x→x0

−ϕp (u′
2) (x) + ϕp (u′

1) (x)

x − x0
≤ 0.

But on this point, we have

− (ϕp (u′
2))

′
(x0) + ĥ (x0, u2 (x0)) + (ϕp (u′

1))
′
(x0) − ĥ (x0, u1 (x0))

≥ F (x0, u
′
2 (x0)) − F (x0, u

′
1 (x0)) = 0.

Which means that,

− (ϕp (u′
2))

′
(x0) + (ϕp (u′

1))
′
(x0) ≥ ĥ (x0, u1 (x0)) − ĥ (x0, u2 (x0)) .

Since u1 (x0) > u2 (x0) and the function h is strictly increasing in its second
variable, we obtain that

− (ϕp (u′
2))

′
(x0) + (ϕp (u′

1))
′
(x0) > 0.

Which is a contradiction.
Definition 2.1: We say that α is a lower solution of (2) if

i) α ∈ C1 ([0, 1]) and ϕp (α′) ∈ C1 (0, 1) .

ii)

{
− (ϕp (α′))

′
≤ F (x, α′) − ĥ (x, α) , x ∈ (0, 1) ,

α (0) − a2α
′ (0) ≤ a, α (1) + a3α

′ (1) ≤ b.
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Definition 2.2: We say that β is an upper solution of (2) if

i) β ∈ C1 ([0, 1]) and ϕp (β′) ∈ C1 (0, 1) .

ii)

{
− (ϕp (β′))

′
≥ F (x, β′) − ĥ (x, β) , x ∈ (0, 1) ,

β (0) − a2β
′ (0) ≥ a, β (1) + a3β

′ (1) ≥ b.

Now, if moreover F is a bounded function, then we have the following result.

Theorem 2 Suppose that α and β are lower and upper solutions of problem
(2) such that α (x) ≤ β (x) for all 0 ≤ x ≤ 1. Then the problem (2) admits a
unique solution u ∈ C1 ([0, 1]) with ϕp (u′) ∈ C1 (0, 1) such that

α (x) ≤ u (x) ≤ β (x) , for all 0 ≤ x ≤ 1.

Proof. Using a proof similar to that of Theorem 1 in [25], we can prove that
the problem (2) admits at least one solution and by Lemma 1, it follows that
this problem admits a unique solution.

Now, we consider the following problem






− (ϕp (u′))
′
= f (x, u, u′) , x ∈ (0, 1) ,

u (0) − a0u
′ (0) =

1∫

0

g1 (x) u (x) dx,

u (1) + a1u
′ (1) =

1∫

0

g2 (x) u (x) dx,

(3)

where f : [0, 1] × R
2 → R is a continuous function, gi : [0, 1] → R+ are a

continuous functions (i = 0, 1 ) and a0 and a1 are two positive real numbers.
Definition 2.3: We say that u is a solution of (3) if

i) u ∈ C1 ([0, 1]) and ϕp (u′) ∈ C1 (0, 1) .

ii) u satisfies (3).

Definition 2.4: We say that u is a lower solution of (3) if

i) u ∈ C1 ([0, 1]) and ϕp (u′) ∈ C1 (0, 1) .

ii)





− (ϕp (u′))
′
≤ f (x, u, u′) , x ∈ (0, 1) ,

u (0) − a0u
′ (0) ≤

1∫

0

g1 (x)u (x) dx,

u (1) + a1u
′ (1) ≤

1∫

0

g2 (x)u (x) dx.

Definition 2.5: We say that u is an upper solution of (3) if

EJQTDE, 2011 No. 6, p. 4



i) u ∈ C1 ([0, 1]) and ϕp (u′) ∈ C1 (0, 1) .

ii)






− (ϕp (u′))
′
≥ f (x, u, u′) , x ∈ (0, 1) ,

u (0) − a0u
′ (0) ≥

1∫

0

g1 (x)u (x) dx,

u (1) + a1u
′ (1) ≥

1∫

0

g2 (x)u (x) dx.

Now, we define the Nagumo–Wintner condition.
Definition 2.6: We say that f : [0, 1] × R

2 → R satisfies a Nagumo–
Wintner condition relative to the pair u and u, if there exist C ≥ 0 and a
functions Q ∈ Lp ([0, 1]) and Ψ : [0, +∞) → (0, +∞) continuous, such that

|f (x, u, v)| ≤ Ψ (|v|)
(
Q (x) + C |v|

1

p−1

)
, (4)

for all (x, u, v) ∈ D, where

D =
{
(x, u, v) ∈ [0, 1] × R

2 : u (x) ≤ u (x) ≤ u (x)
}

and

+∞∫

0

s
1

p

Ψ
(
|s|

1

p−1

)ds = +∞. (5)

We have the following result

Lemma 3 Let f : [0, 1] × R
2 → R satisfying Nagumo–Wintner conditions (4)

and (5) in D. Then there exists a constant K > 0, such that every solution of
problem (3) verifying u (x) ≤ u (x) ≤ u (x), for all x ∈ [0, 1] , satisfies ‖u′‖0 ≤
K.

Proof.
Since u (x) ≤ u (x) ≤ u (x), for all x ∈ [0, 1] , we have

u (1) − u (0) ≤ u (1) − u (0) ≤ u (1) − u (0) .

Let
η := max {|u (1) − u (0)| , |u (1) − u (0)|} .

By the mean value theorem, there exists x0 ∈ (0, 1) such that

u (1) − u (0) = u′ (x0) ,

and then,
|u′ (x0)| ≤ η.
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We put by definition

L := |u′ (x0)| and δ̃ := 2 max (‖u‖0 , ‖u‖0) .

Take K > (η, ‖u′‖0 , ‖u′‖0) such that

ϕp(K)∫

ϕp(η)

s
1

p

Ψ
(
|s|

1

p−1

)ds > ‖Q‖p δ̃
p−1

p + Cδ̃
p−1

p . (6)

Now, we are going to prove that |u′ (x)| ≤ K, for all x ∈ [0, 1] .
Suppose, on the contrary that there exists x1 ∈ [0, 1] such that |u′ (x1)| > K.

Then by the continuity of u′, we can choose x2 ∈ [0, 1] verifying one of the
following situations:

i) u′ (x0) = L, u′ (x2) = K and L ≤ u′ (x) ≤ K, for all x ∈ (x0, x2) .

ii) u′ (x2) = K, u′ (x0) = L and L ≤ u′ (x) ≤ K, for all x ∈ (x2, x0) .

iii) u′ (x0) = −L, u′ (x2) = −K and −K ≤ u′ (x) ≤ −L, for all x ∈ (x0, x2) .

iv) u′ (x2) = −K, u′ (x0) = −L and −K ≤ u′ (x) ≤ −L, for all x ∈ (x2, x0) .

Assume that the case i) holds. The others can be handled in a similar way.
Since u is a solution of the problem (3) and by the Nagumo–Wintner condi-

tion (4), we have

(ϕp (u′))
′
(x) ≤ Ψ (u′ (x))

(
Q (x) + C. (u′ (x))

1

p−1

)
, for all x ∈ (x0, x2) . (7)

Since L ≤ η and ϕp is increasing, we have

ϕp(K)∫

ϕp(η)

s
1

p

Ψ
(
s

1

p−1

)ds ≤

ϕp(K)∫

ϕp(L)

s
1

p

Ψ
(
s

1

p−1

)ds. (8)

Now if we put s = ϕp (u′ (x)), we obtain that

ϕp(K)∫

ϕp(L)

s
1

p

Ψ
(
s

1

p−1

)ds =

x2∫

x0

(ϕp (u′ (x)))
1

p

Ψ (u′ (x))
(ϕp (u′ (x)))

′
dx.
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Then by (7) and (8), it follows that

ϕp(K)∫

ϕp(η)

s
1

p

Ψ
(
s

1

p−1

)ds ≤

x2∫

x0

(ϕp (u′ (x)))
1

p

Ψ (u′ (x))
(ϕp (u′ (x)))

′
dx

≤

x2∫

x0

(ϕp (u′ (x)))
1

p

[
Q (x) + C. (u′ (x))

1

p−1

]
dx

=

x2∫

x0

(u′ (x))
p−1

p

[
Q (x) + C. (u′ (x))

1

p−1

]
dx

=

x2∫

x0

(u′ (x))
p−1

p Q (x) dx + C

x2∫

x0

(u′ (x))
1

p dx

≤

‖Q‖p




x2∫

x0

(
(u′ (x))

p−1

p

) p

p−1

dx




p−1

p

+

+C.







x2∫

x0

(
(u′ (x))

1

p

)p

dx




1

p


 .




x2∫

x0

1
p

p−1 dx




p−1

p

= ‖Q‖p (u (x2) − u (x0))
p−1

p + C. (u (x2) − u (x0))
1

p . (x2 − x0)
p−1

p

≤ ‖Q‖p δ̃
p−1

p + Cδ̃
p−1

p .

Which a contradiction with (6).

3 Main result

In this section, we state and prove our main result.
On the nonlinearity f , we shall impose the following condition:
H) There exists a continuous function h : R → R strictly increasing such

that s 7→ f (x, s, z) + h (s) is increasing for all x ∈ [0, 1] and all z ∈ R.

The main result of this work is:

Theorem 4 Let u and u be a lower and upper solution solution respectively
for problem (3) and such that u ≤ u in [0, 1] . Assume that H) is satisfied and
the Nagumo–Wintner conditions relative to u and u holds. Then the problem
(3) has a maximal solution u∗ and a minimal solution u∗ such that for every
solution u of (3) with u ≤ u ≤ u in [0, 1], we have u ≤ u∗ ≤ u ≤ u∗ ≤ u in
[0, 1] .

For the proof of this theorem, we need a preliminary lemma.
Let w, w ∈ C1 ([0, 1]) be fixed such that

i) ϕp (w′), ϕp (w′) ∈ C1 (0, 1) .
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ii) u ≤ w ≤ w ≤ u in [0, 1] .

Let δ (v) := max (−K, min (v, K)), for all v ∈ R, where K is the constant
defined in the proof of lemma 3. Then the function δ is continuous and bounded.
In fact, we have δ (v) = v for all v such that |v| ≤ K; and |δ (v)| ≤ K for all
v ∈ R.

We consider the following problems:





− (ϕp (u′))
′
+ h (u) = f (x, w, δ (u′)) + h (w) , x ∈ (0, 1) ,

u (0) − a0u
′ (0) =

1∫

0

g0 (s)w (s) ds,

u (1) + a1u
′ (1) =

1∫

0

g1 (s)w (s) ds,

(9)

and




− (ϕp (u′))
′
+ h (u) = g (x, w, δ (u′)) + h (w) , x ∈ (0, 1) ,

u (0) − a0u
′ (0) =

1∫

0

g0 (s)w (s) ds,

u (1) + a1u
′ (1) =

1∫

0

g1 (s)w (s) ds.

(10)

Lemma 5 Let w and w be a lower and upper solution respectively for problem
(3). Assume that H) is satisfied and the Nagumo–Wintner conditions relative
to u and u holds. Then there exists a unique solution ũ and û of (9) and (10)
such that u ≤ w ≤ ũ ≤ û ≤ w ≤ u.

Proof.
The proof will be given in several steps.
Step 1: w is a lower solution of (9).
Proof: Let x ∈ (0, 1) , we have

− (ϕp (w′))
′
+ h (w) ≤ f (x, w, w′) + h (w)

≤ f (x, w, w′) + h (w) .

This means that,

∀ x ∈ (0, 1) , − (ϕp (w′))
′
+ h (w) ≤ f (x, w, w′) + h (w) .

Now since w is a lower solution of (3) and u ≤ w ≤ u in [0, 1], then by using
a proof similar to that of lemma 3, we prove that ‖w′‖0 ≤ K. Hence δ (w′) = w′

and we obtain that

∀x ∈ (0, 1) , − (ϕp (w′))
′
+ h (w) ≤ f (x, w, δ (w′)) + h (w) . (11)
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On the other hand, we have

w (0) − a0w
′ (0) ≤

1∫

0

g0 (s)w (s) ds

≤

1∫

0

g0 (s)w (s) ds.

That is,

w (0) − a0w
′ (0) ≤

1∫

0

g0 (s)w (s) ds. (12)

Similarly, we have

w (1) + a1w
′ (1) ≤

1∫

0

g1 (s)w (s) ds. (13)

Then by (11), (12) and (13), it follows that w is a lower solution of (9).
Step 2: w is an upper solution of (9).
Proof: Let x ∈ (0, 1), we have

− (ϕp (w′))
′
+ h (w) ≥ f (x, w, w′) + h (w) .

Now by using a proof similar to that of lemma 3, we prove that ‖w′‖0 ≤ K.

Hence δ (w′) = w′ and we obtain that

∀ x ∈ (0, 1) , − (ϕp (w′))
′
+ h (w) ≥ f (x, w, δ (w′)) + h (w) . (14)

Also, we have

w (0) − a0w
′ (0) ≥

1∫

0

g0 (s)w (s) ds, (15)

and

w (1) + a1w
′ (1) ≥

1∫

0

g1 (s)w (s) ds. (16)

Then by (14), (15) and (16), it follows that w is an upper solution of (9).
By Steps 1 and 2 and since the functions (x, u′) 7→ f (x, w, δ (u′)) + h (w)

is a bounded continuous function and u 7→ h (u) is continuous and strictly
increasing, then by theorem 2, it follows the existence of a unique solution ũ of
(9) such that w ≤ ũ ≤ w.

Similarly, we can prove the existence and uniqueness of a solution to (10),
which we call û such that w ≤ û ≤ w.
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Finally, by using a proof similar to that of lemma 1, we prove that û ≤ ũ in
[0, 1] .
Proof. of Theorem 4

The proof will be given in several steps.
We take u0 = u, u0 = u and define the sequences (un)n≥1, (un)n≥1by






−
(
ϕp

(
u′

n+1

))′
+ h (un+1) = f

(
x, un, δ

(
u′

n+1

))
+ h (un) , x ∈ (0, 1) ,

un+1 (0) − a0u
′
n+1 (0) =

1∫

0

g0 (s)un (s) ds,

un+1 (1) + a1u
′
n+1 (1) =

1∫

0

g1 (s)un (s) ds,

(Pn+1)

and





−
(
ϕp

(
u′

n+1

))′
+ h

(
un+1

)
= g

(
x, un, δ

(
u′

n+1

))
+ h (un) , x ∈ (0, 1) ,

un+1 (0) − a0u
′
n+1 (0) =

1∫

0

g0 (s)un (s) ds,

un+1 (1) + a1u
′
n+1 (1) =

1∫

0

g1 (s)un (s) ds.

(Qn+1)

Step 1: For all n ∈ N, we have

u ≤ un ≤ un+1 ≤ un+1 ≤ un ≤ u in [0, 1] .

Proof:

i) For n = 0, we have





− (ϕp (u′
1))

′
+ h (u1) = f (x, u, δ (u′

1)) + h (u) , x ∈ (0, 1) ,

u1 (0) − a0u
′
1 (0) =

1∫

0

g0 (s)u (s) ds,

u1 (1) + a1u
′
1 (1) =

1∫

0

g1 (s)u (s) ds,

(P1)





− (ϕp (u′
1))

′
+ h (u1) = g (x, u, δ (u′

1)) + h (u) , x ∈ (0, 1) ,

u′
1 (0) − a0u1 (0) =

1∫

0

g0 (s)u (s) ds,

u′
1 (1) + a1u1 (1) =

1∫

0

g1 (s)u (s) ds.

(Q1)
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Since u and u are lower and upper solutions of problem (3), then by lemma
5, it follows that

u = u0 ≤ u1 ≤ u1 ≤ u0 = u in [0, 1] .

ii) Assume for fixed n > 1, we have

u ≤ un−1 ≤ un ≤ un ≤ un−1 ≤ u in [0, 1] ,

and we show that

u ≤ un ≤ un+1 ≤ un+1 ≤ un ≤ u in [0, 1] .

Let x ∈ (0, 1), we have

− (ϕp (u′
n))

′
+ h (un) = f (x, un−1, δ (u′

n)) + h (un−1) . (17)

Since un−1 ≥ un and using the hypothesis H), we obtain

f (x, un−1, δ (u′
n)) + h (un−1) ≥ f (x, un, δ (u′

n)) + h (un) . (18)

Then by (17) and (18), it follows that

∀ x ∈ (0, 1) ,− (ϕp (u′
n))

′
≥ f (x, un, δ (u′

n)) .

Now by using a proof similar to that of lemma 3, we can prove that
‖u′

n‖0 ≤ K. Hence δ (u′
n) = u′

n and we obtain that

∀ x ∈ (0, 1) ,− (ϕp (u′
n))

′
≥ f (x, un, u′

n) . (19)

On the other hand, we have

un (0) − a0u
′
n (0) =

1∫

0

g0 (s)un−1 (s) ds

≥

1∫

0

g0 (s)un (s) ds.

That is,

un (0) − a0u
′
n (0) ≥

1∫

0

g0 (s)un (s) ds, (20)

and

un (1) + a1u
′
n (1) =

1∫

0

g1 (s)un−1 (s) ds

≥

1∫

0

g1 (s)un (s) ds.
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That is,

un (1) + a1u
′
n (1) ≥

1∫

0

g1 (s)un (s) ds (21)

Then by (19), (20) and (21), it follows that un is an upper solution of (3).

Similarly, we can prove that un is a lower solution of (3). Then by lemma
5, there exists a unique solution un+1 and un+1 of (Pn+1) and (Qn+1)
such that

u ≤ un+1 ≤ un ≤ un ≤ un+1 ≤ u in [0, 1] .

Hence, we have

∀n ∈ N, u ≤ un+1 ≤ un ≤ un ≤ un+1 ≤ u in [0, 1] .

Step 2: The sequence (un)n∈N
converge to a maximal solution of (3).

Proof: By Step 1 and since ‖u′
n‖0 ≤ K, for all n ∈ N, it follows that the

sequence (un)n∈N
is uniformly bounded in C1 ([0, 1]) .

Now let ε1 > 0 and t, s ∈ [0, 1] such that t < s, then for each n ∈ N, we have

∣∣ϕp

(
u′

n+1 (s)
)
− ϕp

(
u′

n+1 (t)
)∣∣ =

∣∣∣∣∣∣

s∫

t

(
f

(
τ, un (τ) , δ

(
u′

n+1 (τ)
))

+ h (un (τ)) − h (un+1 (τ))
)
dτ

∣∣∣∣∣∣

≤

s∫

t

∣∣(f
(
τ, un (τ) , δ

(
u′

n+1 (τ)
))

+ h (un (τ)) − h (un+1 (τ))
)∣∣ dτ

≤ (M1 (f) + 2M2 (h)) |s − t| ,

where

M1 (f) := max {|f (x, s, z)| : x ∈ [0, 1] , u ≤ u ≤ u and |z| ≤ K} ,

and
M2 (h) := max {|h (u)| : u ≤ u ≤ u} .

If we put K1 := M1 (f) + 2M2 (h) , one has

∣∣ϕp

(
u′

n+1 (s)
)
− ϕp

(
u′

n+1 (t)
)∣∣ ≤ K1 |s − t| .

Then if we choose |s − t| ≤
ε1

K1 + 1
, we obtain

∣∣ϕp

(
u′

n+1 (s)
)
− ϕp

(
u′

n+1 (t)
)∣∣ < ε1.

Therefore the sequence (ϕp (u′
n))

n∈N
is equicontinuous on [0, 1] .

Now since the mapping ϕ−1
p is an increasing homeomorphism from R onto

R, we deduce from

|u′
n (s) − u′

n (t)| =
∣∣ϕ−1

p (ϕp (u′
n (s))) − ϕ−1

p (ϕp (u′
n (t)))

∣∣
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that the sequence (u′
n)n∈N

is equicontinuous on [0, 1] .

Hence by the Arzéla-Ascoli theorem, there exists a subsequence
(
unj

)
of

(un)n∈N
which converges in C1 ([0, 1]) .

Let
u := lim

nj→+∞
unj

.

Then
u′ = lim

nj→+∞
u′

nj
.

But by Step 1 the sequence (un)n∈N
is decreasing and bounded from below,

then the pointwise limit of this sequence exists and it is denoted by u∗. Hence,
we have u = u∗ and moreover, the whole sequence converges in C1 ([0, 1]) to u∗.

Let x ∈ (0, 1) , we have

−ϕp

(
u′

n+1 (x)
)

= ϕp

(
u′

n+1 (0)
)
+

x∫

0

(
f

(
τ, un (τ) , δ

(
u′

n+1 (τ)
))

+ h (un (τ)) − h (un+1 (τ))
)
dτ.

Now, as n tends to +∞, we obtain that

f
(
τ, un (τ) , δ

(
u′

n+1 (τ)
))

+ h (un (τ))− h (un+1 (τ)) → f (τ, u∗ (τ) , δ (u∗′ (τ))) .

Also, we have

∃ K4 > 0, ∀ n ∈ N, ∀ τ ∈ [0, 1] ,
∣∣f

(
τ, un (τ) , δ

(
u′

n+1 (τ)
))

+ h (un (τ)) − h (un+1 (τ))
∣∣ ≤ K4.

Hence, the dominated convergence theorem of Lebesgue implies that

−ϕp (u∗′ (x)) = ϕp (u∗′ (0))+

x∫

0

(f (τ, u∗ (τ) , δ (u∗′ (τ))) + h (u∗ (τ)) − h (u∗ (τ))) dτ.

Thus, we obtain

∀ x ∈ (0, 1) , − (ϕp (u∗′))
′
= f (x, u∗, δ (u∗′)) . (22)

Also, by the dominated convergence theorem of Lebesgue, we have

u∗ (0) − a0u
∗′ (0) =

1∫

0

g0 (s)u∗ (s) ds, (23)

and

u∗ (1) + a1u
∗′ (1) =

1∫

0

g1 (s)u∗ (s) ds. (24)

EJQTDE, 2011 No. 6, p. 13



By (22), (23) and (24), it follows that u∗ is a solution of the following problem





− (ϕp (u∗′))
′
= f (x, u∗, δ (u∗′)) , x ∈ (0, 1) ,

u∗ (0) − a0u
∗′ (0) =

1∫

0

g0 (s)u∗ (s) ds,

u∗ (1) + a1u
∗′ (1) =

1∫

0

g1 (s)u∗ (s) ds.

(25)

Now using a proof similar to that of lemma 3, we prove that ‖u∗‖ ≤ K.

Hence δ (u∗′) = u∗′ and consequently u∗ is a solution of (3).
Now, we prove that if u is another solution of (3) such that u ≤ u ≤ u in

[0, 1], then u ≤ u∗ in [0, 1] .
Since u is a lower solution of (3), then by Step 1, we have

∀ n ∈ N, u ≤ un.

Letting n → +∞, we obtain that

u ≤ lim
n→+∞

un = u∗.

Which means that u∗ is a maximal solution of problem (3).
Step 3: The sequence (un)n∈N

converges to a minimal solution of (3).
Proof: The proof is similar to that of Step 2, so it is omitted.
The proof of our result is complete.

4 Application

In this section, we apply the previous result to the following problem





− (ϕp (u′))
′
= λ1u

k1 − uk2 + λ2u
k1 |u′|

1

p−1 in (0, 1) ,

u (0) − a0u
′ (0) = 0, u (1) + a1u

′ (1) =

1∫

0

g1 (s)u (s) ds,
(26)

where 0 < k1 < p − 1, k2 > k1, λ1, and are a positive real parameters and
1∫

0

g1 (s) ds ≤ 1.

To study this problem, we need first consider the following problem:

{
− (ϕp (u′))

′
= uk3 in (0, 1) ,

u (0) = 0, u (1) = 0,
(27)

where k3 > 0 and k3 6= p − 1.

Theorem 6 The problem (27) admits a unique positive solution Φk3,p.
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Proof.
Multiplying the differential equation in (27) by u′ and integrating the result-

ing equation over [0, x], we obtain

|u′ (x)|
p

= |u′ (0)|
p
−

p

(p − 1) (k3 + 1)
uk3+1 (x) , x ∈ [0, 1] . (28)

We note that u is symmetric about x =
1

2
and u′ (x) > 0, for all x ∈

[
0,

1

2

)
.

If we put by definition ρ = max
x∈[0,1]

u (x), then u

(
1

2

)
= ρ and ρ > 0.

Now substituting x =
1

2
in (28), we obtain

u′ (x) =

[
p

(p − 1) (k3 + 1)

(
ρk3+1 − uk3+1 (x)

)]
1

p
, for all x ∈

[
0,

1

2

]
,

and thus,

u′ (x)

[
p

(p − 1) (k3 + 1)
(ρk3+1 − uk3+1 (x))

]1

p

= 1, for all x ∈

[
0,

1

2

)
.

Integrating the last equality on (0, x) , where x ∈
[
0, 1

2

)
, we obtain

u(x)∫

0

dv

[
p

(p − 1) (k3 + 1)
(ρk3+1 − vk3+1)

]1

p

= x. (29)

Letting x →
1

2
in (29), we obtain

G (ρ) :=

ρ∫

0

dv

[
p

(p − 1) (k3 + 1)
(ρk3+1 − vk3+1)

]1

p

=
1

2
.

Thus, if the problem (27) admits a positive solution u, with max
x∈[0,1]

u (x) =

u

(
1

2

)
= ρ, then we have G (ρ) =

1

2
.

Conversely, if G (ρ) =
1

2
. Defining u via equation (29), we can prove that

problem (27) admits a unique positive solution u, with max
x∈[0,1]

u (x) = u

(
1

2

)
= ρ.
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Hence the problem (27) admits a unique positive solution u, with max
x∈[0,1]

u (x) =

u

(
1

2

)
= ρ if and only if G (ρ) =

1

2
.

Some easy computations shows that

G (ρ) =

[
(p − 1) (k3 + 1)

p

]1

p
B

(
p − 1

p
,

1

k3 + 1

)

k3 + 1
ρ

p − 1 − k3

p ,

where B (k, l) is the Euler beta function defined by

B (k, l) =

1∫

0

(1 − t)
k−1

tl−1dt, k > 0 and l > 0.

It is not difficult to see that the equation G (ρ) =
1

2
admits a unique solution.

Hence the problem (27) admits a unique positive solution.

Theorem 7 Assume that λ1 > 1, then the problem (26) admits a maximal
solution u∗ and a minimal solution u∗.

Proof. We put (u, u) = (εΦk1,p, L) where ε and L are a positive constants.

First, since Φ
′

k1,p (0) > 0, Φ
′

k1,p (1) < 0 and

1∫

0

g1 (s) ds ≤ 1 and, it is easy to

check that




εΦk1,p (0) − a0εΦ
′

k1,p (0) ≤ 0,

εΦk1,p (1) + a1εΦ
′

k1,p (1) ≤

1∫

0

g1 (s) εΦk1,p (s) ds,

L ≥

1∫

0

g1 (s)Lds.

Now u and u-are lower and upper solutions of (26), if we have



εp−1Φk1

k1,p (x) ≤ λ1ε
k1Φk1

k1,p (x) − εk2Φk2

k1,p (x) + λ2ε
k1Φk1

k1,p (x)
∣∣∣εΦ′

k1,p (x)
∣∣∣

1

p−1

in (0, 1) ,

0 ≥ λ1L
k1 − Lk2 .

That is



εp−1−k1 ≤ λ1 − εk2−k1

1 Φk2−k1

k1,p (x) + λ2

∣∣∣εΦ′
k1,p (x)

∣∣∣
1

p−1

in (0, 1) ,

Lk2 ≥ λ1L
k1 .

Since k2 > k1, if we choose λ1 > 1, ε sufficiently small and L sufficiently
large, we obtain that u and u is a lower and upper solutions of (26).

This implies that the problem (26) admits a maximal solution u∗ and a
minimal solution u∗.
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