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Abstract. This paper is concerned with finding properties of solutions to initial value
problems for nonlinear Caputo nabla fractional difference equations. We obtain exis-
tence and rapid convergence results for such equations by use of Schauder’s fixed point
theorem and the generalized quasi-linearization method, respectively. A numerical ex-
ample is given to illustrate one of our rapid convergence results.
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1 Introduction

It is well known that there is a large quantity of research on integer-order difference equations.
Since the study was begun very early, much classical content has been established, and we re-
fer specifically to the monographs [2,17]. However, the study of fractional difference equations
is quite recent. The basic theory of linear and nonlinear fractional difference equations can
be found in [13–16]. Note that the theory of nonlinear fractional difference equations is not
complete and the convergence of approximate solutions is one of the most studied problems.
This has an important affect on the development of the qualitative theory.

Generalized quasi-linearization is an efficient method for constructing approximate solu-
tions of nonlinear problems. This method originated in dynamic programming theory and
was initially applied by Bellman and Kalaba [8]. A systematic development of the method to
ordinary differential equations was provided by Lakshmikantham and Vatsala [18], and there
are some generalized results of the method to various types of differential equations and we
refer to the monographs [19, 20], for functional differential equations [3, 11], for impulsive
equations [4, 7], for partial differential equations [5, 9, 23], for differential equations on time
scales [22], for fractional differential equations [10, 21, 26], for other types [12, 24, 25], and the
references cited therein. For nonlinear fractional difference equations see the paper [6].
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In this paper, we attempt to extend the applications of generalized quasi-linearization
with certain conditions on the forcing function, and study the rate of convergence of the
approximate solutions for the nonlinear Caputo nabla fractional difference equation. In order
to do this, we first prove the existence of solutions for such equations, and then using an
appropriate iterative scheme, we obtain two monotone sequences which converge uniformly
and rapidly to the solution of the problem. Finally, we provide a numerical example to
illustrate the application of the obtained results.

2 Preliminary definitions

For the convenience of readers, we will list some relevant results here. We use the notation
Na := {a, a + 1, a + 2, . . . }, where a is a real number. For the function f : Na → R, the
backward difference or nabla operator is defined as ∇ f (t) = f (t)− f (t− 1) for t ∈Na+1 and
the higher order differences are defined recursively by ∇n f (t) = ∇(∇n−1 f (t)) for t ∈ Na+n,
n ∈ N. In addition, we take ∇0 as the identity operator. We define the definite nabla integral
of f : Na → R by

∫ b

a
f (s)∇s =



b

∑
s=a+1

f (s), a < b,

0, a = b,

−
a

∑
s=b+1

f (s), a > b,

(2.1)

where b ∈Na.

Definition 2.1 (See [15, Definition 3.4]). The (generalized) rising function is defined by

tr =
Γ(t + r)

Γ(t)
(2.2)

for those values of t and r for which the right-hand side of (2.2) is defined. Also, we use the
convention that if t is a nonpositive integer, but t + r is not a nonpositive integer, then tr = 0.
We then define the ν-th order Taylor monomials based at a (see [15, Definition 3.56] by

Hν(t, a) =
(t− a)ν

Γ(ν + 1)
,

for ν 6= −1,−2, . . . , t ∈Na.

For some important formulas for these Taylor fractional monomials see [15, Theorem 3.57
and Theorem 3.93].

Definition 2.2 (Nabla fractional sum [15, Definition 3.58]). Let f : Na → R be given and
assume ν > 0. Then

∇−ν
a f (t) =

∫ t

a
Hν−1(t, ρ(s)) f (s)∇s, t ∈Na, (2.3)

where ρ(t) := t− 1 and by convention ∇−ν
a f (a) = 0.



Existence and rapid convergence results for Caputo nabla FDEs 3

Definition 2.3 (Nabla fractional difference [15, Definition 3.61]). Let f : Na → R, ν > 0 be
given, and let N := dνe, where d·e is the ceiling function. Then we define the ν-order nabla
fractional difference operator ∇ν

a f (t) by

∇ν
a f (t) = ∇N∇−(N−ν)

a f (t), t ∈Na+N . (2.4)

Definition 2.4 (Caputo nabla fractional difference [15, Definition 3.117]). Let f : Na → R,
ν > 0 be given, and let N := dνe. Then we define the ν-order Caputo nabla fractional
difference operator ∇ν

a∗ f (t) by

∇ν
a∗ f (t) = ∇−(N−ν)

a
[
∇N f (t)

]
, t ∈Na+N . (2.5)

Now it follows from this definition that ∇ν
a∗c = 0 for ν > 0 with any constant c.

Lemma 2.5 (See [15, Definition 3.61 and Theorem 3.62]). Assume f : Na → R, ν > 0, ν /∈ N1,
and choose N ∈N1 such that N − 1 < ν < N. Then

∇ν
a f (t) =

∫ t

a
H−ν−1(t, ρ(s)) f (s)∇s, t ∈Na, (2.6)

where ρ(t) := t− 1 and by convention ∇ν
a f (a) = 0.

Lemma 2.6 (See [1]). Assume f : Na → R, for any ν > 0, we have

∇ν
a∗ f (t) = ∇ν

a f (t)−
N−1

∑
k=0

H−ν+k(t, a)∇k f (a). (2.7)

In particular, when 0 < ν < 1, we have

∇ν
a∗ f (t) = ∇ν

a f (t)− H−ν(t, a) f (a). (2.8)

3 Existence and comparison results

Consider the following initial value problem (IVP) for a nonlinear Caputo nabla fractional
difference equation {

∇ν
a∗x(t) = f (t, x(t)), t ∈Nb

a+1,

x(a) = x0,
(3.1)

where f : Nb
a+1 ×R→ R is continuous with respect to x, x : Na → R, and 0 < ν < 1.

In this paper, we define the norm of x on Nb
a by ‖x‖ = maxs∈Nb

a
|x(s)|. Throughout this

paper, we use the notation ∂k f (t,x)
∂kx = f (k)(t, x) (k = 0, 1, 2 . . .). We define the following set for

convenience:
Ω = {(t, x) : α0(t) ≤ x(t) ≤ β0(t), t ∈Nb

a+1}.

where α0(t) and β0(t) are defined on Nb
a with α0(t) ≤ β0(t) on Nb

a.

Definition 3.1. The function α0(t), t ∈Nb
a, is said to be a lower (an upper) solution of the IVP

(3.1), if {
∇ν

a∗α0(t) ≤ (≥) f (t, α0(t)), t ∈Nb
a+1,

α0(a) ≤ (≥)x0.
(3.2)
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Lemma 3.2. The function x(t) is a solution of the IVP (3.1) if and only if the function x(t) has the
following representation

x(t) = x0 +
t

∑
s=a+1

Hν−1(t, ρ(s)) f (s, x(s)). (3.3)

Proof. Applying the operator ∇−ν
a on both sides of the first equality of the IVP (3.1), we have

∇−ν
a [∇ν

a∗x(t)] = ∇−ν
a f (t, x(t)),

which can be written as

∇−ν
a
[
∇−(1−ν)

a ∇x(t)
]
= ∇−ν

a f (t, x(t)).

That is,
∇−1∇x(t) = ∇−ν

a f (t, x(t)).

Then, we have

x(t) = x0 +
t

∑
s=a+1

Hν−1(t, ρ(s)) f (s, x(s)).

Conversely, assume that x has the representation (3.3). By means of (2.3), we obtain that
(3.3) is equivalent to

x(t) = x0 +∇−ν
a f (t, x(t)). (3.4)

Applying ∇ν
a∗ to both sides of (3.4), we get

∇ν
a∗x(t) = ∇ν

a∗x0 +∇ν
a∗
[
∇−ν

a f (t, x(t))
]
.

Using (2.8), we obtain

∇ν
a∗x(t) = ∇ν

a∗x0 +
(
∇ν

a∇−ν
a f (t, x(t))− H−ν(t, a)∇−ν

a f (a, x(a))
)

.

Thus, we have
∇ν

a∗x(t) = f (t, x(t)).

The proof is complete.

Now we present an existence result for the IVP (3.1), which we will use in our main results.
Since the proof is a standard application of Schauder’s fixed point theorem we will omit the
proof of this lemma.

Lemma 3.3. Assume that

(H3.1) the function f : R → R is continuous with repect to x, | f (t, x)| ≤ Q on R, D = Hν(b, a),
and D ≤ M

Q , where
R = {(t, x) : t ∈Nb

a+1, ‖x− x0‖ ≤ M}.

Then the IVP (3.1) has a solution.

Lemma 3.4. Assume that

(H3.2) the function f : Ω→ R is continuous in its second variable.

(H3.3) the functions α0, β0 : Nb
a → R are lower and upper solutions respectively of the the IVP (3.1)

such that α0(t) ≤ β0(t) on Nb
a;

Then there exists a solution x(t) of the IVP (3.1) satisfying α0(t) ≤ x(t) ≤ β0(t) on Nb
a.
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Proof. Let P : Nb
a+1 × R → R be defined by P(t, x) = max

{
α0(t), min{x, β0(t)}

}
. Then

f (t, P(t, x)) defines an extension of f to Nb
a+1 ×R, which is bounded and continuous with

respect its second variable on Nb
a+1. Therefore, by Lemma 3.3, ∇ν

a∗x(t) = f (t, P(t, x)), x(a) =
x0 has a solution on Nb

a.
To complete the proof, we need to show that α0(t) ≤ x(t) ≤ β0(t) on Nb

a. We now show
that x(t) ≤ β0(t) on Nb

a. Clearly, x(a) ≤ β0(a), we now only need to show x(t) ≤ β0(t) on
Nb

a+1. If it is not true, there exists a point c ∈ Nb
a+1 such that x(t) − β0(t) has a positive

maximum, that is,

x(c)− β0(c) = max{x(t)− β0(t) : t ∈Nb
a+1} > 0,

and
x(t)− β0(t) ≤ x(c)− β0(c) on Nc

a+1.

First, we will show that ∇ν
a∗x(c) > ∇ν

a∗β0(c), that is,

∇ν
a x(c)− H−ν(c, a)x(a) > ∇ν

a β0(c)− H−ν(c, a)β0(a).

Since x(a) ≤ β0(a) and

H−ν(c, a) =
(c− a)−ν

Γ(1− ν)
=

Γ(c− a− ν)

Γ(c− a)Γ(1− ν)
> 0, c ∈Nb

a+1,

we have
−H−ν(c, a)x(a) ≥ −H−ν(c, a)β0(a).

Next, we show ∇ν
a x(c) > ∇ν

a β0(c). In view of the fact that (1)−ν−1

Γ(−ν)
= Γ(−ν)

Γ(−ν)Γ(1) = 1 and
H−ν(c, a) > 0, it follows that

∇ν
a x(c)−∇ν

a β0(c) =
1

Γ(−ν)

c

∑
s=a+1

(c− ρ(s))−ν−1(x(s)− β0(s))

=

[
1

Γ(−ν)

c−1

∑
s=a+1

(c− ρ(s))−ν−1(x(s)− β0(s))

]
+ (x(c)− β0(c))

≥
[

1 +
1

Γ(−ν)

c−1

∑
s=a+1

(c− ρ(s))−ν−1

]
(x(c)− β0(c))

=

[
c

∑
s=a+1

H−ν−1(c, ρ(s))

]
(x(c)− β0(c))

= H−ν(c, a)(x(c)− β0(c)) > 0.

Then, we have ∇ν
a x(c) > ∇ν

a β0(c). Thus, we conclude that ∇ν
a∗x(c) > ∇ν

a∗β0(c).
On the other hand, due to x(c)− β0(c) > 0, so P(c, x(c)) = β0(c). Hence

∇ν
a∗β0(c) ≥ f (c, P(c, x(c))) = ∇ν

a∗x(c),

which is a contradiction. Thus, we obtain x(t) ≤ β0(t) on Nb
a. Similarly, we can show that

α0(t) ≤ x(t) on Nb
a. Therefore, it follows that x(t) is actually a solution of IVP (3.1). The proof

is complete.



6 X. Liu, B. G. Jia, L. Erbe and A. Peterson

For the convenience of readers, we give a result for the linear Caputo nabla fractional
difference equation.

Consider the Caputo nabla fractional difference inequality

∇ν
a∗x(t)− Cx(t) ≤ 0, x(a) ≤ 0, t ∈Nb

a+1. (3.5)

Lemma 3.5. Assume that

(H3.4) the positive constant C satisfies CHν(b, a) < 1.

Then x(t) ≤ 0 on Nb
a.

Proof. Setting x(t) = ∇−ν
a y(t), according to the Definition 2.2, we have

x(t) = ∇−ν
a y(t) =

∫ t

a
Hν−1(t, ρ(s))y(s)∇s

=
t

∑
s=a+1

(t− ρ(s))ν−1

Γ(ν)
y(s)

=
t

∑
s=a+1

Γ(t− s + ν)

Γ(ν)Γ(t− s + 1)
y(s).

(3.6)

We get from (3.6) that y(t) ≤ 0 implies x(t) ≤ 0 on Nb
a+1, so we only need to prove y(t) ≤ 0

on Nb
a+1. If this is false, there exists a c ∈ Nb

a+1 such that y(c) = max{y(t) : t ∈ Nb
a+1} > 0,

and y(t) ≤ y(c) on Nc
a+1. It follows from (2.8) that (3.5) is equivalent to

∇ν
a x(t)− H−ν(t, a)x(a)− Cx(t) ≤ 0. (3.7)

Letting x(t) = ∇−ν
a y(t) in (3.7) yields

∇ν
a∇−ν

a y(t)− C∇−ν
a y(t) ≤ 0,

which can be written as

y(t) ≤ C
Γ(ν)

t

∑
s=a+1

(t− ρ(s))ν−1y(s).

Hence, we have

y(c) ≤ C
Γ(ν)

c

∑
s=a+1

(c− ρ(s))ν−1y(s)

≤ C
Γ(ν)

( c

∑
s=a+1

(c− ρ(s))ν−1
)

y(c)

= Cy(c)Hν(c, a),

that is,
(1− CHν(c, a))y(c) ≤ 0.

Since y(c) > 0, so we have (1− CHν(c, a)) ≤ 0.
On the other hand, from the condition (H3.4) and the increasing property of the function

Hν(t, a), we have (1− CHν(c, a)) > 0, which is a contradiction. Then, we have y(t) ≤ 0 on
Nb

a+1. Hence, we conclude that x(t) ≤ 0 on Nb
a. The proof is complete.
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4 Rapid convergence

In this section, we consider the IVP (3.1) with f (t, x) = f1(t, x) + f2(t, x). We show that the
convergence of the sequences of successive approximations is of order m where m is 2k + 1
or 2k (k ≥ 1) by applying the method of generalized quasi-linearization for nonlinear Caputo
nabla fractional difference equations.

Theorem 4.1. Assume that the conditions (H3.3)–(H3.4) hold, and

(A4.1) the functions f1, f2 : Ω → R are such that f (i)1 (t, x), f (i)2 (t, x) (i = 0, 1, . . . , 2k) exist, are
continuous in the second variable, and for C1 > 0, C2 > 0, C = C1 + C2,

f (1)1 (t, x) ≤ C1, f (1)2 (t, x) ≤ C2 on Ω;

(A4.2) there exist M1, M2 > 0 such that for x1 ≥ x2, y1 ≥ y2 the functions f (2k)
1 (t, x), f (2k)

2 (t, x)
satisfy the following conditions:

0 ≤ f (2k)
1 (t, x1)− f (2k)

1 (t, x2) ≤ M1(x1 − x2) on Ω,

0 ≥ f (2k)
2 (t, y1)− f (2k)

2 (t, y2) ≥ −M2(y1 − y2) on Ω.

Then there exist two monotone sequences {αn(t)}, {βn(t)}, n ≥ 0 which converge uniformly and
monotonically to a solution of the IVP (3.1) and the convergence is of order 2k + 1.

Proof. From the condition (A4.2), and the Taylor expansion with Lagrange remainder, we
obtain

f1(t, x1) ≥
2k

∑
i=0

f (i)1 (t, x2)

i!
(x1 − x2)

i, (4.1)

f2(t, x1) ≥
2k−1

∑
i=0

f (i)2 (t, x2)

i!
(x1 − x2)

i +
f (2k)
2 (t, x1)

(2k)!
(x1 − x2)

2k (4.2)

for (t, x1), (t, x2) ∈ Ω, x2 ≤ x1. Similarly, we have

f1(t, x1) ≤
2k

∑
i=0

f (i)1 (t, x2)

i!
(x1 − x2)

i, (4.3)

f2(t, x1) ≤
2k−1

∑
i=0

f (i)2 (t, x2)

i!
(x1 − x2)

i +
f (2k)
2 (t, x1)

(2k)!
(x1 − x2)

2k (4.4)

for (t, x1), (t, x2) ∈ Ω, x1 ≤ x2.
Consider the following nonlinear Caputo nabla fractional difference equations:
∇ν

a∗y(t) =
2k

∑
i=0

f (i)1 (t, α)

i!
(y− α)i +

2k−1

∑
i=0

f (i)2 (t, α)

i!
(y− α)i +

f (2k)
2 (t, β)

(2k)!
(y− α)2k

≡ F(t, α, β; y), t ∈Nb
a+1,

y(a) = x0,

(4.5)
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and
∇ν

a∗z(t) =
2k

∑
i=0

f (i)1 (t, β)

i!
(z− β)i +

2k−1

∑
i=0

f (i)2 (t, β)

i!
(z− β)i +

f (2k)
2 (t, α)

(2k)!
(z− β)(2k)

≡ G(t, α, β; z), t ∈Nb
a+1,

z(a) = x0.

(4.6)

We develop the sequences {αn(t)}, {βn(t)} using the above IVPs (4.5), (4.6), respectively.
Letting α = α0, β = β0 in IVPs (4.5), (4.6). We first prove that α0(t) and β0(t) are lower and
upper solutions of the IVP (4.5) respectively. In fact, from the condition (H3.3), we have

∇ν
a∗α0(t) ≤ f1(t, α0) + f2(t, α0) = F(t, α0, β0; α0), t ∈Nb

a+1,

α0(a) ≤ x0,

and by using the inequalities (4.1), (4.2), it follows that

∇ν
a∗β0(t) ≥

2k

∑
i=0

f (i)1 (t, α0)

i!
(β0 − α0)

i +
2k−1

∑
i=0

f (i)2 (t, α0)

i!
(β0 − α0)

i +
f (2k)
2 (t, β0)

(2k)!
(β0 − α0)

(2k)

= F(t, α0, β0; β0), t ∈Nb
a+1,

β0(a) ≥ x0,

which imply that α0(t) and β0(t) are lower and upper solutions of the IVP (4.5), respec-
tively. Furthermore, we can see that F(t, α0, β0; y) is continuous with respect to y. Thus, by
Lemma 3.4, there exists a solution α1(t) of the IVP (4.5) such that α0(t) ≤ α1(t) ≤ β0(t) on Nb

a.
Similarly, applying the fact that α1(t) is a solution of the IVP (4.5), the inequalities (4.1)–

(4.4), and the conditions (H3.3), (A4.2), we obtain

∇ν
a∗α1(t)

(A4.2)

≤
2k

∑
i=0

f (i)1 (t, α0)

i!
(α1 − α0)

i +
2k−1

∑
i=0

f (i)2 (t, α0)

i!
(α1 − α0)

i +
f (2k)
2 (t, α1)

(2k)!
(α1 − α0)

2k

(4.1), (4.2)
≤ f1(t, α1) + f2(t, α1)

(4.3), (4.4)
≤

2k

∑
i=0

f (i)1 (t, β0)

i!
(α1 − β0)

i +
2k−1

∑
i=0

f (i)2 (t, β0)

i!
(α1 − β0)

i +
f (2k)
2 (t, α1)

(2k)!
(α1 − β0)

2k

(A4.2)

≤
2k

∑
i=0

f (i)1 (t, β0)

i!
(α1 − β0)

i +
2k−1

∑
i=0

f (i)2 (t, β0)

i!
(α1 − β0)

i +
f (2k)
2 (t, α0)

(2k)!
(α1 − β0)

2k

= G(t, α0, β0; α1), t ∈Nb
a+1,

α1(a) = x0,

and

∇ν
a∗β0(t) ≥ f1(t, β0) + f2(t, β0) = G(t, α0, β0; β0), t ∈Nb

a+1,

β0(a) ≥ x0,

which show that α1(t) and β0(t) are lower and upper solutions of the IVP (4.6), respectively.
Furthermore, we can find that G(t, α0, β0; z) is continuous with respect to z. Hence, in view of
Lemma 3.4, we see that there exists a solution β1(t) of the IVP (4.6) such that α1(t) ≤ β1(t) ≤
β0(t) on Nb

a.
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Next, we must show that α1(t) and β1(t) are lower and upper solutions respectively of the
IVP (3.1). For this purpose, using the conclusion that α1(t) is a solution of the IVP (4.5), the
condition (A4.2), and the inequalities (4.1), (4.2), we have

∇ν
a∗α1(t) ≤

2k

∑
i=0

f (i)1 (t, α0)

i!
(α1 − α0)

i +
2k−1

∑
i=0

f (i)2 (t, α0)

i!
(α1 − α0)

i +
f (2k)
2 (t, α1)

(2k)!
(α1 − α0)

2k

≤ f1(t, α1) + f2(t, α1), t ∈Nb
a+1,

α1(a) = x0,

which proves that α1(t) is a lower solution of the IVP (3.1) on Nb
a. Similar arguments show

that

∇ν
a∗β1(t) ≥ f1(t, β1) + f2(t, β1), t ∈Nb

a+1,

β1(a) = x0,

which shows that β1(t) is an upper solution of the IVP (3.1) on Nb
a. Therefore, we obtain

α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t) on Nb
a.

By induction, we have

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t) on Nb
a.

In addition, using the fact that αn(t), βn(t) are lower and upper solutions of the IVP (3.1) with
αn(t) ≤ βn(t), and the conditions of Lemma 3.4 are satisfied, we can conclude that there exists
a solution xn(t) of the IVP (3.1) such that αn(t) ≤ xn(t) ≤ βn(t) on Nb

a. From this we can
obtain that

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ xn(t) ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t) on Nb
a.

For any fixed t ∈ Nb
a, the monotone sequences {αn(t)} and {βn(t)} are uniformly bounded

by {α0(t)} and {β0(t)}. Hence, we have that both monotone sequences {αn(t)} and {βn(t)}
are convergent on Nb

a, that is, there exist functions ρ, r : Nb
a → R such that

lim
n→∞

αn(t) = ρ(t) ≤ r(t) = lim
n→∞

βn(t).

Taking α = αn, β = βn in IVPs (4.5), (4.6), then we can show easily that ρ(t), r(t) are solutions
of the IVP (3.1). Next, we show that ρ(t) ≥ r(t). Let p(t) := r(t)− ρ(t) so that r(a)− ρ(a) = 0.
Using the condition (A4.1), and the mean value theorem, we have

∇ν
a∗ p(t) = f1(t, r) + f2(t, r)− f1(t, ρ)− f2(t, ρ)

= f (1)1 (t, ξ1)(r− ρ) + f (1)2 (t, ξ2)(r− ρ)

≤ C1 p + C2 p

= Cp,

where ρ(t) ≤ ξ1(t), ξ2(t) ≤ r(t). By Lemma 3.5, we conclude that r(t) ≤ ρ(t) on Nb
a. This

proves that ρ(t) = r(t). By the squeeze theorem, we have limn→∞ xn(t) exists, and

lim
n→∞

αn(t) = ρ(t) = lim
n→∞

xn(t) = r(t) = lim
n→∞

βn(t).
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Set limn→∞ xn(t) = x(t), then we have ρ(t) = x(t) = r(t). Hence αn(t) and βn(t) converge
uniformly and monotonically to a solution of the IVP (3.1).

Finally, we shall show that the convergence of the sequences {αn(t)} and {βn(t)} to a
solution x(t) of the IVP (3.1) is of order 2k + 1. For this purpose, set

pn(t) = x(t)− αn(t) ≥ 0,

qn(t) = βn(t)− x(t) ≥ 0

for t ∈Nb
a with pn(a) = qn(a) = 0.

From the conditions (A4.1), (A4.2), the Taylor’s expansion with Lagrange remainder, and
the mean value theorem, we obtain

∇ν
a∗ pn+1(t)

= f1(t, x) + f2(t, x)

−
[

2k

∑
i=0

f (i)1 (t, αn)

i!
(αn+1 − αn)

i +
2k−1

∑
i=0

f (i)2 (t, αn)

i!
(αn+1 − αn)

i +
f (2k)
2 (t, βn)

(2k)!
(αn+1 − αn)

2k

]
= f1(t, x) + f2(t, x)

−
[

f1(t, αn+1)−
f (2k)
1 (t, ξ3)

(2k)!
(αn+1 − αn)

2k +
f (2k)
1 (t, αn)

(2k)!
(αn+1 − αn)

2k + f2(t, αn+1)

− f (2k)
2 (t, ξ4)

(2k)!
(αn+1 − αn)

2k +
f (2k)
2 (t, βn)

(2k)!
(αn+1 − αn)

2k

]
(A4.2)

≤ f (1)1 (t, η1)(x− αn+1) + f (1)2 (t, η2)(x− αn+1)

+
M1

(2k)!
(αn+1 − αn)

2k(ξ3 − αn) +
M2

(2k)!
(αn+1 − αn)

2k(βn − ξ4)

(A4.1)

≤ C1 pn+1 + C2 pn+1 + K1 p2k+1
n + K2 p2k

n (pn + qn)

= Cpn+1 + (K1 + K2)p2k+1
n + K2 p2k

n qn

≤ Cpn+1 + Kp2k
n (pn + qn),

where αn ≤ ξ3, ξ4 ≤ αn+1, αn+1 ≤ η1, η2 ≤ x, M1
(2k)! = K1, M2

(2k)! = K2, K = K1 + K2. According to

Lemma 3.5, we have pn+1(t) ≤ x(t) on Nb
a, where x(t) is the solution of{

∇ν
a∗x(t) = Cx + Kp2k

n (pn + qn), t ∈Nb
a+1,

x(a) = 0.
(4.7)

Hence, using the expression for x(t) in Lemma 3.2, the solution x(t) of (4.7) is given by

x(t) =
t

∑
s=a+1

Hν−1(t, ρ(s))
[
Cx(s) + Kp2k

n (s)(pn(s) + qn(s))
]

≤
[

C max
s∈Nt

a+1

x(s) + K max
s∈Nt

a+1

p2k
n (s)(pn(s) + qn(s))

]
t

∑
s=a+1

Hν−1(t, ρ(s))

=

[
C max

s∈Nt
a+1

x(s) + K max
s∈Nt

a+1

p2k
n (s)(pn(s) + qn(s))

] ∫ t

a
Hν−1(t, ρ(s))∇s
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=

[
C max

s∈Nt
a+1

x(s) + K max
s∈Nt

a+1

p2k
n (s)(pn(s) + qn(s))

]
Hν(t, a)

≤ Hν(b, a)

[
C max

s∈Nb
a+1

x(s) + K max
s∈Nb

a+1

p2k
n (s)(pn(s) + qn(s))

]
.

Then, we have

max
s∈Nb

a+1

x(s) ≤ CHν(b, a) max
s∈Nb

a+1

x(s) + KHν(b, a) max
s∈Nb

a+1

p2k
n (s)(pn(s) + qn(s)).

According to the condition (H3.4), the above inequality can be written as

max
s∈Nb

a+1

x(s) ≤ (1− CHν(b, a))−1KHν(b, a) max
s∈Nb

a+1

p2k
n (s)(pn(s) + qn(s)).

Thus, we have

max
s∈Nb

a+1

pn+1(s) ≤ (1− CHν(b, a))−1KHν(b, a) max
s∈Nb

a+1

p2k
n (s)(pn(s) + qn(s)). (4.8)

Therefore, we conclude that the following inequality holds

‖pn+1‖ ≤ L‖pn‖2k(‖pn‖+ ‖qn‖),

where L = KHν(b,a)
1−CHν(b,a) is a positive constant, which is the desired result.

Similarly, utilizing the conditions (A4.1), (A4.2), the Taylor’s expansion with Lagrange
remainder, and the mean value theorem, we have

∇ν
a∗qn+1(t)

=

[
2k

∑
i=0

f (i)1 (t, βn)

i!
(βn+1 − βn)

i +
2k−1

∑
i=0

f (i)2 (t, βn)

i!
(βn+1 − βn)

i +
f (2k)
2 (t, αn)

(2k)!
(βn+1 − βn)

2k

]
− f1(t, x)− f2(t, x)

=

[
f1(t, βn+1)−

f (2k)
1 (t, ξ5)

(2k)!
(βn+1 − βn)

2k +
f (2k)
1 (t, βn)

(2k)!
(βn+1 − βn)

2k

+ f2(t, βn+1)−
f (2k)
2 (t, ξ6)

(2k)!
(βn+1 − βn)

2k +
f (2k)
2 (t, αn)

(2k)!
(βn+1 − βn)

2k

]
− f1(t, x)− f2(t, x)

(A4.2)

≤ f (1)1 (t, η3)(βn+1 − x) + f (1)2 (t, η4)(βn+1 − x)

+
M1

(2k)!
(βn+1 − βn)

2k(βn − ξ5) +
M2

(2k)!
(βn+1 − βn)

2k(ξ6 − αn)

(A4.1)

≤ C1qn+1 + C2qn+1 + K1q2k+1
n + K2q2k

n (qn + pn)

= Cqn+1 + (K1 + K2)q2k+1
n + K2q2k

n pn

≤ Cqn+1 + Kq2k
n (qn + pn),

where βn+1 ≤ ξ5, ξ6 ≤ βn, x ≤ η3, η4 ≤ βn+1. By Lemma 3.5, we obtain qn+1(t) ≤ x(t) on Nb
a,

where x(t) is the solution of{
∇ν

a∗x(t) = Cx + Kq2k
n (qn + pn), t ∈Nb

a+1,

x(a) = 0.
(4.9)
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Similar to the inequality (4.8) for pn+1(t), we can get

max
s∈Nb

a+1

qn+1(s) ≤ (1− CHν(b, a))−1KHν(b, a) max
s∈Nb

a+1

q2k
n (s)(qn(s) + pn(s)). (4.10)

Consequently, we get
‖qn+1‖ ≤ L‖qn‖2k(‖qn‖+ ‖pn‖).

The proof is complete.

Theorem 4.2. Assume that the conditions (H3.3)–(H3.4) hold, and

(A4.3) the functions f1, f2 : Ω → R are such that f (i)1 (t, x), f (i)2 (t, x) (i = 0, 1, . . . , 2k− 1) exist,
are continuous in its second variable, and for C1 > 0, C2 > 0, C = C1 + C2,

f (1)1 (t, x) ≤ C1, f (1)2 (t, x) ≤ C2 on Ω.

(A4.4) there exist M1, M2 > 0 such that for x1 ≥ x2, y1 ≥ y2 the functions f (2k−1)
1 (t, x), f (2k−1)

2 (t, x)
satisfy the following conditions:

0 ≤ f (2k−1)
1 (t, x1)− f (2k−1)

1 (t, x2) ≤ M1(x1 − x2) on Ω,

0 ≥ f (2k−1)
2 (t, y1)− f (2k−1)

2 (t, y2) ≥ −M2(y1 − y2) on Ω.

Then there exist two sequences {αn(t)}, {βn(t)}, n ≥ 0 which converge uniformly and monotonically
to a solution of the IVP (3.1) and the convergence is of order 2k.

Proof. In order to construct monotone sequences {αn(t)}, {βn(t)}, n ≥ 0 which converge
uniformly and monotonically to the solution of the IVP (3.1), we need to consider the following
nonlinear Caputo nabla fractional difference equations:

∇ν
a∗αn(t) =

2k−1

∑
i=0

f (i)1 (t, αn−1)

i!
(αn − αn−1)

i +
2k−2

∑
i=0

f (i)2 (t, αn−1)

i!
(αn − αn−1)

i

+
f (2k−1)
2 (t, βn−1)

(2k− 1)!
(αn − αn−1)

2k−1

≡ F(t, αn−1, βn−1; αn), t ∈Nb
a+1,

αn(a) = x0,

(4.11)

and 

∇ν
a∗βn(t) =

2k−2

∑
i=0

f (i)1 (t, βn−1)

i!
(βn − βn−1)

i +
f (2k−1)
1 (t, αn−1)

(2k− 1)!
(βn − βn−1)

2k−1

+
2k−1

∑
i=0

f (i)2 (t, βn−1)

i!
(βn − βn−1)

i

≡ G(t, αn−1, βn−1; βn), t ∈Nb
a+1,

βn(a) = x0.

(4.12)

Similar to Theorem 4.1, we can show that the convergence is of order 2k.
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5 Numerical result

Now, we give a numerical example to illustrate the application of the results established in
the previous section.

Example 5.1. Consider the following nonlinear Caputo nabla fractional difference equation{
∇

1
2
0∗x(t) = −x5(t) + x3(t) + x2(t)− 5x(t)− 1, t ∈N5

1,

x(0) = 0.
(5.1)

Taking α0(t) = −1, β0(t) = 1, it is easy to verify that α0(t), β0(t) are lower and upper

solutions of the IVP (5.1), respectively. According to the Definitions 2.2, 2.4, we have∇
1
2
0∗x(t) =

∇−
1
2

0 ∇x(t) = ∑t
s=1

Γ(t−s+ 1
2 )

Γ( 1
2 )Γ(t−s+1)

∇x(s). Let f (t, x) denote the right-hand side of (5.1), and split

it into two functions as f (t, x) = f1(t, x) + f2(t, x), where f1(t, x) = x3(t) + x2(t)− 5x(t)− 1,
f2(t, x) = −x5(t).

Table 5.1: Table of four α-iterates of (5.1).

t α1(t) α2(t) α3(t) α4(t) x(t)

1 −0.595929 −0.227396 −0.163045 −0.162943 −0.162943
2 −0.611197 −0.248267 −0.176153 −0.175965 −0.175965
3 −0.615457 −0.254921 −0.180447 −0.180254 −0.180254
4 −0.617607 −0.258339 −0.182687 −0.182480 −0.182480
5 −0.618955 −0.260491 −0.184105 −0.183888 −0.183888

Table 5.2: Table of four β-iterates of (5.1).

t β4(t) β3(t) β2(t) β1(t)

1 −0.162943 −0.161992 −0.011633 0.525454
2 −0.175965 −0.174333 −0.000297 0.539207
3 −0.180254 −0.178300 0.003561 0.543062
4 −0.182480 −0.180338 0.005570 0.545007
5 −0.183888 −0.181619 0.006843 0.546226

It is easy to show that

f (1)1 (t, x) = 3x2(t) + 2x(t)− 5 = 3
(

x(t) +
1
3

)2

− 16
3
≤ 0 on Ω,

f (1)2 (t, x) = −5x4(t) ≤ 0 on Ω,

so we can choose C = 1
3 such that

CH 1
2
(5, 0) =

1
3
· 315

128
=

105
128

< 1.
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Figure 5.1: α-iterates (broken lines), β-iterates (unbroken lines).

Furthermore, we can check that for x1(t) ≥ x2(t), y1(t) ≥ y2(t),

0 ≤ f (2)1 (t, x1)− f (2)1 (t, x2) = 6(x1(t)− x2(t)) on Ω,

0 ≥ f (2)2 (t, y1)− f (2)2 (t, y2) = −20y3
1(t) + 20y3

2(t) ≥ −60(y1(t)− y2(t)) on Ω.

Hence, we can apply the iterates of Theorem 4.1. After only four iterates of α and β, we can
find the α, β-iterates as given in Tables 5.1, 5.2. Figure 5.1 shows the graphs of some α-iterates
(broken lines) and some β-iterates (unbroken lines). Note that the actual graphs of the αi(t)
and the βi(t), 1 ≤ i ≤ 3, 1 ≤ t ≤ 5, consist just of the points corresponding to the values of
these functions at t = 1, 2, 3, 4, 5. Note that for all practical purposes the graphs of α3(t), β3(t)
in Figure 5.1 and the solution x(t) are the same to several decimal places.

6 Conclusion

In the above parts, we proved the existence of solutions for nonlinear Caputo nabla fractional
difference equations. Based on this fact, we have developed two monotone sequences which
converge rapidly to the solution of such equations. In addition, a numerical example is given
to show one of the established results.
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