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Abstract. The solvability problem for the following system of difference equations

zn+1 = αza
nwb

n, wn+1 = βwc
n−1zd

n−2, n ∈N0,

where a, b, c, d ∈ Z, α, β ∈ C \ {0}, z−2, z−1, z0, w−1, w0 ∈ C \ {0}, is solved. In the
main case when bd 6= 0, a polynomial of the fourth order is associated to the system,
and its solutions are represented in terms of the parameters, through the roots of the
polynomial in all possible cases (the roots are given in terms of parameters a, b, c, d).
This is also the first paper which successfully deals with the associated polynomial (to
a product-type system) of the fourth order in detail, which is the main achievement of
the paper.
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1 Introduction

Concrete nonlinear difference equations and systems is a research field of some recent interest
(see, e.g., [2,4,9–15,17–45]). Among the systems, symmetric and related ones have attracted at-
tention of some experts, especially after the publication of several papers by Papaschinopoulos
and Schinas almost twenty years ago (see, e.g., [2, 4, 9–14, 17,18, 21,23–28, 30,31,34–40, 42–45]).
On the other hand, solvability of the equations and systems has re-attracted some recent
attention (see, e.g., [2, 15, 21–36, 38–45]). Some of them are solved by the method of transfor-
mation (see, e.g., [15,21,22,24,38–41] and the references therein). For somewhat more complex
methods see [33] and [34]. An interesting related method has been recently applied to partial
difference equations in [29] and [32]. Books [1,5–8] contain many classical methods for solving
difference equations and systems.
BEmail: sstevic@ptt.rs
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If initial values and coefficients of product-type systems are positive they can be solved by
transforming them to the linear ones with constant coefficients, by using the logarithm. If the
initial values and coefficients are not positive the method is not of a special use. Therefore,
the solvability of product-type systems with non-positive initial values and coefficients is a
problem of interest. We started studying the problem in [36], where we showed the solvability
of the system

zn+1 =
wa

n

zb
n−1

, wn+1 =
zc

n

wd
n−1

, n ∈N0, (1.1)

for a, b, c, d ∈ Z and z−1, z0, w−1, w0 ∈ C \ {0}, and gave many results on the long-term
behavior of solutions to (1.1) by using the obtained closed form formulas. Product-type equa-
tions appeared also in the study of the difference equation in [33], as its special cases. The
max-type system in [23] is solved by reducing it to a product-type one. They also appeared
indirectly in the study of some max-type and related difference equations and systems, as
their boundary cases (see, e.g., [19, 20, 37]). The study was continued in [42], in [30] where a
three-dimensional system was considered, in [28] where it was noticed for the first time that
some coefficients can be added to a product-type system so that the solvability is preserved,
and later in [31, 35, 43–45] where various new details and methods are presented.

This paper continues investigating the solvability problem, by studying the following
product-type system

zn+1 = αza
nwb

n, wn+1 = βwc
n−1zd

n−2, n ∈N0, (1.2)

where a, b, c, d ∈ Z, α, β ∈ C and z−2, z−1, z0, w−1, w0 ∈ C.
Clearly, the domain of undefinable solutions [24] to system (1.2) is a subset of

U = {(z−2, z−1, z0, w−1, w0) ∈ C5 : z−2 = 0 or z−1 = 0 or z0 = 0 or w−1 = 0 or w0 = 0}.

Thus, from now on we will assume that z−2, z−1, z0, w−1, w0 ∈ C \ {0}. Since the cases α = 0
and β = 0 are trivial or produce solutions which are not well-defined we will also assume
that αβ 6= 0.

In the main case when bd 6= 0, a polynomial of the fourth order is associated to the
system, and its solutions are represented in terms of the parameters, through the roots of
the polynomial in all the cases (the roots are given in terms of parameters a, b, c, d), which is
the main achievement of the paper. This is the first paper which deals with the associated
polynomial (to a product-type system) of the fourth order in detail. An associated polynomial
of the fourth order appears yet in [42], but almost without any analysis of its roots and their
influence on the solutions to the system therein.

In this paper, we will use the following standard convention ∑m
i=k ai = 0, when m < k.

2 Auxiliary results

In this section we quote two auxiliary results which are used in the proofs of the main results.
The first one is the following lemma which is well-known (see, e.g., [6, 8]). For a proof of a
more general result see [35].
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Lemma 2.1. Let i ∈N0 and

s(i)n (z) = 1 + 2iz + 3iz2 + · · ·+ nizn−1, n ∈N (2.1)

where z ∈ C.
Then

s(0)n (z) =
1− zn

1− z
, (2.2)

s(1)n (z) =
1− (n + 1)zn + nzn+1

(1− z)2 , (2.3)

for every z ∈ C \ {1} and n ∈N.

The following lemma is also known, and can be proved, for example, by using the
Lagrange interpolation polynomial or the calculus of residue (see, for example, [6] and [42]).

Lemma 2.2. Assume that λj, j = 1, k, are pairwise different zeros of the polynomial

P(z) = αkzk + αk−1zk−1 + · · ·+ α1z + α0,

with αkα0 6= 0.
Then

k

∑
j=1

λl
j

P′(λj)
= 0

for l = 0, k− 2, and
k

∑
j=1

λk−1
j

P′(λj)
=

1
αk

.

3 Main results

The main results in this paper are formulated and proved in this section.

3.1 Solvability of system (1.2)

The first result concerns the solvability problem of system (1.2).

Theorem 3.1. Assume that a, b, c, d ∈ Z, α, β ∈ C \ {0} and z−2, z−1, z0, w−1, w0 ∈ C \ {0}. Then
system (1.2) is solvable in closed form.

Proof. Case b = 0. In this case system (1.2) becomes

zn+1 = αza
n, wn+1 = βwc

n−1zd
n−2, n ∈N0. (3.1)

From the first equation in (3.1) we get

zn = α∑n−1
j=0 aj

zan

0 , n ∈N, (3.2)

from which it follows that

zn = α
1−an
1−a zan

0 , n ∈N, (3.3)
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when a 6= 1, and

zn = αnz0, n ∈N, (3.4)

when a = 1.
Employing (3.2) in the second equation in (3.1), we get

wn = βα
d ∑n−4

j=0 aj
zdan−3

0 wc
n−2, (3.5)

for n ≥ 4, from which it follows that

w2n+i = βα
d ∑2n+i−4

j=0 aj
zda2n+i−3

0 wc
2n+i−2, (3.6)

for n ≥ 2 and i = 0, 1.
Assume that for some k ∈N it has been proved that

w2n+i = β∑k−1
j=0 cj

α
d ∑k−1

j=0 cj ∑
2n−2j+i−4
l=0 al

z
d ∑k−1

j=0 cja2n−2j+i−3

0 wck

2(n−k)+i, (3.7)

for n ≥ k + 1 and i = 0, 1.
By using (3.6) with n replaced by n− k and inserting into (3.7) we get

w2n+i = β∑k−1
j=0 cj

α
d ∑k−1

j=0 cj ∑
2n−2j+i−4
l=0 al

z
d ∑k−1

j=0 cja2n−2j+i−3

0

(
βα

d ∑
2(n−k)+i−4
j=0 aj

zda2(n−k)+i−3

0 wc
2(n−k−1)+i

)ck

= β∑k
j=0 cj

αd ∑k
j=0 cj ∑

2n−2j+i−4
l=0 al

z
d ∑k

j=0 cja2n−2j+i−3

0 wck+1

2(n−k−1)+i, (3.8)

for n ≥ k + 2 and i = 0, 1, from which along with (3.6) and the method of induction it follows
that (3.7) holds for every n ≥ k + 1 and i = 0, 1.

Choosing k = n− 1 in (3.7) we obtain

w2n = β∑n−2
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−4
i=0 ai

z
d ∑n−2

j=0 cja2n−2j−3

0 wcn−1

2 , (3.9)

and

w2n+1 = β∑n−2
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−3
i=0 ai

z
d ∑n−2

j=0 cja2n−2j−2

0 wcn−1

3 , (3.10)

for n ≥ 2.
From the second equation in (3.1), with n = 0, 1, 2, we have

w1 = βwc
−1zd
−2, w2 = βwc

0zd
−1, w3 = βwc

1zd
0 = β1+cwc2

−1zcd
−2zd

0. (3.11)

Then by using (3.11) into (3.9) and (3.10) we have

w2n = β∑n−2
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−4
i=0 ai

z
d ∑n−2

j=0 cja2n−2j−3

0 (βwc
0zd
−1)

cn−1

= β∑n−1
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−4
i=0 ai

wcn

0 zdcn−1

−1 z
d ∑n−2

j=0 cja2n−2j−3

0 (3.12)

and

w2n+1 = β∑n−2
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−3
i=0 ai

z
d ∑n−2

j=0 cja2n−2j−2

0 (β1+cwc2

−1zcd
−2zd

0)
cn−1

= β∑n
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−3
i=0 ai

wcn+1

−1 zdcn

−2 z
d ∑n−1

j=0 cja2n−2j−2

0 , (3.13)
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for n ≥ 2.
Subcase a 6= 1 6= c, c 6= a2. In this case we have

w2n = β∑n−1
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−4
i=0 ai

wcn

0 z
d ∑n−2

j=0 cja2n−2j−3

0 zdcn−1

−1

= β
1−cn
1−c α

d ∑n−2
j=0 cj 1−a2n−2j−3

1−a wcn

0 z
da a2n−2−cn−1

a2−c
0 zdcn−1

−1

= β
1−cn
1−c α

d
1−a

(
1−cn−1

1−c −
a(a2n−2−cn−1)

a2−c

)
wcn

0 z
da a2n−2−cn−1

a2−c
0 zdcn−1

−1

= β
1−cn
1−c α

d(a2−c+(a+c)(1−a)cn−1−(1−c)a2n−1)
(1−a)(1−c)(a2−c) wcn

0 z
da a2n−2−cn−1

a2−c
0 zdcn−1

−1 , (3.14)

for n ≥ 2, and

w2n+1 = β∑n
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−3
i=0 ai

wcn+1

−1 z
d ∑n−1

j=0 cja2n−2j−2

0 zdcn

−2

= β
1−cn+1

1−c α
d ∑n−2

j=0 cj 1−a2n−2j−2
1−a wcn+1

−1 z
d a2n−cn

a2−c
0 zdcn

−2

= β
1−cn+1

1−c α
d

1−a

(
1−cn−1

1−c −
a2(a2n−2−cn−1)

a2−c

)
wcn+1

−1 z
d a2n−cn

a2−c
0 zdcn

−2

= β
1−cn+1

1−c α
d(a2−c+(1−a2)cn−(1−c)a2n)

(1−a)(1−c)(a2−c) wcn+1

−1 z
d a2n−cn

a2−c
0 zdcn

−2 , (3.15)

for n ∈N.
Subcase a2 6= 1 6= c, c = a2. In this case we have

w2n = β∑n−1
j=0 a2j

α
d ∑n−2

j=0 a2j ∑
2n−2j−4
i=0 ai

wa2n

0 z
d ∑n−2

j=0 a2ja2n−2j−3

0 zda2n−2

−1

= β
1−a2n

1−a2 α
d ∑n−2

j=0 a2j 1−a2n−2j−3
1−a wa2n

0 zd(n−1)a2n−3

0 zda2n−2

−1

= β
1−a2n

1−a2 α
d

1−a

(
1−a2n−2

1−a2 −(n−1)a2n−3
)

wa2n

0 zd(n−1)a2n−3

0 zda2n−2

−1

= β
1−a2n

1−a2 α
d(1−(n−1)a2n−3−a2n−2+(n−1)a2n−1)

(a−1)2(a+1) wa2n

0 zd(n−1)a2n−3

0 zda2n−2

−1 (3.16)

for n ≥ 2, and

w2n+1 = β∑n
j=0 a2j

α
d ∑n−2

j=0 a2j ∑
2n−2j−3
i=0 ai

wa2n+2

−1 z
d ∑n−1

j=0 a2ja2n−2j−2

0 zda2n

−2

= β
1−a2n+2

1−a2 α
d ∑n−2

j=0 a2j 1−a2n−2j−2
1−a wa2n+2

−1 zdna2n−2

0 zda2n

−2

= β
1−a2n+2

1−a2 α
d

1−a

(
1−a2n−2

1−a2 −(n−1)a2n−2
)

wa2n+2

−1 zdna2n−2

0 zda2n

−2

= β
1−a2n+2

1−a2 α
d(1−na2n−2+(n−1)a2n)

(a−1)2(a+1) wa2n+2

−1 zdna2n−2

0 zda2n

−2 , (3.17)

for n ≥ 2.
Subcase a2 6= 1 = c. In this case we have

w2n = β∑n−1
j=0 1

α
d ∑n−2

j=0 ∑
2n−2j−4
i=0 ai

w0z
d ∑n−2

j=0 a2n−2j−3

0 zd
−1

= βnα
d ∑n−2

j=0
1−a2n−2j−3

1−a w0z
da a2n−2−1

a2−1
0 zd

−1

= βnα
d

1−a

(
n−1− a(a2n−2−1)

a2−1

)
w0z

da a2n−2−1
a2−1

0 zd
−1

= βnα
d(a2n−1+(n−1)(1−a2)−a)

(a−1)2(a+1) w0z
da a2n−2−1

a2−1
0 zd

−1, (3.18)
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for n ≥ 2, and

w2n+1 = β∑n
j=0 1α

d ∑n−2
j=0 ∑

2n−2j−3
i=0 ai

w−1z
d ∑n−1

j=0 a2n−2j−2

0 zd
−2

= βn+1α
d ∑n−2

j=0
1−a2n−2j−2

1−a w−1z
d a2n−1

a2−1
0 zd

−2

= βn+1α
d

1−a

(
n−1− a2(a2n−2−1)

a2−1

)
w−1z

d a2n−1
a2−1

0 zd
−2

= βn+1α
d(a2n−na2+n−1)

(a−1)2(a+1) w−1z
d a2n−1

a2−1
0 zd

−2, (3.19)

for n ∈N.
Subcase a = −1, c = 1. In this case we have

w2n = βnα
d ∑n−2

j=0 ∑
2n−2j−4
i=0 (−1)i

w0z
d ∑n−2

j=0 (−1)2n−2j−3

0 zd
−1

= βnα
d ∑n−2

j=0
1−(−1)2n−2j−3

1−(−1) w0zd(1−n)
0 zd

−1

= βnαd(n−1)w0zd(1−n)
0 zd

−1, (3.20)

for n ∈N, and

w2n+1 = β∑n
j=0 1α

d ∑n−2
j=0 ∑

2n−2j−3
i=0 ai

w−1z
d ∑n−1

j=0 a2n−2j−2

0 zd
−2

= βn+1α
d ∑n−2

j=0 ∑
2n−2j−3
i=0 (−1)i

w−1z
d ∑n−1

j=0 (−1)2n−2j−2

0 zd
−2

= βn+1α
d ∑n−2

j=0
1−(−1)2n−2j−2

1−(−1) w−1zdn
0 zd
−2

= βn+1w−1zdn
0 zd
−2, (3.21)

for n ∈N0.
Subcase a = 1, c 6= 1. In this case, by using formula (2.3), we get

w2n = β∑n−1
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−4
i=0 1wcn

0 z
d ∑n−2

j=0 cj

0 zdcn−1

−1

= β
1−cn
1−c α

d ∑n−2
j=0 (2n−2j−3)cj

wcn

0 z
d 1−cn−1

1−c
0 zdcn−1

−1

= β
1−cn
1−c α

d
(
(2n−1) 1−cn−1

1−c −2 1−ncn−1+(n−1)cn

(1−c)2

)
wcn

0 z
d 1−cn−1

1−c
0 zdcn−1

−1

= β
1−cn
1−c α

d 2n−3−(2n−1)c+cn−1+cn

(1−c)2 wcn

0 z
d 1−cn−1

1−c
0 zdcn−1

−1 , (3.22)

for n ≥ 2, and

w2n+1 = β∑n
j=0 cj

α
d ∑n−2

j=0 cj ∑
2n−2j−3
i=0 1wcn+1

−1 z
d ∑n−1

j=0 cj

0 zdcn

−2

= β
1−cn+1

1−c α
d ∑n−2

j=0 (2n−2j−2)cj
wcn+1

−1 z
d 1−cn

1−c
0 zdcn

−2

= β
1−cn+1

1−c α
d
(

2n 1−cn−1
1−c −2 1−ncn−1+(n−1)cn

(1−c)2

)
wcn+1

−1 z
d 1−cn

1−c
0 zdcn

−2

= β
1−cn+1

1−c α
2d(n−1−nc+cn)

(1−c)2 wcn+1

−1 z
d 1−cn

1−c
0 zdcn

−2 , (3.23)

for n ∈N.
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Subcase a = c = 1. In this case we have

w2n = β∑n−1
j=0 1

α
d ∑n−2

j=0 ∑
2n−2j−4
i=0 1w0z

d ∑n−2
j=0 1

0 zd
−1

= βnα
d ∑n−2

j=0 (2n−2j−3)w0zd(n−1)
0 zd

−1

= βnαd(n−1)2
w0zd(n−1)

0 zd
−1, (3.24)

for n ∈N, and

w2n+1 = β∑n
j=0 1α

d ∑n−2
j=0 ∑

2n−2j−3
i=0 1w−1z

d ∑n−1
j=0 1

0 zd
−2

= βn+1α
d ∑n−2

j=0 (2n−2j−2)w−1zdn
0 zd
−2

= βn+1αdn(n−1)w−1zdn
0 zd
−2, (3.25)

for n ∈N0.

Case d = 0. In this case system (1.2) becomes

zn+1 = αza
nwb

n, wn+1 = βwc
n−1, n ∈N0. (3.26)

The solvability of system (3.26) was proved in [35], hence we will only sketch the proof here.
The second equation in (3.26) yields

w2n = β∑n−1
j=0 cj

wcn

0 n ∈N, and w2n+1 = β∑n
j=0 cj

wcn+1

−1 , (3.27)

for n ∈N0.
Hence, if c 6= 1 we have

w2n = β
1−cn
1−c wcn

0 n ∈N, and w2n+1 = β
1−cn+1

1−c wcn+1

−1 , n ∈N0, (3.28)

while, if c = 1, we have

w2n = βnw0 and w2n+1 = βn+1w−1, n ∈N0. (3.29)

Using (3.27) in the first equation in (3.26) it follows that

z2n =αβ
b ∑n−1

j=0 cj
wbcn

−1 za
2n−1 (3.30)

z2n+1 = αβ
b ∑n−1

j=0 cj
wbcn

0 za
2n, (3.31)

for n ∈N.
From (3.30) and (3.31) we get

z2n = αβ
b ∑n−1

j=0 cj
wbcn

−1

(
αβ

b ∑n−2
j=0 cj

wbcn−1

0 za
2n−2

)a

= α1+aβ
b ∑n−1

j=0 cj+ab ∑n−2
j=0 cj

(wbc
−1wab

0 )cn−1
za2

2n−2, (3.32)

for n ≥ 2, and

z2n+1 = αβ
b ∑n−1

j=0 cj
wbcn

0

(
αβ

b ∑n−1
j=0 cj

wbcn

−1 za
2n−1

)a

= α1+aβ
b(1+a)∑n−1

j=0 cj
(wab
−1wb

0)
cn

za2

2n−1, (3.33)



8 S. Stević

for every n ∈N.
By induction it is proved that

z2n = α
(1+a)∑k−1

j=0 a2j
β

b ∑k−1
i=0 a2i

(
∑n−i−1

j=0 cj+a ∑n−i−2
j=0 cj

)
(wbc
−1wab

0 )∑k−1
j=0 a2jcn−j−1

za2k

2n−2k, (3.34)

and

z2n+1 = α
(1+a)∑k−1

j=0 a2j
β

b(1+a)∑k−1
i=0 a2i ∑n−i−1

j=0 cj
(wab
−1wb

0)
∑k−1

j=0 a2jcn−j
za2k

2n−2k+1, (3.35)

for every k, n ∈N such that n ≥ k.
Choosing k = n in (3.34) and (3.35) it follows that

z2n = α
(1+a)∑n−1

j=0 a2j
β

b ∑n−1
i=0 a2i

(
∑n−i−1

j=0 cj+a ∑n−i−2
j=0 cj

)
(wbc
−1wab

0 )∑n−1
j=0 a2jcn−j−1

za2n

0 , (3.36)

z2n+1 = α
(1+a)∑n−1

j=0 a2j
β

b(1+a)∑n−1
i=0 a2i ∑n−i−1

j=0 cj
(wab
−1wb

0)
∑n−1

j=0 a2jcn−j
za2n

1

= α
(1+a)∑n−1

j=0 a2j
β

b(1+a)∑n−1
i=0 a2i ∑n−i−1

j=0 cj
(wab
−1wb

0)
∑n−1

j=0 a2jcn−j
(αza

0wb
0)

a2n

= α∑2n
j=0 aj

β
b(1+a)∑n−1

i=0 a2i ∑n−i−1
j=0 cj

w
ab ∑n−1

j=0 a2jcn−j

−1 w
b ∑n

j=0 a2jcn−j

0 za2n+1

0 , (3.37)

for every n ∈N.
From formulas (3.36), (3.37), by using Lemma 2.1 and some calculations the following

formulas are obtained.
Subcase c 6= a2 6= 1 6= c. We have

z2n = α
1−a2n

1−a β
b(c−a2+(a−1)(a+c)cn+(1−c)a2n+1)

(1−a)(1−c)(c−a2) (wbc
−1wab

0 )
cn−a2n

c−a2 za2n

0 , (3.38)

z2n+1 = α
1−a2n+1

1−a β
b(1+a)(c−a2+(a2−1)cn+1+(1−c)a2n+2)

(1−c)(1−a2)(c−a2) w
abc cn−a2n

c−a2

−1 w
b cn+1−a2n+2

c−a2

0 za2n+1

0 , (3.39)

for every n ∈N.
Subcase a2 6= 1 6= c, c = a2. We have

z2n = α
1−a2n

1−a β
b(1−na2n−1−a2n+na2n+1)

(1−a)2(1+a) (wba2

−1 wab
0 )na2n−2

za2n

0 , (3.40)

z2n+1 = α
1−a2n+1

1−a β
b(1+a)(1−(n+1)a2n+na2n+2)

(1−a2)2 wbna2n+1

−1 wb(n+1)a2n

0 za2n+1

0 , (3.41)

for every n ∈N.
Subcase a2 6= 1 = c. In this case, by using (2.3), we have

z2n = α
1−a2n

1−a β
b(n−a−na2+a2n+1)

(1−a2)(1−a) (wb
−1wab

0 )
1−a2n

1−a za2n

0 , n ∈N, (3.42)

z2n+1 = α
1−a2n+1

1−a β
b(1+a)(n−(n+1)a2+a2n+2)

(1−a2)2 w
ab 1−a2n

1−a2

−1 w
b 1−a2n+2

1−a2

0 za2n+1

0 , (3.43)

for every n ∈N0.
Subcase a = −1, c = 1. In this case we have

z2n = βbn(wb
−1w−b

0 )nz0, (3.44)

z2n+1 = αw−bn
−1 wb(n+1)

0 z−1
−1, (3.45)
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for every n ∈N.
Subcase a = 1 6= c. In this case we have

z2n = α2nβ
b(2n−1−(2n+1)c+cn+cn+1)

(1−c)2 (wbc
−1wb

0)
1−cn
1−c z0, (3.46)

z2n+1 = α2n+1β
2b(n−(n+1)c+cn+1)

(1−c)2 w
bc 1−cn

1−c
−1 w

b 1−cn+1
1−c

0 z0, (3.47)

for every n ∈N.
Subcase a = c = 1. We have

z2n = α2nβbn2
(w−1w0)

bnz0, (3.48)

z2n+1 = α2n+1βbn(n+1)wbn
−1wb(n+1)

0 z0, (3.49)

for every n ∈N.

Case a = 0, bd 6= 0. In this case system (1.2) becomes

zn+1 = αwb
n, wn+1 = βwc

n−1zd
n−2, n ∈N0. (3.50)

By using the first equation in (3.50) into the second one is obtained

wn+1 = βwc
n−1zd

n−2 = βwc
n−1(αwb

n−3)
d = αdβwc

n−1wbd
n−3,

for n ≥ 3, from which it follows that

w2(m+1)+i = αdβwc
2m+iw

bd
2(m−1)+i, (3.51)

for every m ∈N and each i = 0, 1.
Let γ := αdβ,

a(i)1 = c, b(i)1 = bd, x(i)1 = 1, for i = 0, 1. (3.52)

Then (3.51) can be written as

w2(m+1)+i = γx(i)1 wa(i)1
2m+iw

b(i)1
2(m−1)+i, (3.53)

for every m ∈N and each i = 0, 1.
Using (3.53) with m→ m− 1 into itself we get

w2(m+1)+i = γx(i)1 wa(i)1
2m+iw

b(i)1
2(m−1)+i

= γx(i)1 (γwa(i)1
2(m−1)+iw

b(i)1
2(m−2)+i)

a(i)1 wb(i)1
2(m−1)+i

= γx(i)1 +a(i)1 wa(i)1 a(i)1 +b(i)1
2(m−1)+i wb(i)1 a(i)1

2(m−2)+i

= γx(i)2 wa(i)2
2(m−1)+iw

b(i)2
2(m−2)+i, (3.54)

for every m ≥ 2 and each i = 0, 1, where

a(i)2 := a(i)1 a(i)1 + b(i)1 , b(i)2 := b(i)1 a(i)1 , x(i)2 := x(i)1 + a(i)1 . (3.55)
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Assume that for a k ∈N we have proved that

w2(m+1)+i = γx(i)k wa(i)k
2(m−k+1)+iw

b(i)k
2(m−k)+i, (3.56)

for m ≥ k and each i = 0, 1, and that

a(i)k := a(i)1 a(i)k−1 + b(i)k−1, b(i)k := b(i)1 a(i)k−1, x(i)k := x(i)k−1 + a(i)k−1. (3.57)

Then, by using (3.53) with m→ m− k into (3.56) we get

w2(m+1)+i = γx(i)k wa(i)k
2(m−k+1)+iw

b(i)k
2(m−k)+i

= γx(i)k (γwa(i)1
2(m−k)+iw

b(i)1
2(m−k−1)+i)

a(i)k wb(i)k
2(m−k)+i

= γx(i)k +a(i)k wa(i)1 a(i)k +b(i)k
2(m−k)+i wb(i)1 a(i)k

2(m−k−1)+i

= γx(i)k+1 w
a(i)k+1
2(m−k)+iw

b(i)k+1
2(m−k−1)+i, (3.58)

for m ≥ k + 1 and each i = 0, 1, where

a(i)k+1 := a(i)1 a(i)k + b(i)k , b(i)k+1 := b(i)1 a(i)k , x(i)k+1 := x(i)k + a(i)k . (3.59)

From (3.54), (3.55), (3.58), (3.59) and the induction, we see that (3.56) and (3.57) hold for
every k and m such that 2 ≤ k ≤ m for each i = 0, 1. In fact, (3.56) holds for 1 ≤ k ≤ m,
because of (3.53).

The first two equations in (3.57) yield

a(i)k = a(i)1 a(i)k−1 + b(i)1 a(i)k−2, k ≥ 3. (3.60)

The equalities in (3.57) with k = 1 yield

a(i)1 = a(i)1 a(i)0 + b(i)0 , b(i)1 = b(i)1 a(i)0 , x(i)1 = x(i)0 + a(i)0 . (3.61)

Since b(i)1 = bd 6= 0, from the second equation in (3.61) we get a(i)0 = 1. This, along with
x(i)1 = 1 and the other two relations in (3.61) implies b(i)0 = x(i)0 = 0.

From this and (3.57) with k = 0 is obtained

1 = a(i)0 = a(i)1 a(i)−1 + b(i)−1, 0 = b(i)0 = b(i)1 a(i)−1, 0 = x(i)0 = x(i)−1 + a(i)−1. (3.62)

Since b(i)1 6= 0, from the second equation in (3.62) we get a(i)−1 = 0. This along with the other
two relations in (3.62) implies b(i)−1 = 1 and x(i)−1 = 0.

Using these facts along with the second equation in (3.57) we have that (a(i)k )k≥−1 and
(b(i)k )k≥−1, i = 0, 1, are solutions to linear equation (3.60) satisfying the initial conditions

a(i)−1 = 0, a(i)0 = 1; b(i)−1 = 1, b(i)0 = 0, (3.63)

respectively, and that (x(i)k )k≥−1, i = 0, 1, satisfies the third recurrent relation in (3.57) and

x(i)−1 = x(i)0 = 0, x(i)1 = 1. (3.64)
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Since the initial values in (3.52) are the same for i = 0 and i = 1, and the sequences
a(0)k , b(0)k , x(0)k , and a(1)k , b(1)k , x(1)k , satisfy the same system, that is, system (3.57), we have that

a(0)k = a(1)k , b(0)k = b(1)k and x(0)k = x(1)k for every k ≥ −1. Thus, from now on we will simply
denote these three pairs of sequences, by ak, bk and xk respectively.

From (3.56) with m→ m− 1 and k = m− 1, we have that

w2m+i =γxm−1 wam−1
2+i wbm−1

i , (3.65)

for m ∈N and i = 0, 1.
Using the relations in (3.57) in (3.65) it follows that

w2m = γxm−1 wam−1
2 wbm−1

0

= (αdβ)xm−1(βwc
0zd
−1)

am−1 wbm−1
0

= αdxm−1 βxm−1+am−1 wcam−1+bm−1
0 zdam−1

−1

= αdxm−1 βxm wam
0 zdam−1
−1 , (3.66)

for m ∈N, and

w2m+1 = γxm−1 wam−1
3 wbm−1

1

= (αdβ)xm−1(β1+cwc2

−1zcd
−2zd

0)
am−1(βwc

−1zd
−2)

bm−1

= αdxm−1 βxm−1+(1+c)am−1+bm−1 wc2am−1+cbm−1
−1 zcdam−1+dbm−1

−2 zdam−1
0

= αdxm−1 βxm+1 wcam
−1 zdam

−2 zdam−1
0 , (3.67)

for m ∈N, from which along with the first equation in (3.50) we have that

z2m+1 = α1+bdxm−1 βbxm wbam
0 zbdam−1

−1 , (3.68)

z2m+2 = α1+bdxm−1 βbxm+1 wbcam
−1 zbdam

−2 zbdam−1
0 , (3.69)

for m ∈N.
From the third equation in (3.57) and since x1 = 1 and a0 = 1, we get

xm =
m−1

∑
j=0

aj, m ∈N. (3.70)

Now note that the characteristic equation associated to difference equation (3.60) is λ2 −
cλ− bd = 0, from which it follows that

λ1,2 =
c±
√

c2 + 4bd
2

.

Hence if c2 + 4bd 6= 0, then
an = c1λn

1 + c2λn
2 .

From this and since a−1 = 0 and a0 = 1, we have that

an =
λn+1

1 − λn+1
2

λ1 − λ2
, (3.71)
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which along with the second equation in (3.57) implies

bn = bd
λn

1 − λn
2

λ1 − λ2
. (3.72)

Using (3.71) in (3.70) with m = n, for the case when λ1 6= 1 6= λ2, which is equivalent to
c + bd 6= 1, we get

xn =
n−1

∑
j=0

λ
j+1
1 − λ

j+1
2

λ1 − λ2
=

1
(λ1 − λ2)

(
λ1

λn
1 − 1

λ1 − 1
− λ2

λn
2 − 1

λ2 − 1

)

=
(λ2 − 1)λn+1

1 − (λ1 − 1)λn+1
2 + λ1 − λ2

(λ1 − 1)(λ2 − 1)(λ1 − λ2)
, (3.73)

while if c + bd = 1, that is, if one of the characteristic roots is equal to one, say λ2, which
implies that λ1 = −bd, we get

xn =
n−1

∑
j=0

λ
j+1
1 − 1
λ1 − 1

=
1

(λ1 − 1)

(
λ1

λn
1 − 1

λ1 − 1
− n

)

=
λn+1

1 − (n + 1)λ1 + n
(λ1 − 1)2 =

(−bd)n+1 + (n + 1)bd + n
(1 + bd)2 . (3.74)

If c2 + 4bd = 0, then

an = (ĉ1 + ĉ2n)
( c

2

)n
. (3.75)

Using the facts a−1 = 0 and a0 = 1 in (3.75), we get

an = (n + 1)
( c

2

)n
, (3.76)

which along with the second equation in (3.57) and bd = −c2/4, implies

bn = bdn
( c

2

)n−1
= −n

( c
2

)n+1
. (3.77)

Using (3.76) in (3.70) and employing (2.3), for the case c 6= 2, we get

xn =
n−1

∑
j=0

(j + 1)
( c

2

)j
=

1− (n + 1)( c
2 )

n + n( c
2 )

n+1(
1− c

2

)2 , (3.78)

while if c = 2, we get

xn =
n−1

∑
j=0

(j + 1) =
n(n + 1)

2
. (3.79)

Case bd 6= 0. First note that α, β ∈ C \ {0} and z−2, z−1, z0, w−1, w0 ∈ C \ {0} along with
(1.2) and a simple inductive argument shows that znwn 6= 0 for n ≥ −1. For such a solution
from the first equation in (1.2) we have

wb
n =

zn+1

αza
n

, n ∈N0, (3.80)
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while from the second one it follows that

wb
n+1 = βbwbc

n−1zbd
n−2, n ∈N0. (3.81)

Using (3.80) into (3.81), we obtain

zn+2 = α1−cβbza
n+1zc

nz−ac
n−1zbd

n−2, n ∈N, (3.82)

which is a fourth order product-type difference equation.
Let δ = α1−cβb,

a1 := a, b1 := c, c1 := −ac, d1 := bd, y1 := 1. (3.83)

Then equation (3.82) can be written as

zn+2 = δy1 za1
n+1zb1

n zc1
n−1zd1

n−2, n ∈N. (3.84)

Using (3.84) with n→ n− 1 into (3.84), we get

zn+2 = δy1(δza1
n zb1

n−1zc1
n−2zd1

n−3)
a1 zb1

n zc1
n−1zd1

n−2,

= δy1+a1 za1a1+b1
n zb1a1+c1

n−1 zc1a1+d1
n−2 zd1a1

n−3

= δy2 za2
n zb2

n−1zc2
n−2zd2

n−3, (3.85)

for n ≥ 2, where

a2 := a1a1 + b1, b2 := b1a1 + c1, c2 := c1a1 + d1, d2 := d1a1, y2 := y1 + a1. (3.86)

Assume that for a k ∈N such that 2 ≤ k ≤ n, we have proved that

zn+2 = δyk zak
n+2−kzbk

n+1−kzck
n−kzdk

n−k−1, (3.87)

for n ≥ k, and that

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1, ck = c1ak−1 + dk−1, dk = d1ak−1, (3.88)

yk = yk−1 + ak−1. (3.89)

Using (3.84) with n→ n− k into (3.87), we obtain

zn+2 = δyk(δza1
n+1−kzb1

n−kzc1
n−k−1zd1

n−k−2)
ak zbk

n+1−kzck
n−kzdk

n−k−1

= δyk+ak za1ak+bk
n+1−k zb1ak+ck

n−k zc1ak+dk
n−k−1 zd1ak

n−k−2

= δyk+1 zak+1
n+1−kzbk+1

n−kzck+1
n−k−1zdk+1

n−k−2, (3.90)

for n ≥ k + 1, where

ak+1 := a1ak + bk, bk+1 := b1ak + ck, ck+1 := c1ak + dk, dk+1 := d1ak,

yk+1 := yk + ak.
(3.91)

From (3.85), (3.86), (3.90), (3.91) and the method of induction we get that (3.87), (3.88) and
(3.89) hold for every k and n such that 2 ≤ k ≤ n. Moreover, (3.87) holds also for 1 ≤ k ≤ n,
because of (3.84).
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By setting k = n in (3.87) and using z1 = αza
0wb

0, z2 = α1+aβbzbd
−2za2

0 wbc
−1wab

0 , (3.88) and (3.89),
we get

zn+2 = δyn zan
2 zbn

1 zcn
0 zdn
−1

= (α1−cβb)yn(α1+aβbzbd
−2za2

0 wbc
−1wab

0 )an(αza
0wb

0)
bn zcn

0 zdn
−1

= α(1−c)yn+(1+a)an+bn βbyn+ban zbdan
−2 zdn

−1za2an+abn+cn
0 wbcan

−1 waban+bbn
0

= αyn+2−cyn βbyn+1 zbdan
−2 zbdan−1

−1 zan+2−can
0 wbcan

−1 wban+1
0 , n ∈N. (3.92)

From (3.88) we easily obtain that (ak)k∈N satisfies the difference equation

ak = a1ak−1 + b1ak−2 + c1ak−3 + d1ak−4, k ≥ 5. (3.93)

From (3.91) with k = 0 we get

a1 = a1a0 + b0, b1 = b1a0 + c0, c1 = c1a0 + d0, d1 = d1a0, y1 = y0 + a0. (3.94)

Since d1 = bd 6= 0, from the fourth equation in (3.94) we get a0 = 1. Using this fact and y1 = 1
in the other equalities in (3.94) we get b0 = c0 = d0 = y0 = 0.

From this and by (3.91) with k = −1 we get

1 = a0 = a1a−1 + b−1, 0 = b0 = b1a−1 + c−1, 0 = c0 = c1a−1 + d−1

0 = d0 = d1a−1, 0 = y0 = y−1 + a−1. (3.95)

Since d1 6= 0, from the fourth equation in (3.95) we get a−1 = 0. Using this fact in the other
equalities in (3.95) we get b−1 = 1, c−1 = d−1 = y−1 = 0.

From this and by (3.91) with k = −2 we get

0 = a−1 = a1a−2 + b−2, 1 = b−1 = b1a−2 + c−2, 0 = c−1 = c1a−2 + d−2

0 = d−1 = d1a−2, 0 = y−1 = y−2 + a−2. (3.96)

Since d1 6= 0, from the fourth equation in (3.96) we get a−2 = 0. Using this fact in the other
equalities in (3.96) we get b−2 = d−2 = y−2 = 0 and c−2 = 1.

From this and by (3.91) with k = −3 we get

0 = a−2 = a1a−3 + b−3, 0 = b−2 = b1a−3 + c−3, 1 = c−2 = c1a−3 + d−3

0 = d−2 = d1a−3, 0 = y−2 = y−3 + a−3. (3.97)

Since d1 6= 0, from the fourth equation in (3.97) we get a−3 = 0. Using this fact in the other
equalities in (3.96) we get b−3 = c−3 = y−3 = 0 and d−3 = 1.

Hence, (ak)k≥−3 is a solution to (3.93) satisfying the next initial conditions

a−3 = 0, a−2 = 0, a−1 = 0, a0 = 1. (3.98)

Note that by using (3.98) and

y−i = 0, i = 0, 3, (3.99)

we see that (3.92) holds also for n = −2,−1.
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Since difference equation (3.93) is solvable, closed form formula for (ak)k≥−3 can be found.
From this, since

yk = 1 +
k−1

∑
j=1

aj =
k−1

∑
j=0

aj, k ∈N, (3.100)

and since the sums can be calculated it follows that closed form formulas for (yk)k∈N can be
found too. Using these facts and (3.92) we see that equation (3.82) is solvable too.

From the second equation in (1.2), we have that for every well-defined solution

zd
n−2 =

wn+1

βwc
n−1

, n ∈N0, (3.101)

while from the first one it follows that

zd
n+1 = αdzad

n wbd
n , n ∈N0. (3.102)

Using (3.101) into (3.102) we obtain

wn+4 = β1−aαdwa
n+3wc

n+2w−ac
n+1wbd

n , n ∈N0, (3.103)

which is a related equation to (3.82) (with shifted indices forward for two and with a different
coefficient).

Hence, the above presented procedure for getting zn can be repeated and obtained that for
a k such that 1 ≤ k ≤ n

wn+4 = ηyk wak
n+4−kwbk

n+3−kwck
n+2−kwdk

n+1−k, n ≥ k− 1, (3.104)

where η = β1−aαd, sequences (ak)k∈N, (bk)k∈N, (ck)k∈N, (dk)k∈N satisfy system (3.88) with
initial conditions (3.83), and (yk)k∈N is given by (3.100). These sequences can be prolonged
for k ≥ −3, so that (3.98) and (3.99) hold.

From (3.104) with k = n + 1 and by using (3.11) we get

wn+4 = ηyn+1 wan+1
3 wbn+1

2 wcn+1
1 wdn+1

0

= (β1−aαd)yn+1(β1+cwc2

−1zcd
−2zd

0)
an+1(βwc

0zd
−1)

bn+1
(

βwc
−1zd
−2
)cn+1 wdn+1

0

= αdyn+1 β(1−a)yn+1+(1+c)an+1+bn+1+cn+1 wc2an+1+ccn+1
−1 wcbn+1+dn+1

0

× zcdan+1+dcn+1
−2 zdbn+1

−1 zdan+1
0

= αdyn+1 βyn+4−ayn+3 wc(an+3−aan+2)
−1 wan+4−aan+3

0 zd(an+3−aan+2)
−2

× zd(an+2−aan+1)
−1 zdan+1

0 , (3.105)

for every n ∈N0.
From (3.98) and (3.99) it is seen that (3.105) holds also for n = −4,−3,−2,−1.
As above the solvability of equation (3.93) shows that closed form formula for (ak)k≥−3

can be found. Using the formula in (3.100) is obtained closed form formula for (yk)k∈N. These
facts along with (3.105) imply that equation (3.103) is solvable too. A direct calculation shows
that the sequences (zn)n≥−2 in (3.92) and (wn)n≥−1 in (3.105) are solutions to system (1.2) with
initial values w−1, w0, z−2, z−1, z0. Hence, system (1.2) is also solvable in this case, finishing
the proof of the theorem.
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From the proof of Theorem 3.1 we obtain the following corollary.

Corollary 3.2. Consider system (1.2) with a, b, c, d ∈ Z. Assume that α, β ∈ C \ {0} and z−2, z−1,
z0, w−1, w0 ∈ C \ {0}. Then the following statements are true.

(a) If b = 0, a 6= 1 6= c and c 6= a2, then the general solution to system (1.2) is given by (3.3), (3.14)
and (3.15).

(b) If b = 0, a2 6= 1 6= c and c = a2, then the general solution to system (1.2) is given by (3.3), (3.16)
and (3.17).

(c) If b = 0 and a2 6= 1 = c, then the general solution to system (1.2) is given by (3.3), (3.18) and
(3.19).

(d) If b = 0, a = −1 and c = 1, then the general solution to system (1.2) is given by (3.3), (3.20) and
(3.21).

(e) If b = 0, a = 1 and c 6= 1, then the general solution to system (1.2) is given by (3.4), (3.22) and
(3.23).

(f) If b = 0, a = c = 1, then the general solution to system (1.2) is given by (3.4), (3.24) and (3.25).

(g) If d = 0, c 6= a2 6= 1 6= c, then the general solution to system (1.2) is given by (3.28), (3.38) and
(3.39).

(h) If d = 0, c = a2 6= 1 6= c, then the general solution to system (1.2) is given by (3.28), (3.40) and
(3.41).

(i) If d = 0, a2 6= 1 = c, then the general solution to system (1.2) is given by (3.29), (3.42) and (3.43).

(j) If d = 0, a = −1 and c = 1, then the general solution to system (1.2) is given by (3.29), (3.44)
and (3.45).

(k) If d = 0, a = 1 and c 6= 1, then the general solution to system (1.2) is given by (3.28), (3.46) and
(3.47).

(l) If d = 0, a = c = 1, then the general solution to system (1.2) is given by (3.29), (3.48) and (3.49).

(m) If a = 0, bd 6= 0, c2 + 4bd 6= 0 and c + bd 6= 1, then the general solution to system (1.2) is given
by (3.66)–(3.69), where sequence (am)m≥−1 is given by (3.71) and (xm)m≥−1 is given by (3.73).

(n) If a = 0, bd 6= 0, c2 + 4bd 6= 0 and c + bd = 1, then the general solution to system (1.2) is given
by (3.66)–(3.69), where sequence (am)m≥−1 is given by (3.71) with λ1 = −bd and λ2 = 1 and
(xm)m≥−1 is given by (3.74).

(o) If a = 0, bd 6= 0, c2 + 4bd = 0 and c 6= 2, then the general solution to system (1.2) is given by
(3.66)–(3.69), where sequence (am)m≥−1 is given by (3.76) and (xm)m≥−1 is given by (3.78).

(p) If a = 0, c2 + 4bd = 0 and c = 2, then the general solution to system (1.2) is given by (3.66)–
(3.69), where sequence (am)m≥−1 is given by (3.76) with c = 2, and (xm)m≥−1 is given by (3.79)

(q) If bd 6= 0, then the general solution to system (1.2) is given by (3.92) and (3.105), where the
sequence (ak)k≥−3 satisfies difference equation (3.93) with initial conditions in (3.98) and where
(yk)k∈N is given by (3.99) and (3.100).
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3.2 Structure of the solutions to system (1.2) in the case bd 6= 0

Equation (3.93), in the case bd 6= 0, is solvable since the characteristic polynomial

p4(λ) = λ4 − a1λ3 − b1λ2 − c1λ− d1, (3.106)

associated to the equation is of the fourth order.
In this case polynomial (3.106) has the following zeros:

λ1 =
a
4
− 1

2

√
a2

4
+

2c
3
+ s− 1

2

√√√√ a2

2
+

4c
3
− s +

Q

4
√

a2

4 + 2c
3 + s

, (3.107)

λ2 =
a
4
− 1

2

√
a2

4
+

2c
3
+ s +

1
2

√√√√ a2

2
+

4c
3
− s +

Q

4
√

a2

4 + 2c
3 + s

, (3.108)

λ3 =
a
4
+

1
2

√
a2

4
+

2c
3
+ s− 1

2

√√√√ a2

2
+

4c
3
− s− Q

4
√

a2

4 + 2c
3 + s

, (3.109)

λ4 =
a
4
+

1
2

√
a2

4
+

2c
3
+ s +

1
2

√√√√ a2

2
+

4c
3
− s− Q

4
√

a2

4 + 2c
3 + s

, (3.110)

where

s =
1

3 3
√

2

(
3

√
∆1 −

√
∆2

1 − 4∆3
0 +

3

√
∆1 +

√
∆2

1 − 4∆3
0

)
, (3.111)

∆0 :=c2 + 3a2c− 12bd, (3.112)

∆1 :=18a2c2 − 2c3 − 27a2bd− 72bcd, (3.113)

Q :=− a3 + 4ac. (3.114)

Remark 3.3. Number s defined in (3.111) is a zero of the following third-order polynomial
equation

λ3 + cλ2 + (4bd− a2c)λ + 4bcd + a2bd− a2c2 = 0, (3.115)

which is a resolvent cubic equation of the quartic one p4(λ) = 0. We point out here that a
resolvent cubic equation of a quartic is not always the same, since it depends on the way how
the quartic one is solved. Zeros (3.107)–(3.110) of polynomial (3.106) are obtained here by
writing p4(λ) as follows

p4(λ) =

(
λ2 − a

2
λ +

s
2

)2

−
((

a2

4
+ c + s

)
λ2 −

(
as
2
+ ac

)
λ + bd +

s2

4

)
and then choosing parameter s such that the following condition is satisfied(

as
2
+ ac

)2

= 4
(

a2

4
+ c + s

)(
bd +

s2

4

)
,

from which is obtained equation (3.115) [3].
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The nature of these zeros depends on the sign of the discriminant

∆ :=
1

27
(4∆3

0 − ∆2
1), (3.116)

and signs of the following quantities

P := −8c− 3a2 (3.117)

and

D := −64bd− 16c2 − 3a4. (3.118)

The following proposition, which was essentially proved in [16], explains the nature of the
zeros of an arbitrary polynomial of the fourth order in terms of the corresponding quantities
∆, ∆0, D, P and Q (the quantities in (3.112), (3.114), (3.116)–(3.118) are special cases of them
for the case of polynomial (3.106)).

Proposition 3.4. Let
P4(t) = t4 + bt3 + ct2 + dt + e,

∆0 = c2 − 3bd + 12e, ∆1 = 2c3 − 9bcd + 27b2e + 27d2 − 72ce, ∆ =
1

27
(4∆3

0 − ∆2
1),

P = 8c− 3b2, Q = b3 + 8d− 4bc, D = 64e− 16c2 + 16b2c− 16bd− 3b4.

Then the following statements are true.

1◦ If ∆ < 0, then two zeros of P4 are real and different, and two are non-real complex conjugate;

2◦ If ∆ > 0, then all the zeroes of P4 are real or none is. More precisely

2.1◦ if P < 0 and D < 0, then all four zeros of P4 are real and different;

2.2◦ if P > 0 or D > 0, then there are two pairs of non-real complex conjugate zeros of P4.

3◦ If ∆ = 0, then and only then the polynomial has a multiple zero. The following cases can occur:

3.1◦ if P < 0, D < 0 and ∆0 6= 0, then two zeros of P4 are real end equal and two are real and
simple;

3.2◦ if D > 0 or (P > 0 and (D 6= 0 or Q 6= 0)), then two zeros of P4 are real and equal and
two are complex conjugate;

3.3◦ if ∆0 = 0 and D 6= 0, there is a triple zero of P4 and one simple, all real;

3.4◦ if D = 0 then

3.4.1◦ if P < 0 there are two double real zeros of P4;
3.4.2◦ if P > 0 and Q = 0 there are two double complex conjugate zeros of P4;
3.4.3◦ if ∆0 = 0, then all four zeros of P4 are real and equal to −b/4.

Case ∆ 6= 0. In this case all the zeros λi, i = 1, 4 of polynomial (3.106) are mutually
different, and the general solution to equation (3.93) has the following form

an = α1λn
1 + α2λn

2 + α3λn
3 + α4λn

4 , n ∈N, (3.119)

where αi, i = 1, 4, are arbitrary constants.
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If, for example, a = 1, c = 2 and bd = 3, then

p4(λ) = λ4 − λ3 − 2λ2 + 2λ− 3 (3.120)

and ∆ 6= 0, which by Proposition 3.4 shows that there are the cases when all the zeros of
polynomial (3.106) are different. Moreover, since p4(1) = −3 none of the zeros of polynomial
(3.120) is equal to one, and since ∆ < 0 two zeros are complex-conjugate, i.e., λ1 = λ2 and two
are real and different, i.e., λ3, λ4 ∈ R and λ3 6= λ4.

Since when d1 = bd 6= 0 the solution to equation (3.93) can be prolonged for nonpositive
indices, we may assume that (3.119) holds for n ≥ −3 (or for every n ≥ −s, for each s ∈N).

If we apply Lemma 2.2 to polynomial p4 in (3.106), we have

4

∑
j=1

λl
j

p′4(λj)
= 0

for l = 0, 2, and
4

∑
j=1

λ3
j

p′4(λj)
= 1,

where λi, i = 1, 4 are given by (3.107)–(3.110).
From this, since from (3.98) we have a−3 = a−2 = a−1 = 0 and a0 = 1, and general solution

to equation (3.93) has the form in (3.119), we obtain

an =
4

∑
j=1

λn+3
j

p′4(λj)
=

λn+3
1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

λn+3
2

(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

+
λn+3

3
(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)

+
λn+3

4
(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)

, (3.121)

for n ≥ −3.
On the other hand, from (3.88) we get

bn = an+1 − a1an, cn = c1an−1 + d1an−2, dn = d1an−1, (3.122)

for n ≥ −3.
By using (3.121) into (3.122), we get

bn =
4

∑
j=1

λj − a
p′4(λj)

λn+3
j (3.123)

cn =
4

∑
j=1

−acλj + bd
p′4(λj)

λn+1
j (3.124)

dn =
4

∑
j=1

bd
p′4(λj)

λn+2
j , (3.125)

for n ≥ −3.
By using (3.121) into (3.100) it follows that

yn =
n−1

∑
j=0

4

∑
i=1

λ
j+3
i

p′4(λi)
=

4

∑
i=1

λ3
i (λ

n
i − 1)

p′4(λi)(λi − 1)
, n ∈N, (3.126)
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when p4(1) 6= 1, i.e., when λi 6= 1, i = 1, 4. Moreover, a direct calculation along with
Lemma 2.2 shows that formula (3.126) also holds for n = −j, j = 0, 3.

Case ∆ 6= 0 and one of the zeros is equal to one. The characteristic polynomial (3.106) will have
a zero equal to one if

p4(1) = 1− a− c + ac− bd = 0,

that is, if

(a− 1)(c− 1) = bd, (3.127)

so that

p4(λ) = λ4 − aλ3 − cλ2 + acλ− (a− 1)(c− 1). (3.128)

If a = 2 and c = 2, then bd = 1 6= 0 and consequently

p4(λ) = λ4 − 2λ3 − 2λ2 + 4λ− 1 = (λ− 1)(λ3 − λ2 − 3λ + 1).

All the zeros of the polynomial are mutually different and exactly one of them is equal to one,
say λ1.

In this case the general solution has the following form

an = α̂1 + α̂2λn
2 + α̂3λn

3 + α̂4λn
4 , n ∈N, (3.129)

where α̂i, i = 1, 4, are arbitrary constants.
In this case formulas (3.121), (3.123), (3.124) and (3.125) also holds but with λ1 = 1. On the

other hand, we have that

yn =
n−1

∑
j=0

1
p′4(1)

+
n−1

∑
j=0

4

∑
i=2

λ
j+3
i

p′4(λi)

=
n

4− 3a− 2c + ac
+

4

∑
i=2

λ3
i (λ

n
i − 1)

p′4(λi)(λi − 1)
, (3.130)

since p′4(1) = 4− 3a − 2c + ac. Moreover, a direct calculation along with Lemma 2.2 shows
that formula (3.130) also holds for n = −j, j = 0, 3.

From the above consideration and Corollary 3.2 (q) we have that the following result holds.

Corollary 3.5. Consider system (1.2) with a, b, c, d ∈ Z and bd 6= 0. Assume that z−2, z−1, z0, w−1,
w0 ∈ C \ {0} and ∆ 6= 0. Then the following statements are true.

(a) If none of the zeros of characteristic polynomial (3.106) is equal to one, i.e., if (a− 1)(c− 1) 6= bd,
then the general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence
(an)n≥−3 is given by (3.121), while (yn)n≥−3 is given by (3.126).

(b) If (exactly) one of the zeros of characteristic polynomial (3.106) is equal to one, say λ1, i.e., if
(a− 1)(c− 1) = bd and 4− 3a− 2c + ac 6= 0, then the general solution to system (1.2) is given
by formulas (3.92) and (3.105), where sequence (an)n≥−3 is given by (3.121) with λ1 = 1, while
(yn)n≥−3 is given by (3.130).
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Case when there is only one double zero. For a = 4, c = 0 and bd = −27 is obtained

p4(λ) = λ4 − 4λ3 + 27 = (λ− 3)2(λ + 1 + i
√

2)(λ + 1− i
√

2), (3.131)

(it is easy to check that ∆ = 0, ∆0 6= 0 and D > 0). So, polynomial (3.131) has two (real) equal
zeros and two are complex-conjugate, but none of them is equal to one.

In the case when only two zeros are equal, say λ1 and λ2, then the general solution has the
following form

an = (γ1 + γ2n)λn
2 + γ3λn

3 + γ4λn
4 , n ∈N, (3.132)

where γi, i = 1, 4, are arbitrary constants.
To find the solution such that a−3 = a−2 = a−1 = 0 and a0 = 1 we will let λ1 → λ2 in

formula (3.121).
We have

an = lim
λ1→λ2

(
λn+3

1
(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)

+
λn+3

2
(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

+
λn+3

3
(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)

+
λn+3

4
(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)

)
= lim

λ1→λ2

(
λn+3

1 (λ2 − λ3)(λ2 − λ4)− λn+3
2 (λ1 − λ3)(λ1 − λ4)

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)(λ2 − λ3)(λ2 − λ4)

+
λn+3

3
(λ3 − λ2)2(λ3 − λ4)

+
λn+3

4
(λ4 − λ2)2(λ4 − λ3)

)
=

λn+2
2 ((n + 3)(λ2 − λ3)(λ2 − λ4)− λ2(2λ2 − λ3 − λ4))

(λ2 − λ3)2(λ2 − λ4)2

+
λn+3

3
(λ3 − λ2)2(λ3 − λ4)

+
λn+3

4
(λ4 − λ2)2(λ4 − λ3)

. (3.133)

From this it follows that in this case

yn =
n−1

∑
j=0

(
λ

j+2
2 ((j + 3)(λ2 − λ3)(λ2 − λ4)− λ2(2λ2 − λ3 − λ4))

(λ2 − λ3)2(λ2 − λ4)2

+
λ

j+3
3

(λ3 − λ2)2(λ3 − λ4)
+

λ
j+3
4

(λ4 − λ2)2(λ4 − λ3)

)

=λ3
2

n−1

∑
j=1

jλj−1
2

(λ2 − λ3)(λ2 − λ4)
+ λ2

2

n−1

∑
j=0

λ
j
2

λ2
2 − 2λ2λ3 − 2λ2λ4 + 3λ3λ4

(λ2 − λ3)2(λ2 − λ4)2

+
n−1

∑
j=0

(
λ

j+3
3

(λ3 − λ2)2(λ3 − λ4)
+

λ
j+3
4

(λ4 − λ2)2(λ4 − λ3)

)

=
λ3

2 − nλn+2
2 + (n− 1)λn+3

2
(λ2 − λ3)(λ2 − λ4)(1− λ2)2 +

(λ4
2 − 2λ3

2λ3 − 2λ3
2λ4 + 3λ2

2λ3λ4)(λ
n
2 − 1)

(λ2 − λ3)2(λ2 − λ4)2(λ2 − 1)

+
λ3

3(λ
n
3 − 1)

(λ3 − λ2)2(λ3 − λ4)(λ3 − 1)
+

λ3
4(λ

n
4 − 1)

(λ4 − λ2)2(λ4 − λ3)(λ4 − 1)
. (3.134)
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Case one is a double zero. We have already mentioned that polynomial (3.106) has a zero
equal to one if and only if (a− 1)(c− 1) = bd. Now, if λ = 1 is a double zero then it must
be p′4(1) = 4− 3a− 2c + ac = 0 or (a− 2)(c− 3) = 2. Since a, b, c, d ∈ Z, and bd 6= 0 this is
possible only when a = 3, c = 5, bd = 8 or a = 4, c = 4, bd = 9 or a = 0, c = 2, bd = −1 (case
a = c = 1 is not possible, since it implies that bd = 0).

If a = 3, c = 5, then

p4(λ) = λ4 − 3λ3 − 5λ2 + 15λ− 8 = (λ− 1)2(λ2 − λ− 8)

and it has a real double zero equal to one and two (real) simple zeros.
If a = 4, c = 4, then

p4(λ) = λ4 − 4λ3 − 4λ2 + 16λ− 9 = (λ− 1)2(λ2 − 2λ− 9)

and it also has a real double zero equal to one and two other (real) simple zeros.
Case a = 0 and c = 2 has been treated in the proof of Theorem 3.1, so it is omitted here.
In this case we have that

an =
n(1− λ3)(1− λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1

(1− λ3)2(1− λ4)2

+
λn+3

3
(λ3 − 1)2(λ3 − λ4)

+
λn+3

4
(λ4 − 1)2(λ4 − λ3)

, (3.135)

and

yn =
n−1

∑
j=0

(
j(1− λ3)(1− λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1

(1− λ3)2(1− λ4)2

+
λ

j+3
3

(λ3 − 1)2(λ3 − λ4)
+

λ
j+3
4

(λ4 − 1)2(λ4 − λ3)

)
=

(n− 1)n
2(1− λ3)(1− λ4)

+
n(3λ3λ4 − 2λ3 − 2λ4 + 1)

(1− λ3)2(1− λ4)2

+
λ3

3(λ
n
3 − 1)

(λ3 − 1)3(λ3 − λ4)
+

λ3
4(λ

n
4 − 1)

(λ4 − 1)3(λ4 − λ3)
. (3.136)

Corollary 3.6. Consider system (1.2) with a, b, c, d ∈ Z and bd 6= 0. Assume that z−2, z−1, z0, w−1,
w0 ∈ C \ {0}. Then the following statements are true.

(a) If only one of the zeros of characteristic polynomial (3.106) is double and different from one, then the
general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence (an)n≥−3

is given by (3.133), while (yn)n≥−3 is given by (3.134).

(b) If only double zero of characteristic polynomial (3.106) is equal to one, say λ1 = λ2 = 1, then the
general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence (an)n≥−3

is given by (3.135), while (yn)n≥−3 is given by (3.136).

Remark 3.7. Case one zero is equal to one and there is a double zero different from one seems
to be not simple. From above consideration we see that

p4(λ) = (λ− 1)(λ3 + (1− a)λ2 + (1− a− c)λ + (a− 1)(c− 1)), (3.137)
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holds and we should see if the polynomial

p3(λ) = λ3 + (1− a)λ2 + (1− a− c)λ + (a− 1)(c− 1)

can have a double zero, which is equivalent to the fact that the discriminant ∆3 = 4A3 + B2 is
equal to zero and that A 6= 0 6= B, where

A = 2− a− a2 − 3c and B = −20 + 15a + 3a2 + 2a3 + 18c− 18ac.

This is equivalent to

(a− 1)2(2a2 + 5a + 20− 18c)2 = 4((a + 2)(a− 1) + 3c)3. (3.138)

An investigation that we have done along with using computers suggests that equation (3.138)
does not have integer solutions such that a 6= 1 6= c. However, we are not able at the moment
to show this, so we leave this problem for the further study.

Case two pairs of double zeroes both different from one. From Proposition 3.4, we see that in this
case it must be ∆ = D = 0. The characteristic polynomial (3.106), in this case, has two double
zeros, say, λ1 = λ2 and λ3 = λ4, so the general solution to equation (3.93) has the following
form

an = (γ1 + γ2n)λn
1 + (γ3 + γ4n)λn

3 , n ∈N, (3.139)

where γi, i = 1, 4, are arbitrary constants.
From D = 0 we get

bd = −16c2 + 3a4

64
. (3.140)

Employing (3.140) in the expressions for ∆0 and ∆1, we get

∆0 = 4c2 + 3a2c +
9

16
a4 =

(
2c +

3
4

a2
)2

∆1 =
210c3 + 11 · 2432a2c2 + 3323ca4 + 34a6

64
.

Hence, ∆ = 0 is equivalent to the relation

(210c3 + 11 · 2432a2c2 + 3323ca4 + 34a6)2 = 4(23c + 3a2)6,

from which it follows that

210c3 + 11 · 2432a2c2 + 3323ca4 + 34a6 = ±2(23c + 3a2)3. (3.141)

By some calculation from (3.141) we get that it must be

a2(4c− a2)2 = 0, (3.142)

or

211c3 + 322419a2c2 + 3423ca4 + 5 · 33a6 = 0. (3.143)

Subcase when (3.142) holds. If a = 0 and c 6= 0, then bd = −c2/4. Hence

p4(λ) = λ4 − cλ2 +
c2

4
=
(

λ2 − c
2

)2
.

If c > 0, then clearly
λ1,2 =

√
c/2 and λ3,4 = −

√
c/2,

while if c < 0, then
λ1,2 = i

√
−c/2 and λ3,4 = −i

√
−c/2.
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If 4c = a2 6= 0, then if t = λ/a, we have

p4(λ) = λ4 − aλ3 − a2

4
λ2 +

a3

4
λ +

a4

16

= a4
(

t4 − t3 − t2

4
+

t
4
+

1
16

)
= a4t2

((
t− 1

4t

)2

−
(

t− 1
4t

)
+

1
4

)

= a4t2
(

t− 1
4t
− 1

2

)2

= a4
(

t2 − 1
2

t− 1
4

)2

=

(
λ2 − aλ

2
− a2

4

)2

. (3.144)

From (3.144) we get that

λ1,2 = a
1 +
√

5
4

and λ3,4 = a
1−
√

5
4

.

In these cases we have that

an =
λn+2

2 (n(λ2 − λ4)
2 + λ2

2 − 4λ2λ4 + 3λ2
4)

(λ2 − λ4)4

+
λn+2

4 (n(λ4 − λ2)2 + λ2
4 − 4λ2λ4 + 3λ2

2)

(λ4 − λ2)4 (3.145)

and

yn =
n−1

∑
j=0

(
λ

j+2
2 (j(λ2 − λ4)

2 + λ2
2 − 4λ2λ4 + 3λ2

4)

(λ2 − λ4)4

+
λ

j+2
4 (j(λ4 − λ2)2 + λ2

4 − 4λ2λ4 + 3λ2
2)

(λ4 − λ2)4

)

= λ3
2

n−1

∑
j=1

jλj−1
2

(λ2 − λ4)2 + λ2
2

n−1

∑
j=0

λ
j
2

λ2
2 − 4λ2λ4 + 3λ2

4
(λ2 − λ4)4

+ λ3
4

n−1

∑
j=1

jλj−1
4

(λ4 − λ2)2 + λ2
4

n−1

∑
j=0

λ
j
4

λ2
4 − 4λ2λ4 + 3λ2

2
(λ4 − λ2)4

=
λ3

2 − nλn+2
2 + (n− 1)λn+3

2
(λ2 − λ4)2(1− λ2)2 +

(λ4
2 − 4λ3

2λ4 + 3λ2
2λ2

4)(λ
n
2 − 1)

(λ2 − λ4)4(λ2 − 1)

+
λ3

4 − nλn+2
4 + (n− 1)λn+3

4
(λ4 − λ2)2(1− λ4)2 +

(λ4
4 − 4λ2λ3

4 + 3λ2
2λ2

4)(λ
n
4 − 1)

(λ4 − λ2)4(λ4 − 1)
. (3.146)

Subcase when (3.143) holds. There are two possibilities that the relation in (3.143) holds.
First, if it were a = 0 or c = 0 in equation (3.143), then we would get a = c = 0 and
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consequently by (3.140) it would follow that bd = 0, which would be a contradiction with the
assumption bd 6= 0. Hence, the subcase is not possible.

If a 6= 0 6= c in (3.143), then since the polynomial

q3(t) = 211t3 + 322419t2 + 3423t + 5 · 33,

has obviously a real zero, say t0 (it is shown that t0 ≈ −1, 10331), we get that c = t0a2, and
consequently P = −(8t0 + 3)a2 > 0, bd = −(16t2

0 + 3)a4/64 6= 0, Q = a3(4t0 − 1) 6= 0, and

p4(λ) = λ4 − aλ3 − t0a2λ2 + t0a3λ− 16t2
0 + 3
64

a4. (3.147)

From Proposition 3.4 we see that conditions P > 0 and Q 6= 0 cannot hold simultaneously
with conditions ∆ = 0 and D = 0, which guarantee the existence of a double zero. Hence, it
is not possible in this case that polynomial (3.147) has two double zeros.

Case two pairs od double zeroes, one of them equal to one. The characteristic polynomial (3.106),
in this case, has two double zeros, say, λ1 = λ2 6= 1 and λ3 = λ4 = 1, so the general solution
to equation (3.93) has the following form

an = (γ̂1 + γ̂2n)λn
2 + (γ̂3 + γ̂4n), n ∈N, (3.148)

where γ̂i, i = 1, 4, are arbitrary constants.
If a = 0, c = 2, bd = −1, then

p4(λ) = λ4 − 2λ2 + 1 = (λ− 1)2(λ + 1)2,

from which it follows that the polynomial has a real double zero equal to 1 and another real
double zero equal to −1.

In this case we have that

an =
λn+2

2 (n(λ2 − 1)2 + λ2
2 − 4λ2 + 3)

(λ2 − 1)4 +
(n(λ2 − 1)2 + 1− 4λ2 + 3λ2

2)

(λ2 − 1)4 (3.149)

and

yn =
n−1

∑
j=0

(
λ

j+2
2 (j(λ2 − 1)2 + λ2

2 − 4λ2 + 3)
(λ2 − 1)4 +

(j(λ2 − 1)2 + 1− 4λ2 + 3λ2
2)

(λ2 − 1)4

)

=
λ3

2
(λ2 − 1)2

n−1

∑
j=1

jλj−1
2 +

(λ3
2 − 3λ2

2)

(λ2 − 1)3

n−1

∑
j=0

λ
j
2 +

1
(λ2 − 1)2

n−1

∑
j=0

j +
n−1

∑
j=0

3λ2 − 1
(λ2 − 1)3

=
λ3

2 − nλn+2
2 + (n− 1)λn+3

2
(λ2 − 1)2 +

(λ3
2 − 3λ2

2)(λ
n
2 − 1)

(λ2 − 1)4 +
(n− 1)n

2(λ2 − 1)2 + n
3λ2 − 1
(λ2 − 1)3 (3.150)

Corollary 3.8. Consider system (1.2) with a, b, c, d ∈ Z and bd 6= 0. Assume z−2, z−1, z0, w−1, w0 ∈
C \ {0}. Then the following statements are true.

(a) If characteristic polynomial (3.106) has two pairs of double zeros both different from one, then the
general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence (an)n≥−3

is given by (3.145), while (yn)n≥−3 is given by (3.146).

(b) If characteristic polynomial (3.106) has two pairs of double zeros one of them equal to one, say λ1

and λ2, then the general solution to system (1.2) is given by formulas (3.92) and (3.105), where
sequence (an)n≥−3 is given by (3.149), while (yn)n≥−3 is given by (3.150).
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Case at least three zeros are equal. If three zeros of polynomial (3.106) are equal, then it must
be ∆ = ∆0 = 0, which implies ∆1 = 0. The characteristic polynomial in (3.106) would have
four equal zeros if p4(λ) = p′4(λ) = p′′4 (λ) = p′′′4 (λ) = 0. Since p′′′4 (λ) = 24λ− 6a, we would
get λ = a/4. From p′4(

a
4 ) = p′′4 (

a
4 ) = 0 it is obtained

p′4
( a

4

)
=

a(4c− a2)

8
= 0 and p′′4

( a
4

)
= −8c + 3a2

4
= 0,

from which it follows that if a = 0 then c = 0, while if 4c = a2 then 5a2 = 0, which implies
a = 0 and consequently c = 0. Hence, in both cases we have that a = c = 0, which implies
that

p4(λ) = λ4 − bd.

However, since bd 6= 0 polynomial p4 would have four different zeros, which would be a
contradiction. Thus, the polynomial (3.106) has at most three equal zeros.

Since ∆0 = 0 we have that

bd =
c2 + 3a2c

12
. (3.151)

Employing (3.151) in ∆1 = 0 we get

∆1 = −2c3 + 18a2c2 − (27a2 + 72c)(c2 + 3a2c)
12

= − c
4
(32c2 + 9ca2 + 27a4) = 0. (3.152)

If it were c = 0, then from (3.151) we would get bd = 0, which would be a contradiction. If
c 6= 0 and 32c2 + 9ca2 + 27a4 = 0, then since the polynomial 32 + 9t + 27t2 is always positive
on R we obtain that the last equation does not have a real solution. So, the case ∆ = ∆0 = 0
is not possible, which implies that polynomial (3.106) cannot have a triple zero.

Hence, the general solution to equation (3.93) cannot have the following forms

an = (δ1 + δ2n + δ3n2 + δ3n2)λn
1 ,

an = δ̂1λn
1 + (δ̂2 + δ̂3n + δ̂4n2)λn

2 , n ∈N, (3.153)

where δi and δ̂i, i = 1, 4, are arbitrary constants.
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[23] S. Stević, Solutions of a max-type system of difference equations, Appl. Math. Comput.
218(2012), 9825–9830. MR2916163; url
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[44] S. Stević, B. Iričanin, Z. Šmarda, Two-dimensional product-type system of difference
equations solvable in closed form, Adv. Difference Equ. 2016, 2016:253, 20 pp. MR3553954;
url
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