
Electronic Journal of Qualitative Theory of Differential Equations

2011, No. 40, 1-9; http://www.math.u-szeged.hu/ejqtde/

On the superlinear problem involving the
p(x)-Laplacian

Chao Ji∗

Department of Mathematics, East China University of Science and Technology,

Shanghai 200237, P.R. China

Abstract

This paper deals with the superlinear elliptic problem without Ambrosetti
and Rabinowitz type growth condition of the form:

{

− div(|∇u|p(x)−2∇u) = λf(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω,
λ > 0 is a parameter. Existence of nontrivial solution is established for arbi-
trary λ > 0. Firstly, by using the mountain pass theorem a nontrivial solution
is constructed for almost every parameter λ > 0. Then, it is considered the
continuation of the solutions. Our results are a generalization of Miyagaki
and Souto.
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1 Introduction

In this paper we consider the following nonlinear eigenvalue problem involving the
p(x)-Laplacian:

{

− div(|∇u|p(x)−2∇u) = λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω, 1 < p(x) ∈
C(Ω), f ∈ C(Ω × R) is superlinear and don’t satisfy Ambrosetti and Rabinowitz
type growth condition, λ > 0 is a parameter.

Fan and Zhang in [1] established an existence of nontrivial solution for problem
(1.1), by assuming the following conditions:
(f0) f : Ω × R → R satisfies Caratheodory condition and

|f(x, t)| ≤ C1 + C2|t|
α(x)−1, ∀(x, t) ∈ Ω × R,

∗E-mail address: jichao@ecust.edu.cn

EJQTDE, 2011 No. 40, p. 1



where α(x) ∈ C+(Ω) = {h|h ∈ C(Ω), h(x) > 1 for anyx ∈ Ω} and α(x) < p∗(x),
p∗(x) is the Sobolev critical exponent and

p∗(x) =







Np(x)

N − p(x)
, p(x) < N,

∞, p(x) ≥ N.

(f1) ∃M > 0, θ > p+ := max
Ω

p(x) such that

0 < θF (x, t) ≤ tf(x, t), |t| ≥ M, x ∈ Ω,

where F (x, t) =
∫ t

0
f(x, s)ds.

(f2) f(x, t) = o(|t|p
+−1), t → 0, for x ∈ Ω uniformly and α− := min

Ω
α(x) > p+.

When p(x) ≡ 2, several researchers that studied problem (1.1) tried to drop
above condition (f1)(see [2, 3, 4, 5]), that is
(f ′

1) ∃M > 0, θ > 2 such that

0 < θF (x, t) ≤ tf(x, t), |t| ≥ M, x ∈ Ω,

where F (x, t) =
∫ t

0
f(x, s)ds.

(f ′
1) is the famous Ambrosetti and Rabinowitz growth condition and (f1) is a gener-

alization of (f ′
1) to problem involving the p(x)-Laplacian, here we call it Ambrosetti

and Rabinowitz type grow condition. For the case p(x) ≡ p, we may refer [6]. It’s
well known (see [1]) that (f1) is quite important not only to ensure that the Euler-
lagrange functional associated to problem (1.1) has a mountain pass geometry, but
also to guarantee that Palais-Smale sequence of the Euler-Lagrange functional is
bounded. But this condition is very restrictive eliminating many nonlinearities. We
recall that (f1) implies a weaker condition

F (x, t) ≥ c1|t|
θ − c2, c1, c2 > 0, x ∈ Ω, t ∈ R and θ > p+.

The above condition implies another much weaker condition, which is a consequence
of the superlinearity of f at infinity:
(f3)

lim
|t|→∞

F (x, t)

|t|p+ = +∞, uniformly a.e. x ∈ Ω.

When p(x) ≡ 2, under conditions (f0), (f2), (f3) and the following condition:
(f ′

4) There is t0 > 0 such that

f(x, t)

t
is increasing in t ≥ t0 and decreasing in t ≤ −t0, ∀x ∈ Ω,

if f ∈ C(Ω × R), Miyagaki and Souto in [3] got a nontrivial solution of problem
(1.1), for all λ > 0. Here we will generalize results in [3] to the variable exponent
case. Because the p(x)-Laplacian possesses more complicated nonlinearities than
Laplacian and p-laplacian, for example, it is inhomogeneous, thus our problem is
the more difficult.
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The following is our main result, namely,
Theorem 1.1. Under hypotheses (f0), (f2), (f3) and

(f4) There is t0 > 0 such that

f(x, t)

tp
+−1

is increasing in t ≥ t0 and decreasing in t ≤ −t0, ∀x ∈ Ω.

Moreover, f ∈ C(Ω × R), then problem (1.1) has a nontrivial weak solution, for all

λ > 0.

Example 1.1. Function f(x, t) = tα(x)−1(α(x) ln t + 1)(F (x, t) = tα(x) ln t) where

α(x) ∈ C+(Ω) satisfies condition (f4) , but it does not satisfy (f1) if 2α− > p+ > α+.

Remark 1.1. Actually our result still holds if we consider a weaker condition than

(f4), namely

(f ′
4) There is C∗ > 0 such that

tf(x, t) − p+F (x, t) ≤ sf(x, s) − p+F (x, s) + C∗

for all 0 < t < s or s < t < 0.

The variational problems and differential equations with nonstandard growth
conditions have been a very attractive topic in recent years. We refer to [7, 8] for
applied background, to [9, 10] for the variable exponent Lebesgue-Sobolev spaces
and to [1, 11, 12, 13, 14] for the p(x)-Laplacian equations and the corresponding
variational problems.

The paper is divided into three sections. In Section 2 we present some preliminary
knowledge on the variable exponent spaces. In Section 3, we give some preliminary
lemmas and the proof of Theorem 1.1.

2 Preliminary

Throughout this paper, we always assume p(x) ∈ C+(Ω) and f ∈ C(Ω × R). Set

Lp(x)(Ω) = {u | u is a measurable real-valued function :

∫

Ω

|u|p(x)dx < ∞},

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :

∫

Ω

|
u

λ
|p(x)dx ≤ 1}

and (Lp(x)(Ω), | · |p(x)) becomes a Banach space, that is generalized Lebesgue space.

Proposition 2.1([1]).
(1) The space (Lp(x)(Ω), | · |p(x)) is separable, uniform convex Banach space, and

its conjugate space is Lq(x)(Ω) where 1
q(x)

+ 1
p(x)

= 1. For any u ∈ Lp(x)(Ω) and

v ∈ Lq(x)(Ω), we have

∣

∣

∣

∫

Ω

uvdx
∣

∣

∣
≤ (

1

p−
+

1

q−
)|u|p(x)|v|q(x).
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(2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then Lp2(x)(Ω) →֒ Lp1(x)(Ω)
and the imbedding is continuous.

Proposition 2.2([1], [9], [10]). Set ρ(u) =
∫

Ω
|u(x)|p(x)dx. If u, uk ∈ Lp(x)(Ω),

we have

(1) For u 6= 0, |u|p(x) = λ ⇔ ρ(u
λ
) = 1.

(2) |u|p(x) < 1(= 1; > 1) ⇔ ρ(u) < 1(= 1; > 1).

(3) If |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x).

(4) If |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

(5) limk→∞ |uk|p(x) = 0 ⇔ limk→∞ ρ(uk) = 0.
(6) limk→∞ |uk|p(x) = ∞ ⇔ limk→∞ ρ(uk) = ∞.

The space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)}

and it can be equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈ W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). Moreover, we have
Proposition 2.3([1]).

(1) W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable, reflexive Banach spaces;

(2) If q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω, then the imbedding from W 1,p(x)(Ω)
to Lq(x)(Ω) is compact and continuous;

(3) There is constant C > 0, such that

|u|p(x) ≤ C|∇u|p(x), ∀u ∈ W
1,p(x)
0 (Ω).

By (3) of Proposition 2.3, we know that |∇u|p(x) and ‖u‖ are equivalent norms on

W
1,p(x)
0 (Ω). We will use |∇u|p(x) to replace ‖u‖ in the following discussions.

3 Main Results

Now we introduce the energy functional Iλ : W
1,p(x)
0 (Ω) → R associated with prob-

lem (1.1), defined by

Iλ(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx − λ

∫

Ω

F (x, u)dx.

From the hypotheses on f , it is standard to check that Iλ ∈ C1(W
1,p(x)
0 (Ω), R) and

its Gateaux derivative is

I ′
λ(u) · v =

∫

Ω

|∇u|p(x)−2∇u · ∇v − λ

∫

Ω

f(x, u)vdx, u, v ∈ W
1,p(x)
0 (Ω).

Thus the critical points of Iλ are precisely the weak solutions of problem (1.1).

First of all, notice that Iλ verifies the mountain pass geometry, in a uniform way
on compact sets:
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Lemma 3.1.
(1) Under the condition (f3), the functional Iλ is unbounded from below;

(2) Under the conditions (f0) and (f2), u = 0 is a strict local minimum for the

functional Iλ .

Proof of (1). From (f3) follows that, for all M > 0 there exists CM > 0, such that

F (x, t) ≥ M |t|p
+

− CM , ∀x ∈ Ω, ∀t > 0. (3.1)

Take φ ∈ W
1,p(x)
0 (Ω) with φ > 0, from (3.1) we obtain

Iλ(tφ) ≤ tp
+

(

∫

Ω

|∇φ|p(x)

p(x)
− λM

∫

Ω

|φ|p
+

) + CM |Ω|,

where t ≥ 1 and |Ω| denotes the Lebesgue measure of Ω. If M is large, then

lim
t→∞

Iλ(tφ) = −∞.

This proves (1).

Proof of (2). From (f0) and (f2), we have

F (x, t) ≤ ǫ|t|p
+

+ C(ǫ)|t|α(x), ∀(x, t) ∈ Ω × R.

Then

Iλ(u) ≥

∫

Ω

1

p+
|∇u|p

+

dx − ǫλ

∫

Ω

|u|p
+

dx − C(ǫ)λ

∫

Ω

|u|α(x)dx

≥
1

p+
‖u‖p+

− ǫλC
p+

0 ‖u‖p+

− C(ǫ)λ‖u‖α−

≥
1

2p+
‖u‖p+

− λC(ǫ)‖u‖α−

, when ‖u‖ ≤ 1,

there exist r > 0 and δ > 0 such that Iλ(u) ≥ δ > 0 for every u ∈ W
1,p(x)
0 (Ω) and

‖u‖ = r. The proof is complete.

Fix 0 < λ0 < µ0. Now, we can see that the geometry on Iλ works uniformly on
[λ0, µ0]. From the proof of Lemma 3.1 (2), we obtain

Iλ(u) ≥
1

2p+
‖u‖p+

− µ0C(ǫ)‖u‖α−

, when ‖u‖ ≤ 1, 0 < λ ≤ µ0.

That is, there exist r > 0 and δ > 0 such that Iλ(u) ≥ δ > 0 for every u ∈ W
1,p(x)
0 (Ω),

‖u‖ = r and ∀λ ≤ µ0.

By choosing e ∈ W
1,p(x)
0 (Ω) such that Iλ0(e) < 0, we infer that

Iλ(e)

λ
≤

Iλ0(e)

λ0
< 0, λ0 ≤ λ ≤ µ0.

We also have
Iλ(u)

λ
≤

Iµ(u)

µ
, ∀u ∈ W

1,p(x)
0 (Ω), µ < λ. (3.2)
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Define

P = {γ : [0, 1] → W
1,p(x)
0 (Ω) : γ is continuous and γ(0) = 0 and γ(1) = e},

and for λ0 ≤ λ ≤ µ0, let
cλ = inf

γ∈P
max
t∈[0,1]

Iλ(γ(t)).

We recall that the map c : [λ0, µ0] → R+, given by c(λ) = cλ, is such that cλ

λ
is

decreasing, left semi-continuous and bounded from below by cµ0 > 0.

In fact, from (3.2) follows the monotonicity. While the estimate in Lemma 3.1
(2) implies that cλ ≥ δ > 0.

Now, we check the left semi-continuous of cλ

λ
. Fix µ ∈ [λ0, µ0] and ǫ > 0. Then

fix γ ∈ P such that

c(µ) ≤ max
t∈[0,1]

Iµ(γ(t)) ≤ c(µ) +
ǫµ

4
.

Let R0 = max
t∈[0,1]

∫

Ω
F (x, γ(t))dx. Then, for λ > µ

2
and such that 1

λ
< 1

µ
+ ǫ

2µ
,

Iλ(γ(t)) = (Iλ(γ(t)) − Iµ(γ(t))) + Iµ(γ(t))

= Iµ(γ(t)) + (µ − λ)

∫

Ω

F (x, γ(t))dx

≤ R0|λ − µ| + cµ +
ǫµ

4
, ∀t ∈ [0, 1],

that is,

c(λ) ≤ c(µ) +
ǫµ

2
, if |λ − µ| <

ǫµ

4R0

.

Hence, if µ > λ, it follows that

cµ

µ
− ǫ <

cµ

µ
≤

cλ

λ
≤

cµ

λ
+

2ǫ

3
≤

cµ

µ
+ ǫ.

This proves the left semi-continuity of cλ

λ
and cλ.

Lemma 3.2. There exists d > 0, such that

‖I ′
µ(u) − I ′

λ(u)‖∗ ≤ d(1 + ‖u‖α+−1)|µ − λ|, ∀λ, µ > 0.

Proof. For α(x) ∈ C+(Ω), define α′(x) such that 1
α(x)

+ 1
α′(x)

= 1 for ∀x ∈ Ω. From

condition (f0), one has

|f(x, t)|α
′(x) = |f(x, t)|

α(x)
α(x)−1 ≤ d1 + d2|t|

α(x), ∀x ∈ Ω, ∀t ∈ R,

for some constants d1, d2 > 0 and then

∫

Ω

|f(x, u)|α
′(x) ≤ d1|Ω| + d2

∫

Ω

|u|α(x)dx.

Therefore, there exist positive constants d3 and d4 > 0, such that

∫

Ω

|f(x, u)|α
′(x) ≤ d3 + d4‖u‖

α+

, ∀u ∈ W
1,p(x)
0 (Ω).
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Now, for all v ∈ W
1,p(x)
0 (Ω) with ‖v‖ ≤ 1, we have

I ′
µ(u)v − I ′

λ(u)v = (λ − µ)

∫

Ω

f(x, u)vdx.

Moreover, one has

|I ′
µ(u)v − I ′

λ(u)v| ≤ |λ − µ|

∫

Ω

|f(x, u)v|dx

≤ 2|λ − µ||f(x, u)|α′(x)|v|α(x)

≤ 2C0|λ − µ|(d3 + d4‖u‖
α+

)
α+

−1
α+ ‖v‖.

So there exists constant d > 0 such that

‖I ′
µ(u) − I ′

λ(u)‖∗ ≤ d(1 + ‖u‖α+−1)|µ − λ|, ∀λ, µ > 0.

Remark 3.1. We recall that the map b : [λ0, µ0] → R+, given by b(λ) = cλ

λ
, is mono-

tone decreasing. Thus bλ and cλ are differentiable at almost all values λ ∈ (λ0, µ0).

Lemma 3.3. Suppose the map c : [λ0, µ0] → R+, given by c(λ) = cλ, is differ-

entiable in µ, then there exists a sequence {un} ⊂ W
1,p(x)
0 (Ω) such that

Iµ(un) → cµ, I ′
µ(un) → 0, and ‖un‖

p− ≤ C ′,

as n → ∞ and actually C ′ = p+cµ + p+µ(2 − c′(µ)) + 1.

The proof of the Lemma is similar to the proof of Lemma 2.3 in [3], so omit it.

The next lemma follows directly Lemma 3.3.

Lemma 3.4. For almost all λ > 0, cλ is a critical value for Iλ.

Combining above Lemmas and arguments, now we give the proof of Theorem 1.1.

Proof. As cλ is left semi-continuous, from Lemma 3.4, for each µ > 0 we can
fix sequence {un} in W

1,p(x)
0 (Ω) and {λn} ⊂ R such that λn → µ, cλn

→ cµ as
n → ∞,

Iλn
(un) = cλn

and I ′
λn

(un) = 0.

For the proof of Theorem, it is enough that one can prove that the sequence {un}
is bounded. If it is unbounded we define ωn = un

‖un‖
. Without loss of generality,

suppose that there is ω ∈ W
1,p(x)
0 (Ω) such that

ωn(x) ⇀ ω(x) in W
1,p(x)
0 (Ω), n → ∞,

ωn(x) → ω(x) in Lα(x)(Ω), n → ∞,

ωn(x) → ω(x) for a.e.x ∈ Ω, n → ∞.

Let Ω6= = {x ∈ Ω : ω(x) 6= 0}. If x ∈ Ω6=, then

lim
n→∞

F (x, un(x))

|un(x)|p+ |ωn(x)|p
+

= ∞.
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Applying the Fatou Lemma and the limit

lim
n→∞

∫

Ω

F (x, un(x))

|un(x)|p+ |ωn(x)|p
+

≤
1

µp−
.

These two last limits are incompatible if |Ω6=| > 0, so Ω6= has zero measure, that is
ω = 0 a.e. in Ω.
Let tn ∈ [0, 1] such that

Iλn
(tnun) = max

t∈[0,1]
Iλn

(tun).

If tn = 1, Iλn
(tun) is bounded for all t ∈ [0, 1]. If tn < 1, I ′

λn
(tnun)un = 0. Since

I ′
λn

(tnun)(tnun) = 0, from (f ′
4), we have

Iλn
(tun) ≤ Iλn

(tnun) −
1

p+
I ′
λn

(tnun)(tnun)

=

∫

Ω

(
1

p(x)
−

1

p+
)|∇tnun|

p(x)dx

+ λn

∫

Ω

(
1

p+
tnunf(x, tnun) − F (x, tnun))dx

≤

∫

Ω

(
1

p(x)
−

1

p+
)|∇un|

p(x)dx

+ λn

∫

Ω

(
1

p+
unf(x, un) − F (x, un) +

C∗

p+
)dx

= cλn
+

C∗λn

p+
|Ω|

for all t ∈ [0, 1].

On the other hand, for all R > 1, set R′ = (2p+R)
1

p−

Iλn
(R′ωn) ≥ 2R − λn

∫

Ω

F (x, R′ωn)dx ≥ R.

which contradicts Iλn
(R′ωn) ≤ cλn

+ C∗λn

p+ |Ω|, for n large.

Now we have a bounded sequence {un} such that

Iµ(un) → cµ and I ′
µ(un) → 0, as n → ∞.

The proof is complete.
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