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Abstract. In this paper, we study the following Schrödinger–Poisson system{
−∆u + V(x)u + φu = f (x, u) + g(x), x ∈ R3,
−∆φ = u2, x ∈ R3.

Under appropriate assumptions on V, f and g, using the Mountain Pass Theorem and
the Ekeland’s variational principle, we establish two existence theorems to ensure that
the above system has at least two different solutions. Recent results from the literature
are extended and improved.
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1 Introduction and main results

In this paper, we consider the following nonlinear Schrödinger–Poisson system{
−∆u + V(x)u + φu = f (x, u) + g(x), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.1)

where V ∈ C
(
R3, R

)
, f ∈ C

(
R3 ×R, R

)
and the conditions on g will be given later.

System (1.1) is also called Schrödinger–Maxwell system, arises in an interesting physical
context. In fact, according to a classical model, the interaction of a charge particle with an
electromagnetic field can be described by coupling the nonlinear Schrödinger’s and Poisson’s
equations. For more information on the physical relevance of the Schrödinger–Poisson system,
we refer the readers to the papers [3, 23] and the references therein.

If g(x) = 0, system (1.1) becomes the well known Schrödinger–Poisson system, which has
been extensively investigated in the last years by the aid of the modern variational methods
and critical point theory. Moreover, since the pioneering work of Benci and Fortunato [5],
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there is huge literature on the studies of the existence and behavior of solutions of the system
(1.1) with g(x) = 0, see for example [1,2,7,9,10,14,16–18,21,24–26,30–32,34] and the references
therein.

Compared to the homogeneous case (i.e., g(x) = 0), there are few papers concerning the
case where g(x) 6= 0, see for example [8, 12, 15, 22, 28, 35]. Particularly, in [8] the authors ob-
tained the existence of two nontrivial solutions for system (1.1) by using Ekeland’s variational
principle and the Mountain Pass Theorem when g ∈ L2(R3), g 6≡ 0, and f and V satisfy the
following assumptions, respectively:

(V0) V(x) ∈ C
(
R3, R

)
satisfies infx∈R3 V(x) ≥ V0 > 0, where V0 is a constant. Moreover,

for every M > 0, meas{x ∈ R3 : V(x) ≤ M} < ∞, where (and in the sequel) meas(·)
denotes the Lebesgue measure in R3.

( f1) f ∈ C(R3 ×R), and there exist constants a > 0 and p ∈ (2, 6) such that

| f (x, u)| ≤ a
(

1 + |u|p−1
)

, ∀(x, u) ∈ R3 ×R,

where 6 = 2∗ = 2N
N−2 is the critical Sobolev exponent;

( f2) limu→0
f (x,u)

u = 0 uniformly for x ∈ R3;

( f3) there exists µ > 4 such that

µF(x, u) ≤ f (x, u)u, ∀(x, u) ∈ R3 ×R, (1.2)

where (and in the sequel) F(x, t) =
∫ t

0 f (x, s)ds;

( f4)

inf
x∈R3,|u|=1

F(x, u) > 0.

Specifically, the authors established the following theorem in [8].

Theorem 1.1 ([8]). Suppose that g ∈ L2(R3), g 6≡ 0. Let (V0) and ( f1)–( f4) hold, then there exists
a constant m0 > 0 such that problem (1.1) admits at least two different solutions when ‖g‖L2 ≤ m0.

It is worth pointing out that the combination of ( f3)–( f4) implies that the rang of p in
condition ( f1) should be 4 < p < 6. In fact, for any x ∈ R3, u ∈ R, define

h(t) = F(x, t−1u)tµ, ∀t ∈ [1,+∞).

Then, for |u| ≥ 1 and t ∈ [1, |u|], it follows from (1.2) that

h′(t) =
[
µF(x, t−1u)− f (x, t−1u)t−1u

]
tµ−1 ≤ 0.

Therefore, h(1) ≥ h(|u|). Hence, ( f4) implies that

F(x, u) ≥ F
(

x,
u
|u|

)
|u|µ ≥ c|u|µ, ∀x ∈ R3 and |u| ≥ 1, (1.3)

where, c = infx∈R3,|u|=1 F(x, u) > 0. If p ≤ 4, by ( f1) we have

|F(x, u)| ≤
∫ 1

0
| f (x, tu)u|dt ≤ a

∫ 1

0
(1 + |tu|p−1)|u|dt ≤ a(|t|+ |t|p), ∀(x, u) ∈ R3 ×R,
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which implies that

lim sup
t→+∞

F(x, t)
t4 ≤ a uniformly in x ∈ R3.

This contradicts (1.3). Thus, 4 < p < 6.
Inspired by the above facts, in the present paper we shall consider the nonhomogeneous

Schrödinger–Poisson system, and we are interested in looking for multiple solutions for the
problem (1.1). Under much more relaxed assumptions on the nonlinearity f and the potential
function V, using some special proof techniques especially the verification of the boundedness
of Palais–Smale sequence, new results on the existence of multiple nontrivial solutions for
the system (1.1) are obtained, which extend and sharply improve some recent results in the
literature. In order to state the main results of this paper, we make the following assumptions.

(V) V ∈ C
(
R3, R

)
satisfies infx∈R3 V(x) ≥ V0 > 0, where V0 is a constant. Moreover, there

exists r0 > 0 such that

lim
|y|→∞

meas{x ∈ R3 : |x− y| ≤ r0, V(x) ≤ M} = 0, ∀M > 0.

(H1) f ∈ C
(
R3 ×R, R

)
, and there exist constants c1, c2 > 0 and p ∈ (4, 6) such that

| f (x, t)| ≤ c1|t|+ c2|t|p−1, ∀(x, t) ∈ R3 ×R.

(H2) limt→0
f (x,t)

t < µ∗ uniformly for x ∈ R3 where

µ∗ = inf
{∫

R3

(
|∇u|2 + V(x)u2) dx : u ∈ H1(R3),

∫
R3

u2dx = 1
}

.

(H3) limt→∞
F(x,t)

t4 = ∞ uniformly in x ∈ R3.

(H4) There exist c3 > 0 and L > 0 such that

4F(x, t) ≤ f (x, t)t + c3t2, for a.e. x ∈ R3 and ∀ |t| ≥ L.

(H
′
4) There exists L > 0 such that

4F(x, t) ≤ f (x, t)t, for a.e. x ∈ R3 and ∀ |t| ≥ L.

(H5) g ∈ Lp′(R3), g 6≡ 0, where 1
p′ +

1
p = 1, p is defined by (H1).

Now, we are ready to state the main results of this paper as follows.

Theorem 1.2. Assume that (V) and (H1)–(H5) hold. Then, there exists m0 > 0 such that for any
g ∈ Lp′(R3) with ‖g‖p′ ≤ m0, the system (1.1) possesses at least two different nontrivial solutions,
one is negative energy solution, and the other is positive energy solution.

The other aim of this paper is to study the existence of at least two different nontrivial
solutions for problem (1.1) involving a concave–convex nonlinearity. We also consider the
effect of the parameter λ and the perturbation term g on the existence of solutions.
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Theorem 1.3. Let g ∈ L2(R3), g 6≡ 0. Assume that (V) and

(H6) f (x, u) = λh1(x)|u|σ−2u + h2(x)|u|p−2u with 1 < σ < 2, 4 < p < 6 for all (x, u) ∈ R3 ×R,
in which h1 ∈ Lσ0(R3) ∩ L∞(R3) and h2 ∈ L∞(R3) with σ0 = 2/(2− σ). Moreover, there
exists a nonempty bounded domain Ω ⊂ R3 such that h2 > 0 in Ω.

Then there exist λ0, m0 > 0 such that for all λ ∈ (0, λ0), the system (1.1) possesses at least two
different nontrivial solutions whenever ‖g‖2 ≤ m0, one is negative energy solution, and the other is
positive energy solution.

Obviously, the condition (H
′
4) implies the condition (H4), so we have the following corol-

lary.

Corollary 1.4. If we replace (H4) with (H
′
4) in Theorem 1.2, then the conclusion of Theorem 1.2

remains valid.

Remark 1.5. Since the problem (1.1) is defined in the whole space R3, the main difficulty
of this problem is the lack of compactness for Sobolev embedding theorem. To overcome
this difficulty, the condition (V), which was firstly introduced by Bartsch et al. [4], is always
assumed to preserve the compactness of the embedding of the working space. Furthermore,
condition (V) is weaker than condition (V0), and there are functions V(x) satisfying (V) but
not satisfying (V0), see for example Remark 2 in [33].

Remark 1.6.

(1) Theorem 1.2 sharply improves Theorem 1.1. If fact, from Remark 3. in [33], we know that
the condition (H1) is much weaker than the combination of ( f1) and ( f2), and conditions
(H3)–(H4) are much weaker than ( f3)–( f4).

(2) The condition (H2) which gives the behaviour of f (x, u)/u for u near to the origin, is
very essential for obtain the positive energy solution in Theorem 1.2. Moreover, it seems
to be nearly optimal for obtain a such existence result.

(3) As a function f satisfying the assumptions (H1)–(H4), one can take

f (x, u) =

{
u3(4 ln |u|+ 1), |u| ≥ 1,

−(2ν− 1)u2 + 2νu, |u| ≤ 1,

where 0 < ν < µ∗

2 (µ∗ is given by (H2)). A straightforward computation deduces that

F(x, u) =

{
u4 ln |u|+ ν+1

3 , |u| ≥ 1,

− 2ν−1
3 u3 + νu2, |u| ≤ 1,

and
f (x, u)u− 4F(x, u) = u4 − 4

3
(ν + 1), ∀x ∈ R3, |u| ≥ 1.

Hence, it is easy to check that f satisfies the assumptions (H1)–(H4). However, it does
not satisfy the assumptions of Theorem 1.1. In fact, we have limt→0

f (x,t)
t = 2ν > 0

uniformly for x ∈ R3, which implies that f does not satisfy the condition ( f2). Moreover,
for any µ > 4, we have

f (x, u)u− µF(x, u) = −(µ− 4)u4 ln |u|+ u4 − µ

3
(ν + 1)→ −∞, as |u| → ∞,

which shows that the condition ( f3) is not satisfying for our choice.
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Remark 1.7. The assumptions of Theorems 1.2 and 1.3 can be used to deal with the existence
of nontrivial solutions for the following nonhomogeneous Kirchhoff-type equations{

−
(
a + b

∫
R3 |∇u|2dx

)
∆u + V(x)u = f (x, u) + g(x), in R3,

u(x)→ 0 as |x| → ∞,

where a > 0, b ≥ 0 are constants. So, the conclusions of Theorems 1.2 and 1.3 still hold for the
above problem.

The paper is organized as follows. In Section 2, we present some preliminary results.
Section 3 is devoted to the proof of Theorems 1.2 and 1.3.

2 Preliminaries

In the following, we will introduce the variational setting for Problem (1.1). In the sequel, we
denote by ‖ · ‖p the usual norm of the space Lp (R3), ci, Ci or C stand for different positive
constants.

As usual, for 1 ≤ p < +∞, we let

‖u‖p :=
(∫

R3
|u|pdx

) 1
p

, u ∈ Lp(R3),

and
‖u‖∞ := ess sup

x∈R3
|u(x)|, u ∈ L∞(R3).

Let
H1(R3) =

{
u ∈ L2(R3) : ∇u ∈ L2(R3)

}
,

with the inner product and norm

〈u, v〉H1 =
∫

R3
(∇u∇v + uv) dx, ‖u‖H1 = 〈u, u〉

1
2
H1 .

Define our working space

E =

{
u ∈ H1(R3) :

∫
R3

V(x)|u|2dx < +∞
}

.

Then E is a Hilbert space equipped with the inner product and norm

〈u, v〉 =
∫

R3
(∇u∇v + V(x)uv) dx, ‖u‖ = 〈u, u〉 1

2 .

Let D1,2(R3) be the completion of C∞
0 (R3) with respect to the norm

‖u‖2
D1,2 =

∫
R3
|∇u|2dx.

Then, the embedding D1,2(R3) ↪→ L6(R3) is continuous (see for instance [29]). Since the
embedding H1(R3) ↪→ Ls(R3) (2 ≤ s ≤ 6) is continuous, then the embedding E ↪→ Ls (R3)
(2 ≤ s ≤ 6) is continuous under the condition (V), that is, there exist ηs > 0 such that

‖u‖s ≤ ηs‖u‖, ∀u ∈ E, s ∈ [2, 6]. (2.1)

Moreover, we have the following compactness results from [4, Lemma 3.1.].
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Lemma 2.1 ([4]). Under the assumption (V), the embedding E ↪→ Ls (RN) is compact for s ∈ [2, 6).

Recall that µ ∈ R is called an eigenvalue of the operator −∆ + V(x) provided there exists
a nontrivial weak solution u0 of the equation:

−∆u + V(x)u = µu, x ∈ R3,

i.e., for any ϕ ∈ E, ∫
R3

(∇u0∇ϕ + V(x)u0ϕ) dx = µ
∫

R3
u0ϕdx.

Lemma 2.2. Assume that (V) holds. Then µ∗ is an eigenvalue of the operator −∆ + V(x) and there
exists a corresponding eigenfunction ϕ1 with ϕ1 > 0 for all x ∈ R3.

Proof. The proof of this lemma is almost the same to the one of Lemma 2.3 in [13]. So we omit
it here.

For every u ∈ H1(R3), by the Lax–Milgram theorem, we know that there exists a unique
φu ∈ D1,2(R3) such that

− ∆φu = u2, in R3. (2.2)

Furthermore, φu has the following integral expression

φu(x) =
1

4π

∫
R3

u2(y)
|x− y|dy ≥ 0. (2.3)

From (2.1), for any u ∈ E, using the Hölder inequality we obtain

‖φu‖2
D1,2 =

∫
R3

φuu2dx ≤ ‖φu‖6‖u‖2
12/5 ≤ C‖φu‖D1,2‖u‖2

12/5. (2.4)

Therefore
‖φu‖D1,2 ≤ C‖u‖2

12/5. (2.5)

By (2.4), (2.5) and the Sobolev inequality, we obtain

1
4π

∫ ∫
R3×R3

u2(x)u2(y)
|x− y| dydx =

∫
R3

φuu2dx ≤ C1‖u‖4. (2.6)

Moreover, φu has the following properties (for a proof, see [6, 21]).

Lemma 2.3. For u ∈ E we have

(i) φtu = t2φu, for all t ≥ 0;

(ii) If un ⇀ u in E, then φun ⇀ φu in D1,2(R3) and

lim
n→∞

∫
R3

φun u2
ndx =

∫
R3

φuu2dx.

Now, we define the energy functional J : E→ R associated with problem (1.1) by

J(u) =
1
2

∫
R3

(
|∇u|2 + V(x)|u|2

)
dx +

1
4

∫
R3

φuu2dx−
∫

R3
F(x, u)dx−

∫
R3

g(x)udx. (2.7)
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Therefore, combining (2.5), (2.6), (H1)–(H2) and Lemma 2.1, J is well defined and J ∈ C1(E, R)

with
〈J′(u), v〉 =

∫
R3

(∇u∇v + V(x)uv) dx +
∫

R3
φuuvdx

−
∫

R3
f (x, u)vdx−

∫
R3

g(x)vdx, ∀ v ∈ E.
(2.8)

Moreover, if u ∈ E is a critical point of J, then the pair (u, φu) is a solution of system (1.1).
Recall that a sequence {un} ⊂ E is said to be a Palais–Smale sequence at the level c ∈ R

((PS)c-sequence for short) if J(un) → c and J′(un) → 0, J is said to satisfy the Palais–Smale
condition at the level c ((PS)c-condition for short) if any (PS)c-sequence has a convergent
subsequence.

In order to prove the existence of positive energy solution for problem (1.1), we shall use
the following Mountain Pass Theorem (cf. [20, 29]).

Proposition 2.4 ([20,29]). Let E be a Banach space, J ∈ C1(E, R) satisfies the (PS)-condition for any
c > 0, J(0) = 0, and

(i) there exist ρ, α > 0 such that J|∂Bρ
≥ α;

(ii) there exists e ∈ E \ Bρ such that J(e) ≤ 0.

Then J has at least a critical value c ≥ α.

On the other hand, the following Ekeland’s variational principle is the main tool to obtain
the negative energy solution for problem (1.1)

Proposition 2.5 ([19, Theorem 4.1]). Let M be a complete metric space with metric d and let J :
M 7→ (−∞,+∞] be a lower semicontinuous function, bounded from below and not identical to +∞.
Let ε > 0 be given and u ∈ M be such that

J(u) ≤ inf
M

J + ε.

Then, there exists v ∈ M such that

J(v) ≤ J(u), d(u, v) ≤ 1,

and for each w ∈ M, one has
J(v) ≤ J(w) + εd(v, w).

We also need the following auxiliary result, see [27].

Lemma 2.6. Assume that p1, p2 > 1, r, q ≥ 1 and Ω ⊆ RN . Let f (x, t) be a Carathéodory function
on Ω×R satisfying

| f (x, t)| ≤ a1|t|(p1−1)/r + a2|t|(p2−1)/r, ∀(x, t) ∈ Ω×R,

where, a1, a2 ≥ 0. If un → u0 in Lp1(Ω) ∩ Lp2(Ω), and un → u0 a.e. x ∈ Ω, then for any
v ∈ Lp1q(Ω) ∩ Lp2q(Ω),

lim
n→∞

∫
Ω
| f (x, un)− f (x, u0)|r|v|qdx → 0.
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3 Proof of main results

In this section we shall prove Theorems 1.2 and 1.3. We first prove some lemmas, which are
crucial to prove our main results.

Lemma 3.1. Assume that the assumptions (V), (H1), (H2) and (H5) hold. Then, there exist ρ, α and
m0 > 0 such that J(u) ≥ α whenever ‖u‖ = ρ and ‖g‖p′ < m0.

Proof. By (H1) and (H2), there exist ε0 > 0 and c4 > 0 such that

F(x, u) ≤ µ∗ − ε0

2
|u|2 + c4|u|p, ∀(x, u) ∈ R3 ×R. (3.1)

Combining (2.1), (2.3), (2.7) and (3.1), we have

J(u) =
1
2
‖u‖2 +

1
4

∫
R3

φuu2dx−
∫

R3
F(x, u)dx−

∫
R3

g(x)udx

≥ 1
2
‖u‖2 −

∫
R3

F(x, u)dx−
∫

R3
g(x)udx

≥ 1
2
‖u‖2 − µ∗ − ε0

2

∫
R3
|u|2 − c4

∫
R3
|u|pdx− ‖g‖p′‖u‖p

≥ ε0

2µ∗
‖u‖2 − c4η

p
p‖u‖p − ηp‖g‖p′‖u‖.

(3.2)

Taking

ρ =

[
ε0

4µ∗(c4η
p
p + ηp)

] 1
p−2

,

m0 = ρp−1 in (3.2), we then get

J(u) ≥ ε0

4µ∗
ρ2 = α > 0, ∀ ‖u‖ = ρ.

The proof is completed.

Lemma 3.2. Assume that the assumptions (V), (H1), (H3) and (H5) hold. Then there exists e ∈ E
with ‖e‖ > ρ such that J(e) ≤ 0, where ρ is given in Lemma 3.1.

Proof. By (H1) and (H3) we have, for any M > 0, there exists CM > 0 such that

F(x, u) ≥ M|u|4 − CM|u|2, ∀(x, u) ∈ R3 ×R. (3.3)

Consequently, it follows from (2.6), (2.7) and (3.3) that

J(tϕ1) =
t2

2
‖ϕ1‖2 +

1
4

∫
R3

φtϕ1(tϕ1)
2dx−

∫
R3

F(x, tϕ1)dx− t
∫

R3
g(x)ϕ1(x)dx

≤ t2

2
‖ϕ1‖2 +

t4

4
C1‖ϕ1‖4 − t4M

∫
R3
|ϕ1|4dx

+ t2CM

∫
R3
|ϕ1|2dx− t

∫
R3

g(x)ϕ1(x)dx

≤ t2

2
(1 + 2CM)‖ϕ1‖2 − t4

4

(
4M‖ϕ1‖4

4 − C1‖ϕ1‖4
)
− t

∫
R3

g(x)ϕ1(x)dx.

(3.4)

Therefore, choosing M > 0 such that 4M‖ϕ1‖4
4 − C1‖ϕ1‖4 > 0, then, it follows from (3.4) that

J(tϕ1)→ −∞ as t→ +∞. Hence, there exists t1 > 0 so large that ‖t1ϕ1‖ > ρ and J(t1ϕ1) < 0.
Thus, the lemma is proved by taking e = t1ϕ1.
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Lemma 3.3. Assume that (V), (H1)–(H5) hold. Then J satisfies the (PS)-condition on E.

Proof. Let {un} ⊂ E be such that

J (un)→ c and J′(un)→ 0. (3.5)

We first show that {un} is bounded in E. Otherwise, set vn = un
‖un‖ , then ‖vn‖ = 1 and

‖vn‖p ≤ ηp‖vn‖ = ηp (see 2.1). It follows from (H1) that

|F(x, u)| = |F(x, u)− F(x, 0)|

=

∣∣∣∣∫ 1

0
f (x, tu)udt

∣∣∣∣
≤
∫ 1

0

(
c1|u|2t + c2|u|ptp−1

)
dt

=
c1

2
|u|2 + c2

p
|u|p, ∀(x, u) ∈ R3 ×R.

(3.6)

Let F (x, un) = f (x, un)un − 4F(x, un). Therefore, for x ∈ R3 and |u(x)| < L, by (3.6), we have

| f (x, u)u− 4F(x, u)| ≤ | f (x, u)u|+ 4|F(x, u)|

≤
(
c1|u|2 + c2|u|p

)
+

(
2c1|u|2 +

4c2

p
|u|p

)
≤
(

3c1 +
4 + p

p
c2Lp−2

)
|u|2

= c7|u|2,

where L > 0 is given by (H4). Combining the above inequality with (H4), we conclude that
there exists c8 > 0 such that

f (x, u)u− 4F(x, u) ≥ −c8|u|2, ∀(x, u) ∈ R3 ×R. (3.7)

By (H5), (2.7), (2.8), (3.5), (3.7) and the Hölder inequality, without loss of generality, we may
assume that for all n ∈N, we have

1 + c + ‖un‖ ≥ J(un)−
1
4
〈J′(un), un〉

=
1
4
‖un‖2 +

1
4

∫
R3
F (x, un)dx− 3

4

∫
R3

g(x)undx

≥ 1
4
‖un‖2 − c8

4

∫
R3
|un|2dx− 3

4
‖g‖p′‖un‖p

≥ 1
4
‖un‖2 − c8

4
‖un‖2

2 −
3
4

ηp‖g‖p′‖un‖,

which implies that
‖un‖2

2
‖un‖2 ≥

1
c8
− 1

c8

[
4(c + 1)
‖un‖2 +

3ηp‖g‖p′

‖un‖

]
.

Therefore, for sufficiently large n such that 4(c+1)
‖un‖2 +

3ηp‖g‖p′

‖un‖ ≤
1
2 , we then get

‖un‖2
2

‖un‖2 ≥
1

2c8
> 0.
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Consequently, we conclude that
‖vn‖2 > 0. (3.8)

Let Ωn = {x ∈ R3 : |un(x)| ≤ L} and An = {x ∈ R3 : vn(x) 6= 0}, then meas(An) > 0.
Moreover, since ‖un‖ → ∞ as n→ ∞, we obtain

|un(x)| → ∞ as n→ ∞ for x ∈ An.

Hence, An ⊆ R3 \Ωn for n ∈N large enough. It follows from (H5) and the Hölder inequality
that for any β ∈ (1, 6), one has∣∣∣∣∫

R3

g(x)un

‖un‖β
dx
∣∣∣∣ ≤ ‖g‖p′‖un‖p

‖un‖β
≤ ηp

‖g‖p′

‖un‖β−1 → 0, (3.9)

since ‖un‖ → ∞ as n → ∞. By (H1), (H3), (2.1), (2.6), (3.5), (3.6), (3.8), (3.9) and Fatou’s
lemma, we have

0 = lim
n→∞

J(un)

‖un‖4

= lim
n→∞

[
1

2‖un‖2 +
1

4‖un‖4

∫
R3

φun u2
ndx−

∫
R3

F(x, un)

‖un‖4 dx−
∫

R3

g(x)un

‖un‖4 dx
]

≤ C1 − lim
n→∞

[∫
Ωn

F(x, un)

u4
n

v4
ndx +

∫
R3\Ωn

F(x, un)

u4
n

v4
ndx
]

≤ C1 − lim
n→∞

[
1
‖un‖2

(
c1

2
+

c2

p
Lp−2

)
η2

2 +
∫

R3\Ωn

F(x, un)

u4
n

v4
ndx
]

≤ C1 − lim inf
n→∞

∫
R3\Ωn

F(x, un)

u4
n

v4
ndx

≤ C1 −
∫

An

lim inf
n→∞

F(x, un)

u4
n

v4
ndx

= C1 −
∫

R3
lim inf

n→∞

F(x, un)

u4
n

[χAn(x)]v4
ndx

→ −∞, as n→ ∞.

(3.10)

This is an obvious contradiction. Hence {un} ⊂ E is bounded. So, up to a subsequence we
may assume that un ⇀ u0 weakly in E. By Lemma 2.1, un → u0 strongly in Ls (R3) for
2 ≤ s < 6 and un(x)→ u0(x) a.e. on R3. It follows from (2.7) and (2.8) that

‖un − u0‖2 = 〈J′(un)− J′(u0), un − u0〉+
∫

R3
[ f (x, un)− f (x, u0)](un − u0)dx

−
∫

R3
(φun un − φu0 u0)(un − u0)dx.

(3.11)

Obviously, 〈J′(un)− J′(u0), un − u0〉 → 0 as n → ∞. Let us take r = q = 1 in Lemma 2.6 and
combine with un → u0 strongly in Ls (R3) for 2 ≤ s < 6, to get∫

R3
[ f (x, un)− f (x, u0)](un − u0)dx → 0. (3.12)

Furthermore, from Lemma 2.3 (ii), we have that
∫

R3(φun un − φu0 u0)(un − u0)dx → 0. Conse-
quently, un → u0 in E. This completes the proof.
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Proof of Theorem 1.2. The proof is divided in two steps, the first one for the negative energy
solution, the second one for the positive energy solution.

Step 1. By using Ekeland’s variational principle, we first show that there exists a function
u0 ∈ E such that J′(u0) = 0 and J(u0) < 0. By (3.3) fixing M > 0 a constant CM > 0 exists
such that

F(x, u) ≥ M|u|4 − CM|u|2, ∀(x, u) ∈ R3 ×R.

Since g ∈ Lp′(R3) and g 6≡ 0, we may choose a function v ∈ E such that∫
R3

g(x)v(x)dx > 0.

Therefore,

J(tv) =
t2

2
‖v‖2 +

t4

4

∫
R3

φvv2dx−
∫

R3
F(x, tv)dx− t

∫
R3

g(x)v(x)dx

≤ t2

2
‖v‖2 + C1

t4

4
‖v‖4 −Mt4‖v‖4

4 + CMt2‖v‖2
2 − t

∫
R3

g(x)v(x)dx < 0,

for t > 0 small enough, which implies that

inf{J(u) : u ∈ Bρ} < 0,

where ρ > 0 is given by Lemma 3.1, and Bρ = {u ∈ E : ‖u‖ ≤ ρ}. On the other hand, by (3.2),
one has

J(u) ≥ ε0

2µ∗
‖u‖2 − c4η

p
p‖u‖p − ηp‖g‖p′‖u‖

≥− c4η
p
p‖u‖p − ηp‖g‖p′‖u‖,

which implies that J is bounded below in Bρ. Thus, we obtain

−∞ < c0 = inf{J(u) : u ∈ Bρ} < 0.

By Ekeland’s variational principle, there exists a sequence {un} ⊂ Bρ such that

c0 ≤ J(un) ≤ c0 +
1
n

,

and
J(un) ≤ J(w) +

1
n
‖un − w‖, ∀w ∈ Bρ.

Then, following the idea of [11] (see pp. 534–535), we can show that {un} is a bounded Palais-
Smale sequence of J. Therefore, by Lemma 3.3, {un} has a strongly convergent subsequence,
still denoted by {un} and un → u0 ∈ Bρ as n → ∞. Hence, we conclude that there exists
u0 ∈ E such that J(u0) = infu∈Bρ

J(u) = c0 < 0 and J′(u0) = 0, this completes the Step 1.

Step 2. Now, we show that there exists a function u0 ∈ E such that J(u0) = c0 > 0 and
J′(u0) = 0 by means of the Mountain Pass Theorem. Obviously, J ∈ C1(E, R) and J(0) = 0.
By Lemmas 3.1 and 3.2, the functional J satisfies the geometric property of the mountain
pass theorem whenever ‖g‖p′ ≤ m0. Lemma 3.3 implies that J satisfies the (PS)-condition.
Therefore, applying Proposition 2.4, we deduce that there exists u0 ∈ E such that J(u0) = c0 ≥
α > 0 and J′(u0) = 0, we complete the Step 2.

Therefore, by the above two steps the proof of Theorem 1.2 is completed.
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Next, we will give the proof of Theorem 1.3. Under the assumption (H6), we can easily
find that the energy functional associated to problem (1.1)

J(u) =
1
2
‖u‖2 +

1
4

∫
R3

φuu2dx− λ

σ

∫
R3

h1(x)|u|σdx− 1
p

∫
R3

h2(x)|u|pdx−
∫

R3
g(x)udx, (3.13)

is of class C1 on E and for any v ∈ E, we have

〈J′(u), v〉 =
∫

R3
(∇u∇v + V(x)uv) dx +

∫
R3

φuuvdx− λ
∫

R3
h1(x)|u|σ−2uvdx

−
∫

R3
h2(x)|u|p−2uvdx−

∫
R3

g(x)vdx.
(3.14)

Lemma 3.4. Suppose that the assumptions (V) and (H6) are satisfied. Then, there exist ρ, α and
m0 > 0 such that J(u) ≥ α whenever ‖u‖ = ρ and ‖g‖2 < m0.

Proof. By the Hölder inequality, we have∫
R3
|h1(x)||u|σdx ≤ ‖h1‖σ0‖u‖σ

2 ≤ V−
σ
2

0 ‖h1‖σ0‖u‖σ,

where σ0 = 2/(2− σ). On the other hand, by (2.1), we have∫
R3
|h2(x)||u|pdx ≤ ‖h2‖∞‖u‖p

p ≤ η
p
p‖h2‖∞‖u‖p.

Similarly, we have by Young’s inequality,∫
R3
|g(x)||u|dx ≤ ‖g‖2‖u‖2 ≤ V−

1
2

0 ‖g‖2‖u‖ ≤
1
4
‖u‖2 +

1
V0
‖g‖2

2.

Therefore, it follows from (2.3) and (3.13) that

J(u) ≥ 1
4
‖u‖2 − λβ1‖u‖σ − β2‖u‖p −V−1

0 ‖g‖
2
2, (3.15)

where, β1 = 1
σ V−

σ
2

0 ‖h1‖σ0 , β2 = 1
p η

p
p‖h2‖∞. Let

ξ(t) = λβ1tσ−2 + β2tp−2, t > 0.

We claim ξ(t0) <
1
4 for some t0 > 0. Note that ξ(t) → +∞ as t → 0+ or t → +∞. Then, ξ(t)

has a minimum at t0 > 0. In order to find t0, note

ξ ′(t0) = λβ1(σ− 2)tσ−3
0 + β2(p− 2)tp−3

0 = 0 and t0 = λ1/(p−σ)

(
β1(2− σ)

β2(p− 2)

)1/(p−σ)

> 0.

Thus, ξ(t0) = λ(p−2)/(p−σ)
(

β1β
(σ−2)/(p−σ)
0 + β2β

(p−2)/(p−σ)
0

)
with β0 = β1(2− σ)/β2(p − 2).

This shows that there exists λ0 > 0 such that for all λ ∈ (0, λ0), ξ(t0) <
1
4 . Hence, (3.15) implies

that there exists m0, α > 0 such that J(u) ≥ α whenever ‖u‖ = t0 = ρ and ‖g‖2 < m0.

Lemma 3.5. Suppose that the assumptions (V) and (H6) are satisfied. Then there exists e ∈ E with
‖e‖ > ρ such that J(e) ≤ 0, where ρ is given in Lemma 3.4.
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Proof. Choose ϕ2 ∈ C∞
0 (Ω), ϕ2 ≥ 0, ϕ2 6≡ 0. By (H6), we know that h2 > 0 in Ω, then

J(tϕ2) =
t2

2
‖ϕ2‖2 +

t4

4

∫
R3

φϕ2 ϕ2
2dx

− λtσ

σ

∫
Ω

h1(x)|ϕ2|σdx− tp

p

∫
Ω

h2(x)|ϕ2|pdx− t
∫

Ω
g(x)ϕ2dx

→ −∞

as t → +∞ with 1 < σ < 2 and p > 4. Thus, there exists t2 > 0 large enough, such that
J(t2 ϕ2) < 0. Thus, we complete the proof by taking e = t2ϕ2.

Lemma 3.6. Assume that (V) and (H6) hold. Then J satisfies the (PS)-condition on E.

Proof. Let {un} ⊂ E satisfying (3.5). We claim that {un} is bounded in E. For n large enough,
it follows from (2.3), (3.5), (3.13) and (3.14) that

1 + c + ‖un‖ ≥ J(un)−
1
p
〈J′(un), un〉

=

(
1
2
− 1

p

)
‖un‖2 +

(
1
4
− 1

p

) ∫
R3

φun u2
ndx− λ

(
1
σ
− 1

p

) ∫
R3

h1(x)|un|σdx

−
(

1− 1
p

) ∫
R3

g(x)undx

≥
(

1
2
− 1

p

)
‖un‖2 − λ

(
1
σ
− 1

p

)
V−

σ
2

0 ‖h1‖σ0‖un‖σ −
(

1− 1
p

)
V−

1
2

0 ‖g‖2‖un‖.

Because 1 < σ < 2 and p > 4, we deduce that {un} is bounded in E. Therefore, there exists
u ∈ E such that, up to a subsequence, we have un ⇀ u weakly in E, un → u strongly in Ls (R3)
for 2 ≤ s < 6 and un(x) → u(x) a.e. on R3. Similar to the proof of Lemma 3.3 (see (3.11)), in
order to prove that un → u strongly in E, it sufficient to show that∫

R3
f (x, un)(un − u)dx =

∫
R3
(λh1(x)|un|σ−2un + h2(x)|un|p−2un)(un − u)dx → 0.

Since un → u strongly in Ls (R3) for 2 ≤ s < 6, the Hölder inequality implies that∫
R3
|h1||un|σ−1|un − u|dx ≤ ‖h1‖σ0‖un‖σ−1

2 ‖un − u‖2 → 0,

and ∫
R3
|h2||un|p−1|un − u|dx ≤ ‖h2‖∞‖un‖p−1

p ‖un − u‖p → 0.

Therefore, J satisfies the (PS)-condition.

Proof of Theorem 1.3. Similar to the proof of Theorem 1.2, we also divide the proof into two
steps.

Step 1. As the proof of Step 1 in Theorem 1.2, we first prove the existence of negative energy
solution via Ekeland’s variational principle (cf. Proposition 2.5). Since g ∈ L2(R3) and g 6≡ 0,
we can choose a function v ∈ E such that∫

R3
g(x)v(x)dx > 0.
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It follows from (3.13) that

J(tv) =
t2

2
‖v‖2 +

t4

4

∫
R3

φvv2dx− λtσ

σ

∫
R3

h1(x)|v|σdx

− tp

p

∫
R3

h2(x)|v|pdx− t
∫

R3
g(x)vdx

≤ t2

2
‖v‖2 + C1

t4

4
‖v‖4 − λtσ

σ

∫
R3

h1(x)|v|σdx

− tp

p

∫
R3

h2(x)|v|pdx− t
∫

R3
g(x)vdx < 0,

for t > 0 small enough, since 1 < σ < 2 and p > 4. Hence we deduce that inf{J(u) : u ∈
Bρ} < 0, where ρ > 0 is given by Lemma 3.4. In addition, by (3.15) we have

J(u) ≥ 1
4
‖u‖2 − λβ1‖u‖σ − β2‖u‖p −V−1

0 ‖g‖
2
2

≥ −λβ1‖u‖σ − β2‖u‖p −V−1
0 ‖g‖

2
2,

which implies that J is bounded below in Bρ. Furthermore, we have

−∞ < c0 = inf{J(u) : u ∈ Bρ} < 0.

Therefore, the Ekleland’s variational principle implies that there exists a sequence {un} ⊂ Bρ

such that
c0 ≤ J(un) ≤ c0 +

1
n

,

and
J(un) ≤ J(w) +

1
n
‖un − w‖, ∀w ∈ Bρ.

Then, arguing as the proof Step 1. in Theorem 1.2, we conclude that there exists u0 ∈ E such
that J(u0) = infu∈Bρ

J(u) = c0 < 0 and J′(u0) = 0.

Step 2. Now, we apply Proposition 2.4 to obtain the positive energy solution. Evidently,
J ∈ C1(E, R) and J(0) = 0. By Lemma 3.4 J satisfies (i) whenever ‖g‖2 ≤ m0. Moreover,
Lemma 3.5 implies that J satisfies (ii), and J satisfies the (PS)−condition by Lemma 3.6.
Hence, Proposition 2.4 implies that there exists a function u0 ∈ E such that J(u0) = c0 ≥ α > 0
and J′(u0) = 0.

The proof is completed.
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