Qualitative analysis on a cubic predator-prey system with diffusion

Qunyi Bie^{1}
Department of Mathematics, College of Science, China Three Gorges University, Yichang City, 443002, Hubei Province, P. R. of China

Abstract

In this paper, we study a cubic predator-prey model with diffusion. We first establish the global stability of the trivial and nontrivial constant steady states for the reaction diffusion system, and then prove the existence and non-existence results concerning non-constant positive stationary solutions by using topological argument and the energy method, respectively.

Key words: cubic predator-prey model, diffusion, steady-state, existence and nonexistence.

AMS subject classifications (2000): 35J55, 37B25, 92D25.

1 Introduction

Huang etc. in [6] proposed a cubic differential system, which can be considered a generalization of the predator-prey models and the mathematical form of the system satisfies the following:

$$
\left\{\begin{align*}
\frac{\mathrm{d} X}{\mathrm{~d} t} & =X\left(b_{1}+b_{2} X-b_{3} X^{2}\right)-b_{4} X Y \tag{1.1}\\
\frac{\mathrm{~d} Y}{\mathrm{~d} t} & =-c Y+(\alpha X-\beta Y) Y
\end{align*}\right.
$$

where X and Y represent the densities of prey and predator species at time t respectively. $b_{3}, b_{4}, c, \alpha, \beta$ are positive constants, and b_{1} is non-negative, and the sign of b_{2} is undetermined. When $b_{2}<0$ and $b_{3}=0$, the system (1.1) becomes the standard predator-prey model. The more detailed biological implication for the model, one may further refer to [6] and the references therein.

In [6], the authors introduced the following scaling transformations,

$$
X=\frac{c u}{\alpha}, \quad Y=\frac{c v}{\beta}, \quad t=\frac{\tau}{c}
$$

and rewrite t as τ, then system (1.1) turns into

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} u}{\mathrm{~d} t}=u\left(a_{1}+a_{2} u-a_{3} u^{2}\right)-k u v \tag{1.2}\\
\frac{\mathrm{~d} v}{\mathrm{~d} t}=v(-1+u-v)
\end{array}\right.
$$

where $a_{1}=b_{1} / c, a_{2}=b_{2} / \alpha, a_{3}=b_{3} c / \alpha^{2}$ and $k=b_{4} / \beta$. a_{1} is non-negative, and the sign of a_{2} is undetermined, a_{3} and k are positive constants. For system (1.2), in [6], the authors studied the properties of the equilibrium points, the existence of a uniqueness limit cycle, and the conditions for three limit cycles.

[^0]In the case that the densities of the predator and prey are spatially inhomogeneous in a bounded domain with smooth boundary $\Omega \subset \mathbf{R}^{n}$, instead of the ordinary differential system (1.2), we are led to consider the following reaction-diffusion system:

$$
\begin{cases}\frac{\partial u}{\partial t}-d_{1} \Delta u=u\left(a_{1}+a_{2} u-a_{3} u^{2}-k v\right), & \text { in } \Omega \times(0, \infty) \tag{1.3}\\ \frac{\partial v}{\partial t}-d_{2} \Delta v=v(-1+u-v), & \text { in } \Omega \times(0, \infty) \\ \partial_{\nu} u=\partial_{\nu} v=0, & \text { on } \partial \Omega \times(0, \infty) \\ u(x, 0)=u_{0}(x) \geq 0, \not \equiv 0, \quad v(x, 0)=v_{0}(x) \geq 0, \not \equiv 0, & \text { on } \bar{\Omega},\end{cases}
$$

where $d_{i}>0(i=1,2)$ is the diffusion coefficient corresponding to u and v. Here, ν is the outward unit normal vector on $\partial \Omega$ and $\partial_{\nu}=\partial / \partial \nu$. The admissible initial data $u_{0}(x)$ and $v_{0}(x)$ are continuous functions on $\bar{\Omega}$. The homogeneous Neumann boundary condition means that (1.3) is self-contained and has no population flux across the boundary $\partial \Omega$. The study of predator-prey models has a long history, we refer to [2,10] for background on ODE models and to [1, 3, 4, 7, 12-15, 17] for diffusive models.

First of all, we note that (1.3) has two trivial non-negative constant steady states, namely, $E_{0}=(0,0), E_{1}=\left(u^{* *}, 0\right)$, where $u^{* *}=\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right)$. Simple analysis shows that model (1.3) has the only positive constant steady-state solution if and only if $a_{1}+a_{2}>a_{3}$. We denote this steady state by $\left(u^{*}, v^{*}\right)$, where

$$
u^{*}=\frac{\left(a_{2}-k\right)+\sqrt{\left(a_{2}-k\right)^{2}+4\left(a_{1}+k\right) a_{3}}}{2 a_{3}} \quad \text { and } \quad v^{*}=u^{*}-1
$$

Another aspect of our goal is to investigate the corresponding steady-state problem of the reaction-diffusion system (1.3), which may display the dynamical behavior of solutions to (1.3) as time goes to infinity. This steady-state problem satisfies

$$
\begin{cases}-d_{1} \Delta u=u\left(a_{1}+a_{2} u-a_{3} u^{2}-k v\right), & \text { in } \Omega \tag{1.4}\\ -d_{2} \Delta v=v(-1+u-v), & \text { in } \Omega \\ \partial_{\nu} u=\partial_{\nu} v=0, & \text { on } \partial \Omega\end{cases}
$$

It is clear that only non-negative solutions of (1.4) are of realistic interest.
The remaining content in our paper is organized as follows. In section 2 , we mainly analyze the global stability of constant steady states to (1.3). Then, in section 3 , we give a priori estimates of upper and lower bounds for positive solutions of (1.4), and finally in section 4 we derive some non-existence and existence results of positive non-constant solutions of (1.4).

2 Some properties of solutions to (1.3) and stability of ($\left.u^{*}, v^{*}\right)$

In this section, we are mainly concerned with some properties of solutions to (1.3) and the global stability of $\left(u^{*}, v^{*}\right)$ for system (1.3). Throughout this section, let $(u(x, t), v(x, t))$ be the unique solution of (1.3). It is easily seen that $(u(x, t), v(x, t))$ exists globally and is positive, namely, $u(x, t), v(x, t)>0$ for all $x \in \bar{\Omega}$ and $t>0$.

2.1 Some properties of the solutions to (1.3)

The following assertions characterize the global stability of each of the trivial non-negative constant steady states, and the boundedness of the positive solutions to (1.3).

Theorem 2.1 Let $(u(x, t), v(x, t))$ be the solution to (1.3).
(i) Assume that $a_{1}=0, a_{2} \leq 0$, then

$$
\begin{equation*}
(u(x, t), v(x, t)) \rightarrow(0,0), \quad \text { uniformly on } \bar{\Omega} \text { as } t \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

(ii) Assume that $a_{1}=0$ and $0<a_{2} \leq a_{3}$, or $a_{1}>0$ and $a_{1}+a_{2} \leq a_{3}$, then

$$
\begin{equation*}
(u(x, t), v(x, t)) \rightarrow\left(u^{* *}, 0\right), \quad \text { uniformly on } \bar{\Omega} \text { as } t \rightarrow \infty . \tag{2.2}
\end{equation*}
$$

(iii) Assume that $a_{1} \geq 0, a_{1}+a_{2}>a_{3}$, then, for $0<\varepsilon \ll 1$, there exists $t_{0} \gg 1$ such that

$$
\begin{equation*}
u(x, t) \leq \frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}+\varepsilon, \quad v(x, t) \leq \frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-1+\varepsilon, \tag{2.3}
\end{equation*}
$$

for all $x \in \bar{\Omega}$ and $t \geq t_{0}$.
Before proving the above conclusions, we need to introduce the following lemma, which can be proved using the comparison principle (see also [17]).

Lemma 2.1 Assume that $f(s)$ is a positive C^{1} function for $s \geq 0$, constants $d>0, \beta \geq 0$. Let $T \in[0, \infty)$ and $\omega \in C^{2,1}(\Omega \times(0, \infty)) \cap C^{1,0}(\bar{\Omega} \times[0, \infty))$ be a positive function.
(i) If ω satisfies

$$
\begin{cases}\frac{\partial \omega}{\partial t}-d \Delta \omega \leq(\geq) \omega^{1+\beta} f(\omega)(\alpha-\omega), & (x, t) \in \Omega \times(T, \infty) \\ \partial_{\nu} \omega=0, & (x, t) \in \partial \Omega \times[T, \infty)\end{cases}
$$

and the constant $\alpha>0$. Then

$$
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} \omega(\cdot, t) \leq \alpha\left(\liminf _{t \rightarrow \infty} \min _{\bar{\Omega}} \omega(\cdot, t) \geq \alpha\right) .
$$

(ii) If ω satisfies

$$
\begin{cases}\frac{\partial \omega}{\partial t}-d \Delta \omega \leq \omega^{1+\beta} f(\omega)(\alpha-\omega) & (x, t) \in \Omega \times(T, \infty) \\ \partial_{\nu} \omega=0 & (x, t) \in \partial \Omega \times[T, \infty)\end{cases}
$$

and the constant $\alpha \leq 0$. Then

$$
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} \omega(\cdot, t) \leq 0 .
$$

In the following, we give the proof of Theorem 2.1.
Proof of Theorem 2.1. (i) From the first equation of (1.3) we see that

$$
\begin{equation*}
\frac{\partial u}{\partial t}-d_{1} \Delta u \leq u^{2}\left(a_{2}-a_{3} u\right) . \tag{2.4}
\end{equation*}
$$

Since $a_{2} \leq 0$, by Lemma 2.1, we have

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} u(\cdot, t) \leq 0 \tag{2.5}
\end{equation*}
$$

In view of u is positive, we obtain

$$
\lim _{t \rightarrow \infty} u(\cdot, t)=0
$$

uniformly on $\bar{\Omega}$. For any given $\varepsilon>0$ small enough, there is a $T_{1} \gg 1$, such that

$$
u(x, t) \leq \varepsilon, \quad \forall x \in \bar{\Omega}, t \geq T_{1}
$$

From the second equation of (1.3) we have, for $x \in \Omega$ and $t>T_{1}$,

$$
\frac{\partial v}{\partial t}-d_{2} \Delta v \leq v(-1+\varepsilon-v)
$$

Thanks to Lemma 2.1 and the arbitrariness of $\varepsilon>0$, it follows that

$$
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} v(\cdot, t) \leq 0
$$

Since v is also positive, we arrive at

$$
\lim _{t \rightarrow \infty} v(\cdot, t)=0
$$

uniformly on $\bar{\Omega}$.
Before proving (ii), we firstly prove (iii). From the first equation of (1.3) we see that

$$
\frac{\partial u}{\partial t}-d_{1} \Delta u \leq u\left(a_{1}+a_{2} u-a_{3} u^{2}\right)=a_{3} u\left(u+\frac{-a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}\right)\left(\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-u\right)
$$

By Lemma 2.1, one gets

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} u(\cdot, t) \leq \frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}} \tag{2.6}
\end{equation*}
$$

For any given $\varepsilon>0$, there exists $T_{2} \gg 1$, such that

$$
\begin{equation*}
u(x, t) \leq \frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}+\varepsilon, \quad \forall x \in \bar{\Omega}, t \geq T_{2} \tag{2.7}
\end{equation*}
$$

By the second equation of (1.3) we have, for $x \in \Omega$ and $t>T_{2}$,

$$
\begin{equation*}
\frac{\partial v}{\partial t}-d_{2} \Delta v \leq v\left(-1+\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}+\varepsilon-v\right) \tag{2.8}
\end{equation*}
$$

Since $a_{1}+a_{2}>a_{3}$, then $-1+\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right)>0$. Thanks to Lemma 2.1 again,

$$
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} v(\cdot, t) \leq \frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-1+\varepsilon
$$

which asserts our result (iii).
Now, we begin to verify (ii). In order to obtain the result, we need to consider two different cases.

Case 1. $a_{1}=0,0<a_{2} \leq a_{3}$. By (2.4) and Lemma 2.1 we have

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} u(\cdot, t) \leq \frac{a_{2}}{a_{3}} \tag{2.9}
\end{equation*}
$$

For any given $\varepsilon>0$, there exists $T_{3} \gg 1$, such that

$$
u(x, t) \leq \frac{a_{2}}{a_{3}}+\varepsilon, \quad \forall x \in \bar{\Omega}, t \geq T_{3}
$$

By the second equation of (1.3) we have, for $x \in \Omega$ and $t>T_{3}$,

$$
\frac{\partial v}{\partial t}-d_{2} \Delta v \leq v\left(-1+\frac{a_{2}}{a_{3}}+\varepsilon-v\right)
$$

Thanks to Lemma 2.1, we obtain

$$
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} v(\cdot, t) \leq-1+\frac{a_{2}}{a_{3}}+\varepsilon
$$

By the arbitrariness of $\varepsilon>0$, it follows that

$$
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} v(\cdot, t) \leq-1+\frac{a_{2}}{a_{3}} \leq 0
$$

Since v is positive, we have

$$
\lim _{t \rightarrow \infty} v(\cdot, t)=0
$$

uniformly on $\bar{\Omega}$.
Case 2. $a_{1}>0, a_{1}+a_{2} \leq a_{3}$. In this case, the inequalities (2.6)-(2.8) also hold. In view of $a_{1}+a_{2} \leq a_{3}$, then $-1+\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right) \leq 0$. By the arbitrariness of $\varepsilon>0$, it follows that

$$
\limsup _{t \rightarrow \infty} \max _{\bar{\Omega}} v(\cdot, t) \leq-1+\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}} \leq 0
$$

Consequently,

$$
\lim _{t \rightarrow \infty} v(\cdot, t)=0
$$

uniformly on $\bar{\Omega}$ as above. For any given $\varepsilon>0$ small enough, there is a $T_{4} \gg 1$, such that

$$
v(x, t) \leq \varepsilon, \quad \forall x \in \bar{\Omega}, t \geq T_{4}
$$

From the first equation of (1.3) we have, for $x \in \Omega$ and $t>T_{4}$,

$$
\begin{aligned}
\frac{\partial u}{\partial t}-d_{1} \Delta u & \geq u\left(a_{1}+a_{2} u-a_{3} u^{2}-k \varepsilon\right) \\
& =a_{3} u\left(u+\frac{-a_{2}+\sqrt{a_{2}^{2}+4\left(a_{1}-k \varepsilon\right) a_{3}}}{2 a_{3}}\right)\left(\frac{a_{2}+\sqrt{a_{2}^{2}+4\left(a_{1}-k \varepsilon\right) a_{3}}}{2 a_{3}}-u\right)
\end{aligned}
$$

Also by Lemma 2.1, we have

$$
\limsup _{t \rightarrow \infty} \min _{\bar{\Omega}} u(\cdot, t) \geq \frac{a_{2}+\sqrt{a_{2}^{2}+4\left(a_{1}-k \varepsilon\right) a_{3}}}{2 a_{3}}
$$

Hence, it follows that

$$
\limsup _{t \rightarrow \infty} \min _{\bar{\Omega}} u(\cdot, t) \geq \frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}
$$

since ε is arbitrary small. This combined with (2.6) yields

$$
\lim _{t \rightarrow \infty} u(\cdot, t)=\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}
$$

uniformly on $\bar{\Omega}$. Thus, the proof is complete.

2.2 Local stability of $\left(u^{*}, v^{*}\right)$ to system (1.3)

By Theorem 2.1, from now on, without special statement, we always assume that $a_{1}+a_{2}>a_{3}$, which guarantees the existence of $\left(u^{*}, v^{*}\right)$. In this subsection, we will analyze the local stability of $\left(u^{*}, v^{*}\right)$ to (1.3). To this end, we first introduce some notations.

Let $0=\mu_{0}<\mu_{1}<\mu_{2}<\cdots$ be the eigenvalues of the operator $-\Delta$ on Ω with the homogeneous Neumann boundary condition. Set \mathbf{X}_{j} is the eigenspace corresponding to μ_{j}. Let

$$
\mathbf{X}=\left\{(u, v) \in\left[C^{1}(\bar{\Omega})\right]^{2} \mid \partial_{\nu} u=\partial_{\nu} v=0 \quad \text { on } \partial \Omega\right\},
$$

$\left\{\phi_{j l} ; l=1, \ldots, m\left(\mu_{j}\right)\right\}$ be an orthonormal basis of \mathbf{X}_{j}, and $\mathbf{X}_{j l}=\left\{\mathbf{c} \phi_{j l} \mid \mathbf{c} \in \mathbf{R}^{2}\right\}$. Here $m\left(\mu_{j}\right)$ is the multiplicity of μ_{j}. Then

$$
\begin{equation*}
\mathbf{x}=\bigoplus_{j=0}^{\infty} \mathbf{X}_{j} \quad \text { and } \quad \mathbf{x}_{j}=\bigoplus_{l=1}^{m\left(\mu_{j}\right)} \mathbf{x}_{j l} . \tag{2.10}
\end{equation*}
$$

Theorem 2.2 The positive constant solution $\left(u^{*}, v^{*}\right)$ to system (1.3) is uniformly asymptotically stable provided that $a_{1}+a_{2}>a_{3}$ and $4 a_{1} a_{3}+2 k\left(2 a_{3}-a_{2}\right)+a_{2}^{2}>0$ (in the sense of [5]).

Proof. The linearization of (1.3) at $\left(u^{*}, v^{*}\right)$ is

$$
\frac{\partial}{\partial t}\binom{u}{v}=\mathcal{L}\binom{u}{v}+\binom{f_{1}\left(u-u^{*}, v-v^{*}\right)}{f_{2}\left(u-u^{*}, v-v^{*}\right)}
$$

where $f_{i}\left(z_{1}, z_{2}\right)=O\left(z_{1}^{2}+z_{2}^{2}\right), i=1,2$, and

$$
\mathcal{L}=\left(\begin{array}{cc}
d_{1} \Delta-u^{*}\left(2 a_{3} u^{*}-a_{2}\right) & -k u^{*} \\
v^{*} & d_{2} \Delta-v^{*}
\end{array}\right) .
$$

For each $j, j=0,1,2, \cdots, X_{j}$ is invariant under the operator \mathcal{L}, and ξ is an eigenvalue of \mathcal{L} on X_{j} if and only if ξ is an eigenvalue of the matrix

$$
\begin{array}{cc}
A_{j}=\left(\begin{array}{cc}
-d_{1} \mu_{j}-u^{*}\left(2 a_{3} u^{*}-a_{2}\right) & -k u^{*} \\
v^{*} & -d_{2} \mu_{j}-v^{*}
\end{array}\right) \\
\operatorname{det} A_{j}=d_{1} d_{2} \mu_{j}^{2}+\left[d_{1} v^{*}+d_{2} u^{*}\left(2 a_{3} u^{*}-a_{2}\right)\right] \mu_{j}+u^{*} v^{*}\left(k+2 a_{3} u^{*}-a_{2}\right), \\
\operatorname{Tr} A_{j}=-\left(d_{1}+d_{2}\right) \mu_{j}-u^{*}\left(2 a_{3} u^{*}-a_{2}\right)-v^{*} \leq-u^{*}\left(2 a_{3} u^{*}-a_{2}\right)-v^{*},
\end{array}
$$

where $\operatorname{det} A_{j}$ and $\operatorname{Tr} A_{j}$ are respectively the determinant and trace of A_{j}. It is easy to check that $\operatorname{det} \mathrm{A}_{\mathrm{j}}>0$ and $\operatorname{Tr}_{\mathrm{j}}<0$ if $u^{*}>a_{2} /\left(2 a_{3}\right)$, i.e. $4 a_{1} a_{3}+2 k\left(2 a_{3}-a_{2}\right)+a_{2}^{2}>0$. The same analysis as in [16] gives that the spectrum of \mathcal{L} lies in $\{\operatorname{Re} \xi<-\delta\}$ for some positive δ independent of $i \geq 0$. It is known that $\left(u^{*}, v^{*}\right)$ is uniformly asymptotically stable and the proof is complete.

2.3 Global stability of $\left(u^{*}, v^{*}\right)$ to system (1.3)

In this subsection, we will be devoted to the global stability of $\left(u^{*}, v^{*}\right)$ for system (1.3).
Theorem 2.3 Assume that $a_{1}+a_{2}>a_{3}$ and $a_{1} a_{3}+k\left(a_{3}-a_{2}\right)>0$, then $\left(u^{*}, v^{*}\right)$ is globally asymptotically stable.

Proof. In order to give the proof, we need to construct a Lyapunov function. First, we define

$$
\begin{aligned}
& E(u)(t)=\int_{\Omega}\left\{u(x, t)-u^{*}-u^{*} \ln \frac{u(x, t)}{u^{*}}\right\} \mathrm{d} x, \\
& E(v)(t)=\int_{\Omega}\left\{v(x, t)-v^{*}-v^{*} \ln \frac{v(x, t)}{v^{*}}\right\} \mathrm{d} x .
\end{aligned}
$$

We note that $E(u)(t)$ and $E(v)(t)$ are non-negative, $E(u)(t)=0$ and $E(v)(t)=0$ if and only if $(u(x, t), v(x, t))=\left(u^{*}, v^{*}\right)$. Furthermore, easy computations yield that

$$
\begin{aligned}
\frac{d E(u)}{d t} & =\int_{\Omega}\left\{\left(1-\frac{u^{*}}{u}\right) u_{t}\right\} \mathrm{d} x=\int_{\Omega}\left\{-d_{1} \frac{u^{*}|\nabla u|^{2}}{u^{2}}+\left(u-u^{*}\right)\left(a_{1}+a_{2} u-a_{3} u^{2}-k v\right)\right\} \mathrm{d} x \\
& =\int_{\Omega}\left\{-d_{1} \frac{u^{*}|\nabla u|^{2}}{u^{2}}+\left(u-u^{*}\right)\left(-a_{2} u^{*}+a_{3}\left(u^{*}\right)^{2}+k v^{*}+a_{2} u-a_{3} u^{2}-k v\right)\right\} \mathrm{d} x \\
& =\int_{\Omega}\left\{-d_{1} \frac{u^{*}|\nabla u|^{2}}{u^{2}}-\left[a_{3}\left(u+u^{*}\right)-a_{2}\right]\left(u-u^{*}\right)^{2}-k\left(u-u^{*}\right)\left(v-v^{*}\right)\right\} \mathrm{d} x .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{d E(v)}{d t} & =\int_{\Omega}\left\{\left(1-\frac{v^{*}}{v}\right) v_{t}\right\} \mathrm{d} x=\int_{\Omega}\left\{-d_{2} \frac{v^{*}|\nabla v|^{2}}{v^{2}}+\left(v-v^{*}\right)(-1+u-v)\right\} \mathrm{d} x \\
& =\int_{\Omega}\left\{-d_{2} \frac{v^{*}|\nabla v|^{2}}{v^{2}}+\left(v-v^{*}\right)\left(-u^{*}+v^{*}+u-v\right)\right\} \mathrm{d} x \\
& =\int_{\Omega}\left\{-d_{2} \frac{v^{*}|\nabla v|^{2}}{v^{2}}-\left(v-v^{*}\right)^{2}+\left(u-u^{*}\right)\left(v-v^{*}\right)\right\} \mathrm{d} x .
\end{aligned}
$$

Now define

$$
E(t)=E(u)(t)+k E(v)(t)
$$

Hence

$$
\begin{aligned}
\frac{d E(t)}{d t} & =\frac{d E(u)(t)}{d t}+k \frac{d E(v)(t)}{d t} \\
& =\int_{\Omega}\left\{-d_{1} \frac{u^{*}|\nabla u|^{2}}{u^{2}}-d_{2} k \frac{v^{*}|\nabla v|^{2}}{v^{2}}-\left[a_{3}\left(u+u^{*}\right)-a_{2}\right]\left(u-u^{*}\right)^{2}-k\left(v-v^{*}\right)^{2}\right\} \mathrm{d} x \\
& \leq \int_{\Omega}\left\{-\left[a_{3}\left(u+u^{*}\right)-a_{2}\right]\left(u-u^{*}\right)^{2}-k\left(v-v^{*}\right)^{2}\right\} \mathrm{d} x .
\end{aligned}
$$

When $u^{*}>a_{2} / a_{3}$, i.e., $a_{1} a_{3}+k\left(a_{3}-a_{2}\right)>0$ then $\mathrm{d} E(t) / \mathrm{d} t \leq 0$, and the equality holds if and only if $(u, v)=\left(u^{*}, v^{*}\right)$. Hence, the standard arguments together with (iii) of Theorem 2.1 and Theorem 2.2 deduce that $\left(u^{*}, v^{*}\right)$ attracts all solutions of (1.3). This finishes the proof.

3 A priori estimates for positive solutions to (1.4)

From now on, our aim is to investigate the steady-state problem (1.4). In this section, we will deduce a priori estimates of positive upper and lower bounds for positive solutions of (1.4). To this end, we first cite two known results.

Lemma 3.1 (Maximum principle [8]) Suppose that $g \in C(\bar{\Omega} \times \mathbf{R})$.
(i) Assume that $w \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ and satisfies

$$
\Delta w(x)+g(x, w(x)) \geq 0 \quad \text { in } \Omega, \quad \partial_{\nu} w \leq 0 \quad \text { on } \partial \Omega .
$$

If $w\left(x_{0}\right)=\max _{\bar{\Omega}} w$, then $g\left(x_{0}, w\left(x_{0}\right)\right) \geq 0$.
(ii) Assume that $w \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ and satisfies

$$
\Delta w(x)+g(x, w(x)) \leq 0 \quad \text { in } \Omega, \quad \partial_{\nu} w \geq 0 \quad \text { on } \partial \Omega .
$$

If $w\left(x_{0}\right)=\min _{\bar{\Omega}} w$, then $g\left(x_{0}, w\left(x_{0}\right)\right) \leq 0$.
Lemma 3.2 (Harnack inequality [9]) Let $w \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ be a positive solution to $\Delta w(x)+$ $c(x) w(x)=0$ in Ω subject to the homogeneous Neumann boundary condition where $c(x) \in C(\bar{\Omega})$. Then there exists a positive constant $C^{*}=C^{*}\left(\|c\|_{\infty}, \Omega\right)$ such that

$$
\max _{\bar{\Omega}} w \leq C^{*} \min _{\bar{\Omega}} w .
$$

Theorem 3.1 Assume that $a_{1}+a_{2}>a_{3}$, then the positive solution (u, v) of (1.4) satisfies

$$
\max _{\bar{\Omega}} u(x)<\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}, \quad \max _{\bar{\Omega}} v(x)<\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-1 .
$$

Proof. Assume that (u, v) is a positive solution of (1.4). We set

$$
u\left(x_{1}\right)=\max _{\bar{\Omega}} u, \quad v\left(x_{2}\right)=\max _{\bar{\Omega}} v
$$

Applying Lemma 3.1 to (1.4), we obtain that

$$
\begin{gather*}
a_{1}+a_{2} u\left(x_{1}\right)-a_{3} u^{2}\left(x_{1}\right)-k v\left(x_{1}\right) \geq 0, \tag{3.1}\\
-1+u\left(x_{2}\right)-v\left(x_{2}\right) \geq 0 . \tag{3.2}
\end{gather*}
$$

From (3.1), it follows that

$$
a_{3} u^{2}\left(x_{1}\right)-a_{2} u\left(x_{1}\right)-a_{1} \leq-k v\left(x_{1}\right)<0 \Rightarrow u\left(x_{1}\right)<\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}} .
$$

If $a_{1}+a_{2}>a_{3}$, then in view of (3.2), it is easy to see that

$$
v\left(x_{2}\right) \leq u\left(x_{2}\right)-1<\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-1
$$

The proof is complete.

Theorem 3.2 Assume that $a_{1}+a_{2}>a_{3}$, let d be an arbitrary fixed positive number, then, there exists a positive constant \underline{C} only depending on $a_{1}, a_{2}, a_{3}, k, d$ and Ω such that if $d_{1}, d_{2} \geq d$, any positive solution (u, v) of (1.4) satisfies

$$
\min _{\bar{\Omega}} u(x)>\underline{C} \quad \min _{\bar{\Omega}} v(x)>\underline{C} .
$$

Proof. Since $\int_{\Omega} v(-1+u-v) \mathrm{d} x=0$, there exists $x_{0} \in \bar{\Omega}$ such that $v\left(x_{0}\right)\left(-1+u\left(x_{0}\right)-v\left(x_{0}\right)\right)=$ 0 , that is

$$
u\left(x_{0}\right)=1+v\left(x_{0}\right)
$$

It follows that $\max _{\bar{\Omega}} u(x) \geq 1$. Let $c_{1}(x)=d_{1}^{-1}\left[a_{1}+a_{2} u-a_{3} u^{2}-k v\right]$, by Theorem 3.1 and Lemma 3.2 , there exists a positive constant C_{1}, such that

$$
\begin{equation*}
\min _{\bar{\Omega}} u(x) \geq \frac{\max _{\bar{\Omega}} u(x)}{C_{1}} \geq \frac{1}{C_{1}} \tag{3.3}
\end{equation*}
$$

Now, it suffices to verify the lower bounds of $v(x)$. We shall prove by contradiction.
Suppose that Theorem 3.2 is not true, then there exists a sequence $\left\{d_{2, i}\right\}_{i=1}^{\infty}$ with $d_{2, i} \geq d$ and the positive solution $\left(u_{i}, v_{i}\right)$ of (1.4) corresponding to $d_{2}=d_{2, i}$, such that

$$
\min _{\bar{\Omega}} v_{i}(x) \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

By the Harnack inequality, we know that there is a positive constant C_{2} independent of i such that $\max _{\bar{\Omega}} v_{i}(x) \leq C_{2} \min _{\bar{\Omega}} v_{i}(x)$. Consequently,

$$
v_{i}(x) \rightarrow 0 \quad \text { uniformly on } \bar{\Omega}, \quad \text { as } \quad i \rightarrow \infty
$$

Let $w_{i}=v_{i} /\left\|v_{i}\right\|_{\infty}$ and $\left(u_{i}, w_{i}\right)$ satisfies the following elliptic model

$$
\begin{cases}-d_{1} \Delta u_{i}=u_{i}\left(a_{1}+a_{2} u_{i}-a_{3} u_{i}^{2}-k v_{i}\right) & \text { in } \Omega \tag{3.4}\\ -d_{2, i} \Delta w_{i}=w_{i}\left(-1+u_{i}-v_{i}\right) & \text { in } \Omega \\ \partial_{\nu} u_{i}=\partial_{\nu} w_{i}=0 & \text { on } \partial \Omega\end{cases}
$$

Moreover, integrating over Ω by parts, we have

$$
\begin{equation*}
\int_{\Omega} u_{i}\left(a_{1}+a_{2} u_{i}-a_{3} u_{i}^{2}-k v_{i}\right) \mathrm{d} x=0, \quad \int_{\Omega} w_{i}\left(-1+u_{i}-v_{i}\right) \mathrm{d} x=0 \tag{3.5}
\end{equation*}
$$

The embedding theory and the standard regularity theory of elliptic equations guarantee that there is a subsequence of $\left(u_{i}, w_{i}\right)$ also denoted by itself, and two non-negative functions $u, w \in C^{2}(\bar{\Omega})$, such that $\left(u_{i}, w_{i}\right) \rightarrow(u, w)$ in $\left[C^{2}(\bar{\Omega})\right]^{2}$ as $i \rightarrow \infty$. Since $\left\|w_{i}\right\|_{\infty}=1$, we have $\|w\|_{\infty}=1$. Since $\left(u_{i}, w_{i}\right)$ satisfy (3.5), so do (u, w), i.e.

$$
\begin{equation*}
\int_{\Omega} u\left(a_{1}+a_{2} u-a_{3} u^{2}\right) \mathrm{d} x=0, \quad \int_{\Omega} w(-1+u) \mathrm{d} x=0 \tag{3.6}
\end{equation*}
$$

By (3.3) and Theorem 3.1, we have $0<u \leq\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right)$, and when u lies in this interval, $a_{1}+a_{2} u-a_{3} u^{2} \geq 0$. As a result, by the first integral identity of (3.6) we obtain $u=\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right)$. In view of $a_{1}+a_{2}>a_{3}$, so $u=\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right)>1$, and the second integral identity of (3.6) yields $\int_{\Omega} w \mathrm{~d} x=0$, which implies a contradiction. This completes the proof.

4 Non-existence and existence for non-constant solutions to (1.4)

4.1 Non-existence of positive non-constant solutions

In this subsection, based on the priori estimates in Section 3 for positive solutions to (1.4), we present some results for non-existence of positive non-constant solutions of (1.3) as the diffusion coefficient d_{1} or d_{2} is sufficiently large.

Note that μ_{1} be the smallest positive eigenvalue of the operator $-\Delta$ in Ω subject to the homogeneous Neumann boundary condition. Now, using the energy estimates, we can claim
Theorem 4.1 (i) There exists a positive constant $\tilde{d}_{1}=\tilde{d}_{1}\left(a_{1}, a_{2}, a_{3}, k, \Omega\right)$ such that (1.4) has no non-constant positive solutions provided that $\mu_{1} d_{1}>\tilde{d}_{1}$ and $\mu_{1} d_{2}>\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right)-1$;
(ii) There exists a positive constant $\tilde{d}_{2}=\tilde{d}_{2}\left(a_{1}, a_{2}, a_{3}, k, \Omega\right)$ such that (1.4) has no non-constant positive solutions provided that $\mu_{1} d_{2}>\tilde{d}_{2}$ and $\mu_{1} d_{1}>a_{1}+\left|a_{2}\right|\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) / a_{3}$.

Proof. Let (u, v) be any positive solution of (1.4) and denote $\bar{g}=(1 /|\Omega|) \int_{\Omega} g \mathrm{~d} x$. Then, multiplying the corresponding equation in (1.4) by $u-\bar{u}$ and $v-\bar{v}$ respectively, integrating over Ω, we obtain

$$
\begin{aligned}
& d_{1} \int_{\Omega}|\nabla(u-\bar{u})|^{2} \mathrm{~d} x=\int_{\Omega}\left(a_{1} u+a_{2} u^{2}-a_{3} u^{3}-k u v\right)(u-\bar{u}) \mathrm{d} x \\
& =\int_{\Omega}\left[a_{1}(u-\bar{u})+a_{2}\left(u^{2}-\bar{u}^{2}\right)-a_{3}\left(u^{3}-\bar{u}^{3}\right)-k(u v-\bar{u} \bar{v})\right](u-\bar{u}) \mathrm{d} x \\
& =\int_{\Omega}\left[a_{1}+a_{2}(u+\bar{u})-a_{3}\left(u^{2}+u \bar{u}+\bar{u}^{2}\right)-k v\right](u-\bar{u})^{2} \mathrm{~d} x-k \int_{\Omega} \bar{u}(u-\bar{u})(v-\bar{v}) \mathrm{d} x \\
& \leq\left[a_{1}+\frac{\left|a_{2}\right|\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right)}{a_{3}}+C\left(\varepsilon, a_{1}, a_{2}, a_{3}, k, \Omega\right)\right] \int_{\Omega}(u-\bar{u})^{2} \mathrm{~d} x+\varepsilon \int_{\Omega}(v-\bar{v})^{2} \mathrm{~d} x .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& d_{2} \int_{\Omega}|\nabla(v-\bar{v})|^{2} \mathrm{~d} x=\int_{\Omega}\left(-v+u v-v^{2}\right)(v-\bar{v}) \mathrm{d} x \\
& =\int_{\Omega}[-1+u-(v+\bar{v})](v-\bar{v})^{2} \mathrm{~d} x+\int_{\Omega} \bar{v}(u-\bar{u})(v-\bar{v}) \mathrm{d} x \\
& \leq\left(\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-1+\varepsilon\right) \int_{\Omega}(v-\bar{v})^{2} \mathrm{~d} x+C\left(\varepsilon, a_{1}, a_{2}, a_{3}, k, \Omega\right) \int_{\Omega}(u-\bar{u})^{2} \mathrm{~d} x .
\end{aligned}
$$

Consequently, there exists $0<\varepsilon \ll 1$ which depends only on $a_{1}, a_{2}, a_{3}, k, \Omega$, such that

$$
\begin{align*}
& \int_{\Omega}\left\{d_{1}|\nabla(u-\bar{u})|^{2}+d_{2}|\nabla(v-\bar{v})|^{2}\right\} \mathrm{d} x \\
& \quad \leq\left[a_{1}+\frac{\left|a_{2}\right|\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right)}{a_{3}}+C\left(\varepsilon, a_{1}, a_{2}, a_{3}, k, \Omega\right)\right] \int_{\Omega}(u-\bar{u})^{2} \mathrm{~d} x \tag{4.1}\\
& \quad+\left(\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-1+\varepsilon\right) \int_{\Omega}(v-\bar{v})^{2} \mathrm{~d} x .
\end{align*}
$$

Thanks to the well-known Poincaré Inequality

$$
\mu_{1} \int_{\Omega}(g-\bar{g})^{2} \mathrm{~d} x \leq \int_{\Omega}|\nabla(g-\bar{g})|^{2} \mathrm{~d} x
$$

we yield from (4.1) that

$$
\begin{align*}
& \mu_{1} \int_{\Omega}\left\{d_{1}(u-\bar{u})^{2}+d_{2}(v-\bar{v})^{2}\right\} \mathrm{d} x \\
& \quad \leq\left[a_{1}+\frac{\left|a_{2}\right|\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right)}{a_{3}}+C\left(\varepsilon, a_{1}, a_{2}, a_{3}, k, \Omega\right)\right] \int_{\Omega}(u-\bar{u})^{2} \mathrm{~d} x \tag{4.2}\\
& \quad+\left(\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{2 a_{3}}-1+\varepsilon\right) \int_{\Omega}(v-\bar{v})^{2} \mathrm{~d} x .
\end{align*}
$$

It is clear that there exists \tilde{d}_{1} depending only on $a_{1}, a_{2}, a_{3}, k, \Omega$, such that when $\mu_{1} d_{1}>\tilde{d}_{1}$ and $\mu_{1} d_{2}>\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right) /\left(2 a_{3}\right)-1, u \equiv \bar{u}=$ const., in turn, $v \equiv \bar{v}=$ const., which asserts our result (i).

As above, we have

$$
\begin{align*}
\mu_{1} \int_{\Omega}\left\{d_{1}(u-\bar{u})^{2}+d_{2}(v-\bar{v})^{2}\right\} \mathrm{d} x \leq\left[a_{1}+\frac{\left|a_{2}\right|\left(a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}\right)}{a_{3}}+\varepsilon\right] \tag{4.3}\\
\times \int_{\Omega}(u-\bar{u})^{2} \mathrm{~d} x+C\left(\varepsilon, a_{1}, a_{2}, a_{3}, k, \Omega\right) \int_{\Omega}(v-\bar{v})^{2} \mathrm{~d} x .
\end{align*}
$$

The remaining arguments are rather similar as above. The proof is complete.

4.2 Existence of positive non-constant solutions

This subsection is concerned with the existence of non-constant positive solutions to (1.4). The main tool to be used is the topological degree theory. To set up a suitable framework where the topological degree theory can apply, let us first introduce some necessary notations.

Let \mathbf{X} be as in section 2. For simplicity, we write

$$
\mathbf{u}=(u, v), \quad \mathbf{u}^{*}=\left(u^{*}, v^{*}\right) .
$$

We also denote the following sets

$$
\mathbf{D}=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right), \quad \mathbf{G}(\mathbf{u})=\binom{a_{1} u+a_{2} u^{2}-a_{3} u^{3}-k u v}{-v+u v-v^{2}}, \quad \mathbf{A}=\left(\begin{array}{cc}
\theta & -k u^{*} \\
v^{*} & -v^{*}
\end{array}\right),
$$

where $\theta=u^{*}\left(a_{2}-2 a_{3} u^{*}\right)$. Then $D_{\mathbf{u}} \mathbf{G}\left(\mathbf{u}^{*}\right)=\mathbf{A}$. Moreover, (1.4) can be written as

$$
\begin{cases}-\Delta \mathbf{u}=\mathbf{D}^{-1} \mathbf{G}(\mathbf{u}), & x \in \Omega \tag{4.4}\\ \partial_{\nu} \mathbf{u}=0, & x \in \partial \Omega\end{cases}
$$

Furthermore, \mathbf{u} solves (4.4) if and only if it satisfies

$$
\begin{equation*}
f\left(d_{1}, d_{2} ; \mathbf{u}\right):=\mathbf{u}-(\mathbf{I}-\Delta)^{-1}\left\{\mathbf{D}^{-1} \mathbf{G}(\mathbf{u})+\mathbf{u}\right\}=0 \quad \text { on } \mathbf{X}, \tag{4.5}
\end{equation*}
$$

where $(\mathbf{I}-\Delta)^{-1}$ is the inverse of $\mathbf{I}-\Delta$ with the homogeneous Neumann boundary condition. Direct computation gives

$$
\begin{equation*}
D_{\mathbf{u}} f\left(d_{1}, d_{2} ; \mathbf{u}^{*}\right)=\mathbf{I}-(\mathbf{I}-\Delta)^{-1}\left\{\mathbf{D}^{-1} \mathbf{A}+\mathbf{I}\right\} . \tag{4.6}
\end{equation*}
$$

In order to apply the degree theory to obtain the existence of positive non-constant solutions, our first aim is to compute the index of $f\left(d_{1}, d_{2} ; \mathbf{u}\right)$ at \mathbf{u}^{*}. By the Leray-Schauder Theorem (see [11]), we have that if 0 is not the eigenvalue of (4.6), then

$$
\operatorname{index}\left(f\left(d_{1}, d_{2} ; \cdot\right), \mathbf{u}^{*}\right)=(-1)^{r}
$$

where r is the number of negative eigenvalues of (4.6).
It is easy to see that, for each integer $j \geq 0, \mathbf{X}_{j}$ is invariant under $D_{\mathbf{u}} f\left(d_{1}, d_{2} ; \mathbf{u}^{*}\right)$, and ξ is an eigenvalue of $D_{\mathbf{u}} f\left(d_{1}, d_{2} ; \mathbf{u}^{*}\right)$ on \mathbf{X}_{j} if and only if $\xi\left(1+\mu_{j}\right)$ is an eigenvalue of the matrix

$$
\mathbf{M}\left(\mu_{j}\right):=\mu_{j} \mathbf{I}-\mathbf{D}^{-1} \mathbf{A}=\left(\begin{array}{cc}
\mu_{j}-\theta d_{1}^{-1} & k u^{*} d_{1}^{-1} \\
-v^{*} d_{2}^{-1} & \mu_{j}+v^{*} d_{2}^{-1}
\end{array}\right)
$$

Thus, $D_{\mathbf{u}} f\left(d_{1}, d_{2} ; \mathbf{u}^{*}\right)$ is invertible if and only if, for all $j \geq 0$, the matrix $\mu_{j} \mathbf{I}-\mathbf{D}^{-1} \mathbf{A}$ is nonsingular.
Denote

$$
H\left(\mu ; d_{1}, d_{2}\right):=d_{1} d_{2} \operatorname{det} \mathbf{M}(\mu)=d_{1} d_{2} \mu^{2}+\left(v^{*} d_{1}-\theta d_{2}\right) \mu+v^{*}\left(k u^{*}-\theta\right)
$$

In addition, we also have that, if $H\left(\mu_{j} ; d_{1}, d_{2}\right) \neq 0$, the number of negative eigenvalues of $D_{\mathbf{u}} f\left(d_{1}, d_{2} ; \mathbf{u}^{*}\right)$ on \mathbf{X}_{j} is odd if and only if $H\left(\mu_{j} ; d_{1}, d_{2}\right)<0$.

Let $m\left(\mu_{j}\right)$ be the algebraical multiplicity of μ_{j}. In conclusion, we can assert the following:
Proposition 4.1 Suppose that, for all $j \geq 0$, the matrix $\mu_{j} \mathbf{I}-\mathbf{D}^{-1} \mathbf{A}$ is nonsingular. Then

$$
\operatorname{index}\left(f\left(d_{1}, d_{2} ; \cdot\right), \mathbf{u}^{*}\right)=(-1)^{r}, \quad \text { where } \quad r=\sum_{j \geq 0, H\left(\mu_{j} ; d_{1}, d_{2}\right)<0} m\left(u_{j}\right)
$$

Now, we analyze the sign of $H\left(\mu ; d_{1}, d_{2}\right)$. Simple computations give that if

$$
\begin{equation*}
\left(v^{*} d_{1}-\theta d_{2}\right)^{2}-4 d_{1} d_{2} v^{*}\left(k u^{*}-\theta\right)>0 \tag{4.7}
\end{equation*}
$$

then $H\left(\mu ; d_{1}, d_{2}\right)=0$ has exactly two different roots $\mu_{*}\left(d_{1}, d_{2}\right)$ and $\mu^{*}\left(d_{1}, d_{2}\right)$:

$$
\begin{aligned}
& \mu_{*}\left(d_{1}, d_{2}\right)=\frac{1}{2 d_{1} d_{2}}\left\{\theta d_{2}-v^{*} d_{1}-\sqrt{\left(\theta d_{2}-v^{*} d_{1}\right)^{2}-4 d_{1} d_{2} v^{*}\left(k u^{*}-\theta\right)}\right\}, \\
& \mu^{*}\left(d_{1}, d_{2}\right)=\frac{1}{2 d_{1} d_{2}}\left\{\theta d_{2}-v^{*} d_{1}+\sqrt{\left(\theta d_{2}-v^{*} d_{1}\right)^{2}-4 d_{1} d_{2} v^{*}\left(k u^{*}-\theta\right)}\right\} .
\end{aligned}
$$

In fact, we observe that $\mu_{*}\left(d_{1}, d_{2}\right)$ and $\mu^{*}\left(d_{1}, d_{2}\right)$ are the two real roots of the matrix $\mathbf{M}(u)$. Moreover, $H\left(\mu ; d_{1}, d_{2}\right)<0$ if and only if $\mu \in\left(\mu_{*}\left(d_{1}, d_{2}\right), \mu^{*}\left(d_{1}, d_{2}\right)\right)$.

We can claim the main result of this subsection as follows.
Theorem 4.2 Assume that $a_{1}+a_{2}>a_{3}$ and $4 a_{1} a_{3}+2 k\left(2 a_{3}-a_{2}\right)+a_{2}^{2}<0$, or equivalently, $\theta>0$, and satisfies $\theta / d_{1} \in\left(\mu_{s}, \mu_{s+1}\right)$ for some $s \geq 1$. If $\sum_{j=1}^{s} m\left(\mu_{j}\right)$ is odd, then there exists a positive constant \hat{d} such that (1.4) has at least one non-constant positive solution for all $d_{2} \geq \hat{d}$.

Proof. First, it is clear that when d_{2} is large enough then (4.7) holds, and a simple computation gives that the constant term $v^{*}\left(k u^{*}-\theta\right)$ of $H\left(\mu ; d_{1}, d_{2}\right)$ is positive. Hence, we have $\mu^{*}\left(d_{1}, d_{2}\right)>$ $\mu_{*}\left(d_{1}, d_{2}\right)>0$. Moreover

$$
\lim _{d_{2} \rightarrow \infty} \mu^{*}\left(d_{1}, d_{2}\right)=\frac{\theta}{d_{1}}, \quad \lim _{d_{2} \rightarrow \infty} \mu_{*}\left(d_{1}, d_{2}\right)=0
$$

As $\theta / d_{1} \in\left(\mu_{s}, \mu_{s+1}\right)$, it follows that there exists a \hat{d} such that

$$
\mu^{*}\left(d_{1}, d_{2}\right) \in\left(\mu_{s}, \mu_{s+1}\right), \quad \text { and } 0<\mu_{*}\left(d_{1}, d_{2}\right)<\mu_{1} \quad \forall d_{2}>\hat{d} .
$$

On the other hand, by Theorem 4.1 we know that there exists $\tilde{d}_{1}>0$ such that (1.4) has no nonconstant positive solution if $d_{1}>\tilde{d}$. Moreover, taking a larger \hat{d} if necessary, we may assume that $\theta / d_{1}<\mu_{1}$ for all $d_{1} \geq \hat{d} \geq \tilde{d}_{1}$. Thus, we have

$$
0<\mu_{*}\left(d_{1}, d_{2}\right)<\mu^{*}\left(d_{1}, d_{2}\right)<\mu_{1} \quad \text { for any fixed } d_{1}, d_{2} \geq \hat{d} .
$$

We are now in the position of proving (1.4) has at least one non-constant positive solution for any $d_{2} \geq \hat{d}$ under the hypotheses of the theorem. On the contrary, suppose that this assertion is not true for some $d_{2} \geq \hat{d}$. In the following, we will derive a contradiction by using a homotopy argument.

For such d_{2} and $t \in[0,1]$, we define

$$
\mathbf{D}(t)=\left(\begin{array}{cc}
t d_{1}+(1-t) \hat{d} & 0 \\
0 & t d_{2}+(1-t) \hat{d}
\end{array}\right)
$$

and consider the problem

$$
\begin{cases}-\Delta \mathbf{u}=\mathbf{D}^{-1}(t) \mathbf{G}(\mathbf{u}), & x \in \Omega \tag{4.8}\\ \partial_{\nu} \mathbf{u}=0, & x \in \partial \Omega\end{cases}
$$

It is clear that finding positive solutions of (1.4) becomes equivalent to finding positive solutions of (4.8) for $t=1$. On the other hand, for $0 \leq t \leq 1 . \mathbf{u}$ is a non-constant positive solution of (4.8) if and only if it is a solution of the problem

$$
\begin{equation*}
h(\mathbf{u} ; t)=\mathbf{u}-(\mathbf{I}-\Delta)^{-1}\left\{\mathbf{D}^{-1}(t) \mathbf{G}(\mathbf{u})+\mathbf{u}\right\}=0 \quad \text { on } \mathbf{X} . \tag{4.9}
\end{equation*}
$$

We note that

$$
\begin{equation*}
h(\mathbf{u} ; 1)=f\left(d_{1}, d_{2} ; \mathbf{u}\right), \quad h(\mathbf{u} ; 0)=f(\hat{d}, \hat{d} ; \mathbf{u}), \tag{4.10}
\end{equation*}
$$

and

$$
\left\{\begin{array}{c}
D_{\mathbf{u}} f\left(d_{1}, d_{2} ; \mathbf{u}^{*}\right)=\mathbf{I}-(\mathbf{I}-\Delta)^{-1}\left\{\mathbf{D}^{-1} \mathbf{A}+\mathbf{I}\right\} \tag{4.11}\\
D_{\mathbf{u}} f\left(\hat{d}, \hat{d} ; \mathbf{u}^{*}\right)=\mathbf{I}-(\mathbf{I}-\Delta)^{-1}\left\{\widetilde{\mathbf{D}}^{-1} \mathbf{A}+\mathbf{I}\right\}
\end{array}\right.
$$

where $f(\cdot, \cdot ; \cdot)$ was defined by (4.5) and

$$
\widetilde{\mathbf{D}}=\left(\begin{array}{cc}
\hat{d} & 0 \\
0 & \hat{d}
\end{array}\right) .
$$

It is obvious that \mathbf{u}^{*} is the only positive constant solution of (1.4) and by the choice of \hat{d}, (4.9) has no non-constant positive solution for $t=0,1$.

From Proposition 4.1, it immediately follows that

$$
\left\{\begin{array}{l}
\operatorname{index}\left(h(\cdot, 1), \mathbf{u}^{*}\right)=\operatorname{index}\left(f\left(\cdot, d_{1}, d_{2}\right), \mathbf{u}^{*}\right)=(-1)^{\sum_{j=1}^{s} m\left(\mu_{j}\right)}=-1, \tag{4.12}\\
\operatorname{index}\left(h(\cdot, 0), \mathbf{u}^{*}\right)=\operatorname{index}\left(f(\cdot, \hat{d}, \hat{d}), \mathbf{u}^{*}\right)=(-1)^{0}=1 .
\end{array}\right.
$$

By Theorem 3.1 and 3.2 , there exists a positive constant C such that (1.4) has no solution on $\partial \Theta$, where

$$
\Theta=\left\{\mathbf{u} \in[C(\bar{\Omega})]^{2} \left\lvert\, \frac{1}{2} C<u(x)\right., v(x)<\frac{a_{2}+\sqrt{a_{2}^{2}+4 a_{1} a_{3}}}{a_{3}}\right\}
$$

Since $h(\mathbf{u} ; t): \Theta \times[0,1] \rightarrow C(\bar{\Omega}) \times C(\bar{\Omega})$ is compact, the degree $\operatorname{deg}(h(\mathbf{u} ; t), \Theta, 0)$ is well defined. By the homotopy invariance of degree, we can conclude

$$
\begin{equation*}
\operatorname{deg}((h(\cdot ; 0), \Theta, 0)=\operatorname{deg}((h(\cdot ; 1), \Theta, 0) \tag{4.13}
\end{equation*}
$$

However, as both equations $h(\mathbf{u} ; 0)=0$ and $h(\mathbf{u} ; 1)=0$ have the unique positive solution \mathbf{u}^{*} in Θ, we get from (4.12) that,

$$
\begin{aligned}
& \operatorname{deg}\left((h(\cdot ; 1), \Theta, 0)=\operatorname{index}\left(h(\cdot, 1), \mathbf{u}^{*}\right)=(-1)^{\sum_{j=1}^{s} m\left(\mu_{j}\right)}=-1\right. \\
& \operatorname{deg}\left((h(\cdot ; 0), \Theta, 0)=\operatorname{index}\left(h(\cdot, 0), \mathbf{u}^{*}\right)=(-1)^{0}=1\right.
\end{aligned}
$$

This contradicts (4.13). The proof is complete.
Similarly, we have the following result, whose proof is similar to the above and thus is omitted.
Theorem 4.3 Assume that $a_{1}+a_{2}>a_{3}$ and (4.7) hold. Let $\mu_{*}\left(d_{1}, d_{2}\right)<\mu^{*}\left(d_{1}, d_{2}\right)$ be the two positive roots of $H\left(\mu ; d_{1}, d_{2}\right)=0$. If

$$
\mu_{*}\left(d_{1}, d_{2}\right) \in\left(\mu_{l}, \mu_{l+1}\right) \text { and } \mu^{*}\left(d_{1}, d_{2}\right) \in\left(\mu_{q}, \mu_{q+1}\right) \quad \text { for some } 0 \leq l<q
$$

and $\sum_{k=l+1}^{q} m\left(\mu_{k}\right)$ is odd, then (1.4) has at least one non-constant positive solution.

References

[1] Q. Y. Bie and R. Peng, Qualitative analysis on a reaction-diffusion prey-predator model and the corresponding steady-states, Chin. Ann. Math. 30B(2)(2009), 207-220.
[2] E. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations, SIAM J. Appl. Math. 46(1986), 630-642.
[3] Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203(2004), 331-364.
[4] Y. H. Du and M. X. Wang, Asymptotic behavior of positive steady-states to a predator-prey model, Proc. Roy. Soc. Edinburgh A, 136(2006), 759-778.
[5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin-New York, 1993.
[6] X. Huang, Y. Wang and L. Zhu, One and three limit cycles in a cubic predator-prey system, Math. Meth. Appl. Sci., 30(5)(2007), 501-511.
[7] W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231(2006), 534-550.
[8] Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131(1996), 79-131.
[9] C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotais systems, J. Differential Equations, 72(1988), 1-27.
[10] J. D. Murray, Mathematical Biology, 2nd edn (Springer, Berlin, 1993).
[11] L. Nirenberg, Topics in Nonlinear Functional Analysis, American Mathematical Society, Providence, RI. 2001.
[12] R. Peng and J. P. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case, J. Differential Equations, 247(2009),866-886.
[13] P. Y. H. Pang, M. X. Wang, Non-constant positive steady states of a predator-prey system with nonmonotonic functional response and diffusion, Proc. Lond. Math. Soc., 88(2004), 135-157.
[14] R. Peng and M. X. Wang, Positive steady states of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135(2005), 149-164.
[15] R. Peng and M. X. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model, App. Math. Letters, 20(2007), 664-670.
[16] M. X. Wang, Non-constant positive steady states of the Sel'kov model, J. Differential Equations, 190(2003), 600-620.
[17] M. X. Wang and P. Y. H. Pang, Qualitative analysis of a diffusive variable-territory prey-predator model, Discrete Contin. Dyn. Syst., 23(3)(2009), 1061-1072.
(Received January 1, 2010)

[^0]: ${ }^{1}$ Corresponding author, e-mail: biequnyi @yahoo.com.cn

