SECOND-ORDER DIFFERENTIAL INCLUSIONS WITH ALMOST CONVEX RIGHT-HAND SIDES

D. AFFANE AND D. AZZAM-LAOUIR

Abstract

We study the existence of solutions of a boundary second order differential inclusion under conditions that are strictly weaker than the usual assumption of convexity on the values of the right-hand side.

1. Introduction

The existence of solutions for second order differential inclusions of the form $\ddot{u}(t) \in F(t, u(t), \dot{u}(t))(t \in[0,1])$ with boundary conditions, where F : $[0,1] \times E \times E \rightrightarrows E$ is a convex compact multifunction, Lebesgue-measurable on $[0,1]$, upper semicontinuous on $E \times E$ and integrably compact in finite and infinite dimensional spaces has been studied by many authors see for example [1],[7]. Our aim in this article is to provide an existence result for the differential inclusion with two-point boundary conditions in a finite dimensional space E of the form

$$
\left(P_{F}\right)\left\{\begin{array}{c}
\ddot{u}(t) \in F(u(t), \dot{u}(t)), \text { a.e. } t \in[a, b],(0 \leq a<b<+\infty) \\
u(a)=u(b)=v_{0}
\end{array}\right.
$$

where $F: E \times E \rightrightarrows E$ is an upper semicontinuous multifunction with almost convex values, i.e., the convexity is replaced by a strictly weaker condition.

For the first order differential inclusions with almost convex values we refer the reader to [5].

After some preliminaries, we present a result which is the existence of $\mathbf{W}_{E}^{2,1}([a, b])$-solutions of $\left(P_{F}\right)$ where F is a convex valued multifunction. Using this convexified problem we show that the differential inclusion $\left(P_{F}\right)$ has solutions if the values of F are almost convex. As an example of the almost convexity of the values of the right-hand side, notice that, if $F(t, x, y)$ is a convex set not containing the origin then the boundary of $F(x, y)$, $\partial F(x, y)$, is almost convex.

2. Notation and preliminaries

Throughout, $(E,\|\cdot\|)$ is a real separable Banach space and E^{\prime} is its topological dual, $\overline{\mathbf{B}}_{E}$ is the closed unit ball of E and $\sigma\left(E, E^{\prime}\right)$ the weak topology on E. We denote by $\mathbf{L}_{E}^{1}([a, b])$ the space of all Lebesgue-Bochner integrable E valued mappings defined on $[a, b]$.

Let $\mathbf{C}_{E}([a, b])$ be the Banach space of all continuous mappings $u:[a, b] \rightarrow$ E endowed with the sup-norm, and $\mathbf{C}_{E}^{1}([a, b])$ be the Banach space of all continuous mappings $u:[a, b] \rightarrow E$ with continuous derivative, equipped with the norm

$$
\|u\|_{\mathbf{C}^{1}}=\max \left\{\max _{t \in[a, b]}\|u(t)\|, b \max _{t \in[a, b]}\|\dot{u}(t)\|\right\}
$$

Recall that a mapping $v:[a, b] \rightarrow E$ is said to be scalarly derivable when there exists some mapping $\dot{v}:[a, b] \rightarrow E$ (called the weak derivative of v) such that, for every $x^{\prime} \in E^{\prime}$, the scalar function $\left\langle x^{\prime}, v(\cdot)\right\rangle$ is derivable and its derivative is equal to $\left\langle x^{\prime}, \dot{v}(\cdot)\right\rangle$. The weak derivative \ddot{v} of \dot{v} when it exists is the weak second derivative.

By $\mathbf{W}_{E}^{2,1}([a, b])$ we denote the space of all continuous mappings in $\mathbf{C}_{E}([a, b])$ such that their first derivatives are continuous and their second weak derivatives belong to $\mathbf{L}_{E}^{1}([a, b])$.

For a subset $A \subset E, \operatorname{co}(A)$ denotes its convex hull and $\overline{c o}(A)$ its closed convex hull.

Let X be a vector space, a set $K \subset X$ is called almost convex if for every $\xi \in c o(K)$ there exist λ_{1} and $\lambda_{2}, 0 \leq \lambda_{1} \leq 1 \leq \lambda_{2}$, such that $\lambda_{1} \xi \in K$, $\lambda_{2} \xi \in K$.
Note that every convex set is almost convex.

3. The Main result

We begin with a lemma which summarizes some properties of some Green type function. It will after be used in the study of our boundary value problems (see [1], [7] and [3]).
Lemma 3.1. Let E be a separable Banach space, $v_{0} \in E$ and $G:[a, b] \times$ $[a, b] \rightarrow \mathbb{R}(0 \leq a<b<\infty)$ be the function defined by

$$
G(t, s)=\left\{\begin{array}{rl}
-\frac{1}{b}(b-t)(s-a) & \text { if } \\
-\frac{1}{b}(t-a)(b-s) & \text { if }
\end{array} \quad a \leq t \leq s \leq b\right.
$$

Then the following assertions hold.
(1) If $u \in \mathbf{W}_{E}^{2,1}([a, b])$ with $u(a)=u(b)=v_{0}$, then

$$
u(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) \ddot{u}(s) d s, \quad \forall t \in[a, b]
$$

(2) $G(., s)$ is derivable on $[a, b[$ for every $s \in[a, b]$, except on the diagonal, and its derivative is given by

$$
\frac{\partial G}{\partial t}(t, s)=\left\{\begin{array}{ccc}
\frac{1}{b}(s-a) & \text { if } & a \leq s<t \leq b \\
-\frac{1}{b}(b-s) & \text { if } & a \leq t<s \leq b
\end{array}\right.
$$

EJQTDE, 2011 No. 34, p. 2
(3) $G(.,$.$) and \frac{\partial G}{\partial t}(.,$.$) satisfy$

$$
\begin{equation*}
\sup _{t, s \in[a, b]}|G(t, s)| \leq b, \quad \sup _{t, s \in[a, b], t \neq s}\left|\frac{\partial G}{\partial t}(t, s)\right| \leq 1 . \tag{3.1}
\end{equation*}
$$

(4) For $f \in \mathbf{L}_{E}^{1}([a, b])$ and for the mapping $u_{f}:[a, b] \rightarrow E$ defined by

$$
\begin{equation*}
u_{f}(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f(s) d s, \quad \forall t \in[a, b] \tag{3.2}
\end{equation*}
$$

one has $u_{f}(a)=u_{f}(b)=v_{0}$.
Furthermore, the mapping u_{f} is derivable, and its derivative \dot{u}_{f} satisfies

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{u_{f}(t+h)-u_{f}(t)}{h}=\dot{u}_{f}(t)=\frac{b}{b-a} \int_{a}^{b} \frac{\partial G}{\partial t}(t, s) f(s) d s \tag{3.3}
\end{equation*}
$$

for all $t \in[a, b]$. Consequently, \dot{u}_{f} is a continuous mapping from $[a, b]$ into the space E.
(5) The mapping \dot{u}_{f} is scalarly derivable, that is, there exists a mapping $\ddot{u}_{f}:[a, b] \rightarrow E$ such that, for every $x^{\prime} \in E^{\prime}$, the scalar function $\left\langle x^{\prime}, \dot{u}_{f}().\right\rangle$ is derivable, with $\frac{d}{d t}\left\langle x^{\prime}, \dot{u}_{f}(t)\right\rangle=\left\langle x^{\prime}, \ddot{u}_{f}(t)\right\rangle$, furthermore

$$
\begin{equation*}
\ddot{u}_{f}=f \text { a.e. on }[a, b] . \tag{3.4}
\end{equation*}
$$

Let us mention a useful consequence of Lemma 3.1.
Proposition 3.2. Let E be a separable Banach space and let $f:[a, b] \rightarrow E$ be a continuous mapping (respectively a mapping in $\left.\mathbf{L}_{E}^{1}([a, b])\right)$. Then the mapping

$$
u_{f}(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f(s) d s, \forall t \in[a, b]
$$

is the unique $\mathbf{C}_{E}^{2}([a, b])$-solution (respectively $\mathbf{W}_{E}^{2,1}([a, b])$-solution) to the differential equation

$$
\left\{\begin{array}{c}
\ddot{u}(t)=f(t), \quad \forall t \in[a, b], \\
u(a)=u(b)=v_{0} .
\end{array}\right.
$$

The following is an existence result for a second order differential inclusion with boundary conditions and a convex valued right hand side. It will be used in the proof of our main theorem.
Proposition 3.3. Let E be a finite dimensional space, $F: E \times E \rightrightarrows E$ be a convex compact valued multifunction, upper semicontinuous on $E \times$ E. Suppose that there is a nonnegative function $m \in \mathbf{L}_{\mathbb{R}}^{1}([a, b])$ such that $F(x, y) \subset m(t) \overline{\mathbf{B}}_{E}$ for all $x, y \in[a, b]$. Let $v_{0} \in E$. Then the $\mathbf{W}_{E}^{2,1}([a, b])-$ solutions set of the problem

$$
\left(P_{F}\right)\left\{\begin{array}{c}
\ddot{u}(t) \in F(u(t), \dot{u}(t)), \text { a.e. } t \in[a, b], \\
u(a)=u(b)=v_{0},
\end{array}\right.
$$

EJQTDE, 2011 No. 34, p. 3
is nonempty and compact in $\mathbf{C}_{E}^{1}([a, b])$.
Proof. Step 1. Let

$$
\mathbf{S}=\left\{f \in \mathbf{L}_{E}^{1}([a, b]):\|f(t)\| \leq m(t), \text { a.e. } t \in[a, b]\right\}
$$

and
$\mathbf{X}=\left\{u_{f}:[a, b] \rightarrow E: \quad u_{f}(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f(s) d s, \forall t \in[a, b], f \in \mathbf{S}\right\}$.
Obviously \mathbf{S} and \mathbf{X} are convex. Let us prove that \mathbf{S} is a $\sigma\left(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b])\right)$ compact subset of $\mathbf{L}_{E}^{1}([a, b])$. Indeed, let $\left(f_{n}\right)$ be a sequence of \mathbf{S}. It is clear that $\left(f_{n}\right)$ is bounded in $\mathbf{L}_{E}^{\infty}([a, b])$, taking a subsequence if necessary, we may conclude that $\left(f_{n}\right)$ weakly* or $\sigma\left(\mathbf{L}_{E}^{\infty}([a, b]), \mathbf{L}_{E}^{1}([a, b])\right)$-converges to some mapping $f \in \mathbf{L}_{E}^{\infty}([a, b]) \subset \mathbf{L}_{E}^{1}([a, b])$. Consequently, for all $y(\cdot) \in \mathbf{L}_{E}^{1}([a, b])$ we have

$$
\lim _{n \rightarrow \infty}\left\langle f_{n}(\cdot), y(\cdot)\right\rangle=\langle f(\cdot), y(\cdot)\rangle .
$$

Let $z(\cdot) \in \mathbf{L}_{E}^{\infty}([a, b]) \subset \mathbf{L}_{E}^{1}([a, b])$, then

$$
\lim _{n \rightarrow \infty}\left\langle f_{n}(\cdot), z(\cdot)\right\rangle=\langle f(\cdot), z(\cdot)\rangle .
$$

This shows that $\left(f_{n}\right)$ weakly or $\sigma\left(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b])\right)$-converges to $f(\cdot)$ and that $\|f(t)\| \leq m(t)$ a.e on $[a, b]$ since \mathbf{S} is convex and strongly closed in $\mathbf{L}_{E}^{1}([a, b])$ and hence it is weakly closed in $\mathbf{L}_{E}^{1}([a, b])$.
Now, let us prove that \mathbf{X} is compact in $\mathbf{C}_{E}^{1}([a, b])$ equipped with the norm $\|\cdot\|_{\mathbf{C}^{1}}$. For any $u_{f} \in \mathbf{X}$ and all $t, \tau \in[a, b]$ we have

$$
\begin{aligned}
\left\|u_{f}(t)-u_{f}(\tau)\right\| & \leq \frac{b}{b-a} \int_{a}^{b}|G(t, s)-G(\tau, s)|\|f(s)\| d s \\
& \leq \frac{b}{b-a} \int_{a}^{b}|G(t, s)-G(\tau, s)| m(s) d s
\end{aligned}
$$

and by the relation (3.3) in Lemma 3.1

$$
\begin{aligned}
\left\|\dot{u}_{f}(t)-\dot{u}_{f}(\tau)\right\| & \leq \frac{b}{b-a} \int_{a}^{b}\left|\frac{\partial G}{\partial t}(t, s)-\frac{\partial G}{\partial t}(\tau, s)\right|\|f(s)\| d s \\
& \leq \frac{b}{b-a} \int_{a}^{b}\left|\frac{\partial G}{\partial t}(t, s)-\frac{\partial G}{\partial t}(\tau, s)\right| m(s) d s .
\end{aligned}
$$

Since $m \in \mathbf{L}_{\mathbb{R}}^{1}([a, b])$ and the function G is uniformly continuous we get the equicontinuity of the sets \mathbf{X} and $\left\{\dot{u}_{f}: u_{f} \in \mathbf{X}\right\}$. On the other hand, for any $u_{f} \in \mathbf{X}$ and for all $t \in[a, b]$ we have by the relations (3.1), (3.2) and (3.3)

$$
\left\|u_{f}(t)\right\| \leq\left\|v_{0}\right\|+\frac{b^{2}}{b-a}\|m\|_{\mathbf{L}^{1}} \text { and }\left\|\dot{u}_{f}(t)\right\| \leq \frac{b}{b-a}\|m\|_{\mathbf{L}^{1}}
$$

that is, the sets $\mathbf{X}(t)$ and $\left\{\dot{u}_{f}(t): u_{f} \in \mathbf{X}\right\}$ are relatively compact in the finite dimensional space E. Hence, we conclude that \mathbf{X} is relatively compact

EJQTDE, 2011 No. 34, p. 4
in $\left(\mathbf{C}_{E}^{1}([a, b]),\|\cdot\|_{\mathbf{C}^{1}}\right)$. We claim that \mathbf{X} is closed in $\left(\mathbf{C}_{E}^{1}([a, b]),\|\cdot\|_{\mathbf{C}^{1}}\right)$. Fix any sequence ($\left(u_{f_{n}}\right)$ of \mathbf{X} converging to $u \in \mathbf{C}_{E}^{1}([a, b])$. Then, for each $n \in \mathbb{N}$

$$
u_{f_{n}}(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f_{n}(s) d s, \forall t \in[a, b]
$$

and $f_{n} \in \mathbf{S}$. Since \mathbf{S} is $\sigma\left(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b])\right)$-compact, by extracting a subsequence if necessary we may conclude that $\left(f_{n}\right) \sigma\left(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b])\right)$ converges to $f \in \mathbf{S}$. Putting for all $t \in[a, b]$

$$
u_{f}(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f(s) d s
$$

we obtain for all $z(\cdot) \in \mathbf{L}_{E}^{\infty}([a, b])$ and for all $t \in[a, b]$

$$
\lim _{n \rightarrow \infty}\left\langle f_{n}(\cdot), G(t, \cdot) z(\cdot)\right\rangle=\langle f(\cdot), G(t, \cdot) z(\cdot)\rangle .
$$

Hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{a}^{b}\left\langle G(t, s) f_{n}(s), z(s)\right\rangle d s & =\lim _{n \rightarrow \infty} \int_{a}^{b}\left\langle f_{n}(s), G(t, s) z(s)\right\rangle d s \\
& =\int_{a}^{b}\langle f(s), G(t, s) z(s)\rangle d s \\
& =\int_{a}^{b}\langle G(t, s) f(s), z(s)\rangle d s .
\end{aligned}
$$

In particular, for $z(\cdot)=\chi_{[a, b]}(\cdot) e_{j}$, where $\chi_{[a, b]}(\cdot)$ stands for the characteristic function of $[a, b]$ and $\left(e_{j}\right)$ a basis of E, we obtain

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left\langle G(t, s) f_{n}(s), \chi_{[a, b]}(s) e_{j}\right\rangle d s=\int_{a}^{b}\left\langle G(t, s) f(s), \chi_{[a, b]}(s) e_{j}\right\rangle d s,
$$

or equivalently

$$
\left\langle\lim _{n \rightarrow \infty} \int_{a}^{b} G(t, s) f_{n}(s) d s, e_{j}\right\rangle=\left\langle\int_{a}^{b} G(t, s) f(s) d s, e_{j}\right\rangle
$$

which entails

$$
\lim _{n \rightarrow \infty}\left(v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f_{n}(s) d s\right)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f(s) d s=u_{f}(t)
$$

Consequently, the sequence ($u_{f_{n}}$) converges to u_{f} in $\mathbf{C}_{E}([a, b])$. By the same arguments, we prove that the sequence $\left(\dot{u}_{f_{n}}\right)$ with

$$
\dot{u}_{f_{n}}(t)=\frac{b}{b-a} \int_{a}^{b} \frac{\partial G}{\partial t}(t, s) f_{n}(s) d s, \forall t \in[a, b]
$$

converges to \dot{u}_{f} in $\mathbf{C}_{E}([a, b])$. That is, $\left(u_{f_{n}}\right)$ converges to u_{f} in $\mathbf{C}_{E}^{1}([a, b])$. This shows that \mathbf{X} is compact in $\left(\mathbf{C}_{E}^{1}([a, b]),\|\cdot\|_{\mathbf{C}^{1}}\right)$.

EJQTDE, 2011 No. 34, p. 5

Step 2. Observe that a mapping $u:[a, b] \rightarrow E$ is a $\mathbf{W}_{E}^{2,1}([a, b])$-solution of $\left(P_{F}\right)$ iff there exists $u_{f} \in \mathbf{X}$ and $f(t) \in F\left(u_{f}(t), \dot{u}_{f}(t)\right)$ for a.e $t \in[a, b]$.

For any Lebesgue-measurable mappings $v, w:[a, b] \rightarrow E$, there is a Lesbegue-measurable selection $s \in \mathbf{S}$ such that $s(t) \in F(v(t), w(t))$ a.e. Indeed, there exist sequences $\left(v_{n}\right)$ and $\left(w_{n}\right)$ of simple E-valued functions such that $\left(v_{n}\right)$ converges pointwise to v and $\left(w_{n}\right)$ converges pointwise to w for E endowed by the strong topology. Notice that the multifunctions $F\left(v_{n}(),. w_{n}().\right)$ are Lebesgue-measurable. Let s_{n} be a Lesbegue-measurable selection of $F\left(v_{n}(),. w_{n}().\right)$. As $s_{n}(t) \in F\left(v_{n}(t), w_{n}(t)\right) \subset m(t) \overline{\mathbf{B}}_{E}$ for all $t \in[a, b]$ and \mathbf{S} is $\sigma\left(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b])\right)$-compact in $\mathbf{L}_{E}^{1}([a, b])$, by Eberlein$\breve{S}$ mulian theorem, we may extract from $\left(s_{n}\right)$ a subsequence $\left(s_{n}^{\prime}\right)$ which converges $\sigma\left(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b])\right)$ to some mapping $s \in \mathbf{S}$. Here we may invoke the fact that \mathbf{S} is a weakly compact metrizable set in the separable Banach space $\mathbf{L}_{E}^{1}([a, b])$. Now, application of the Mazur's trick to $\left(s_{n}^{\prime}\right)$ provides a sequence $\left(z_{n}\right)$ with $z_{n} \in \operatorname{co}\left\{s_{m}^{\prime}: m \geq n\right\}$ such that $\left(z_{n}\right)$ converges almost every where to s. Then, for almost every $t \in[a, b]$

$$
\begin{aligned}
s(t) & \in \bigcap_{k \geq 0} \overline{\left\{z_{n}(t): n \geq k\right\}} \\
& \subset \bigcap_{k \geq 0} \overline{\operatorname{co}}\left\{s_{n}^{\prime}(t): n \geq k\right\}
\end{aligned}
$$

As $s_{n}^{\prime}(t) \in F\left(v_{n}(t), w_{n}(t)\right)$, we obtain

$$
\begin{aligned}
s(t) & \in \bigcap_{k \geq 0} \overline{c o}\left(\bigcup_{n \geq k} F\left(v_{n}(t), w_{n}(t)\right)\right) \\
& =\overline{c o}\left(\limsup _{n \rightarrow \infty} F\left(v_{n}(t), w_{n}(t)\right)\right),
\end{aligned}
$$

using the pointwise convergence of $\left(v_{n}(\cdot)\right)$ and $\left(w_{n}(\cdot)\right)$ to $v(\cdot)$ and $(w(\cdot))$ respectively, the upper semicontinuity of F and the compactness of its values we get

$$
s(t) \in \overline{c o}(F(v(t), w(t)))=F(v(t), w(t))
$$

since $F(v(t), w(t))$ is a closed convex set.
Step 3. Let us consider the multifunction $\Phi: \mathbf{S} \rightrightarrows \mathbf{S}$ defined by

$$
\Phi(f)=\left\{g \in \mathbf{S}: g(t) \in F\left(u_{f}(t), \dot{u}_{f}(t)\right) \text { a.e. } t \in[a, b]\right\}
$$

where $u_{f} \in \mathbf{X}$. In view of Step $2, \Phi(f)$ is a nonempty set. These considerations lead us to the application of the Kakutani-ky Fan fixed point theorem to the multifunction $\Phi($.$) . It is clear that \Phi(f)$ is a convex weakly compact subset of \mathbf{S}. We need to check that Φ is upper semicontinuous on the convex weakly compact metrizable set \mathbf{S}. Equivalently, we need to prove that the graph of Φ is sequentially weakly compact in $\mathbf{S} \times \mathbf{S}$. Let $\left(f_{n}, g_{n}\right)$ be a sequence in the graph of $\Phi .\left(f_{n}\right) \subset \mathbf{S}$. By extracting a subsequence we may EJQTDE, 2011 No. 34, p. 6
suppose that $\left(f_{n}\right) \sigma\left(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b])\right)$ converges to $f \in \mathbf{S}$. It follows that the sequences ($u_{f_{n}}$) and ($\dot{u}_{f_{n}}$) converge pointwise to u_{f} and \dot{u}_{f} respectively. On the other hand, $g_{n} \in \Phi\left(f_{n}\right) \subset \mathbf{S}$. We may suppose that $\left(g_{n}\right)$ converges weakly to some element $g \in \mathbf{S}$. As $g_{n}(t) \in F\left(u_{f_{n}}(t), \dot{u}_{f_{n}}(t)\right)$ a.e., by repeating the arguments given in Step 2, we obtain that $g(t) \in F\left(u_{f}(t), \dot{u}_{f}(t)\right)$ a.e. This shows that the graph of Φ is weakly compact in the weakly compact set $\mathbf{S} \times \mathbf{S}$. Hence Φ admits a fixed point, that is, there exists $f \in \mathbf{S}$ such that $f \in \Phi(f)$ and so $f(t) \in F\left(u_{f}(t), \dot{u}_{f}(t)\right)$ for almost every $t \in[a, b]$. Equivalently (see Lemma 3.1) $\ddot{u}_{f}(t) \in F\left(u_{f}(t), \dot{u}_{f}(t)\right)$ for almost evert $t \in[a, b]$ with $u_{f}(a)=\dot{u}_{f}(b)=v_{0}$, what in turn, means that the mapping u_{f} is a $\mathbf{W}_{E}^{2,1}([a, b])$-solution of the problem $\left(P_{F}\right)$. Compactness of the solutions set follows easily from the compactness in $\mathbf{C}_{E}^{1}([a, b])$ of \mathbf{X} given in Step 1, and the preceding arguments.

Now, we present an existence result of solutions to the problem $\left(P_{F}\right)$ if we suppose on F a linear growth condition.

Theoreme 3.4. Let E be a finite dimensional space and $F: E \times E \rightrightarrows E$ be a convex compact valued multifunction, upper semicontinuous on $E \times E$. Suppose that there is two nonnegative functions p and q in $\mathbf{L}_{\mathbb{R}}^{1}([a, b])$ with $\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}<\frac{b-a}{b^{2}}$ such that $F(x, y) \subset(p(t)\|x\|+b q(t)\|y\|) \overline{\mathbf{B}}_{E}$ for all $t \in[a, b]$ and for all $(x, y) \in E \times E$. Let $v_{0} \in E$. Then the $\mathbf{W}_{E}^{2,1}([a, b])$-solutions set of the problem $\left(P_{F}\right)$ is nonempty and compact in $\mathbf{C}_{E}^{1}([a, b])$.

For the proof of our Theorem we need the following Lemma.
Lemma 3.5. Let E be a finite dimensional space. Suppose that the hypotheses of Theorem 3.4 are satisfied. If u is a solution in $\mathbf{W}_{E}^{2,1}([a, b])$ of the problem $\left(P_{F}\right)$, then for all $t \in[a, b]$ we have

$$
\|u(t)\| \leq \alpha, \quad\|\dot{u}(t)\| \leq \frac{\alpha}{b}
$$

where

$$
\alpha=\frac{\left\|v_{0}\right\|}{1-\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbf{R}}^{1}}} .
$$

Proof. Suppose that $u:[a, b] \rightarrow E$ is a $\mathbf{W}_{E}^{2,1}([a, b])$-solution of $\left(P_{F}\right)$. Then, there exists a measurable mapping $f:[a, b] \rightarrow E$ such that $f(t) \in$ $F\left(u_{f}(t), \dot{u}_{f}(t)\right)$ for almost every $t \in[a, b]$ and

$$
u(t)=u_{f}(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f(s) d s \forall t \in[a, b] .
$$

EJQTDE, 2011 No. 34, p. 7

Consequently, for all $t \in[a, b]$

$$
\begin{aligned}
\|u(t)\| & =\left\|v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f(s) d s\right\| \\
& \leq\left\|v_{0}\right\|+\frac{b}{b-a} \int_{a}^{b}|G(t, s)|\|f(s)\| d s \\
& \leq\left\|v_{0}\right\|+\frac{b}{b-a} \int_{a}^{b} b(p(s)\|u(s)\|+b q(s)\|\dot{u}(s)\|) d s \\
& \leq\left\|v_{0}\right\|+\frac{b}{b-a} \int_{a}^{b} b\left(p(s)\|u\|_{\mathbf{C}_{E}^{1}}+q(s)\|u\|_{\mathbf{C}_{E}^{1}}\right) d s \\
& \leq\left\|v_{0}\right\|+\frac{b^{2}}{b-a}\|u\|_{\mathbf{C}_{E}^{1}} \int_{a}^{b}(p(s)+q(s)) d s
\end{aligned}
$$

and hence,

$$
\|u(t)\| \leq\left\|v_{0}\right\|+\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}\|u\|_{\mathbf{C}_{E}^{1}}
$$

In the same way we have

$$
\begin{aligned}
\|\dot{u}(t)\| & \left.=\left\|\frac{b}{b-a} \int_{a}^{b} \frac{\partial G}{\partial t}(t, s) f(s) d s\right\| \leq \frac{b}{b-a} \int_{a}^{b} \right\rvert\, \frac{\partial G}{\partial t}(t, s)\| \| f(s) \| d s \\
& \leq \frac{b}{b-a} \int_{a}^{b}(p(s)\|u(s)\|+b q(s)\|\dot{u}(s)\|) d s \leq \frac{b}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}\|u\|_{\mathbf{C}_{E}^{1}}
\end{aligned}
$$

and hence

$$
b\|\dot{u}(t)\| \leq \frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}\|u\|_{\mathbf{C}_{E}^{1}} \leq\left\|v_{0}\right\|+\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}\|u\|_{\mathbf{C}_{E}^{1}} .
$$

These last inequalities show that

$$
\|u\|_{\mathbf{C}_{E}^{1}} \leq\left\|v_{0}\right\|+\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}\|u\|_{\mathbf{C}_{E}^{1}}
$$

or

$$
\left(1-\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}\right)\|u\|_{\mathbf{C}_{E}^{1}} \leq\left\|v_{0}\right\|
$$

equivalently

$$
\|u\|_{\mathbf{C}_{E}^{1}} \leq \frac{\left\|v_{0}\right\|}{1-\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}}=\alpha
$$

By the definition of $\|u\|_{\mathbf{C}_{E}^{1}}$ we conclude that for all $t \in[a, b]$

$$
\|u(t)\| \leq \alpha \quad \text { and } \quad\|\dot{u}(t)\| \leq \frac{\alpha}{b}
$$

EJQTDE, 2011 No. 34, p. 8

Proof of Theorem 3.4. Let us consider the mapping $\varphi_{\kappa}: E \rightarrow E$ defined by

$$
\varphi_{\kappa}(x)=\left\{\begin{array}{l}
\|x\| \text { if }\|x\| \leq \kappa \\
\frac{\kappa x}{\|x\|} \text { if }\|x\|>\kappa,
\end{array}\right.
$$

and consider the multifunction $F_{0}: E \times E \rightrightarrows E$ defined by

$$
F_{0}(x, y)=F\left(\varphi_{\alpha}(x), \varphi_{\frac{\alpha}{b}}(y)\right)
$$

Then F_{0} inherits the hypotheses on F, and furthermore, for all $(x, y) \in E \times E$

$$
\begin{aligned}
F_{0}(x, y) & =F\left(\varphi_{\alpha}(x), \varphi_{\frac{\alpha}{b}}(y)\right) \\
& \subset\left(p(t)\left\|\varphi_{\alpha}(x)\right\|+b q(t)\left\|\varphi_{\frac{\alpha}{b}}(y)\right\|\right) \overline{\mathbf{B}}_{E} \\
& \subset\left(p(t) \alpha+b \frac{1}{b} q(t) \alpha\right) \overline{\mathbf{B}}_{E}=\alpha(p(t)+q(t)) \overline{\mathbf{B}}_{E}=\beta(t) \overline{\mathbf{B}}_{E}
\end{aligned}
$$

Consequently, F_{0} satisfies all the hypotheses of Proposition 3.3. Hence, we conclude the existence of a $\mathbf{W}_{E}^{2,1}([a, b])$-solution of the problem $\left(P_{F_{0}}\right)$.
Now, let us prove that u is a solution of $\left(P_{F_{0}}\right)$ if and only if u is a solution of $\left(P_{F}\right)$.
If u is a solution of $\left(P_{F_{0}}\right)$, there exists a measurable mapping f_{0} such that $u=u_{f_{0}}$ and $f_{0}(t) \in F_{0}(u(t), \dot{u}(t))$, a.e., with for almost every $t \in[a, b]$

$$
\left\|f_{0}(t)\right\| \leq \beta(t)=\alpha(p(t)+q(t))
$$

Using this inequality and the fact that for all $t \in[a, b]$

$$
u(t)=v_{0}+\frac{b}{b-a} \int_{a}^{b} G(t, s) f_{0}(s) d s, \text { and } \dot{u}(t)=\frac{b}{b-a} \int_{a}^{b} \frac{\partial G}{\partial t}(t, s) f_{0}(s) d s
$$

we obtain

$$
\begin{aligned}
\|u(t)\| & \leq\left\|v_{0}\right\|+\frac{b^{2}}{b-a}\|\beta\|_{\mathbf{L}_{\mathbb{R}}^{1}}=\left\|v_{0}\right\|+\frac{b^{2}}{b-a} \alpha\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}} \\
& =\left\|v_{0}\right\|+\left(\frac{b^{2}}{b-a}\right) \frac{\left\|v_{0}\right\|}{1-\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}=\frac{\left\|v_{0}\right\|}{1-\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}}=\alpha,
\end{aligned}
$$

and

$$
\begin{aligned}
\|\dot{u}(t)\| & \leq \frac{b}{b-a}\|\beta\|_{\mathbf{L}_{\mathbb{R}}^{1}}=\frac{b}{b-a} \alpha\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}=\left(\frac{b}{b-a}\right) \frac{\left\|v_{0}\right\|}{1-\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}}\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}} \\
& <\left(\frac{b}{b-a}\right)\left(\frac{\left\|v_{0}\right\|}{1-\frac{b^{2}}{b-a}\|p+q\|_{\mathbf{L}_{\mathbb{R}}}}\right)\left(\frac{b-a}{b^{2}}\right)=\frac{\alpha}{b}
\end{aligned}
$$

These last relations show that $\varphi_{\alpha}(u(t))=u(t)$ and $\varphi_{\frac{\alpha}{b}}(\dot{u}(t))=\dot{u}(t)$, or equivalently $F_{0}(u(t), \dot{u}(t))=F(u(t), \dot{u}(t))$. Consequently, u is a solution of $\left(P_{F}\right)$.

EJQTDE, 2011 No. 34, p. 9

Suppose now that u is a solution of $\left(P_{F}\right)$. By Lemma 3.5, we have for all $t \in[a, b]$

$$
\|u(t)\| \leq \alpha \text { and }\|\dot{u}(t)\| \leq \frac{\alpha}{b} .
$$

Then, $F(u(t), \dot{u}(t))=F_{0}(u(t), \dot{u}(t))$, that is, u is a solution of $\left(P_{F_{0}}\right)$.
Now we are able to give our main result.
Theoreme 3.6. Let E be a finite dimensional space and $F: E \times E \rightrightarrows E$ be an almost convex compact valued multifunction, upper semicontinuous on $E \times E$ and satisfying the following assumptions:
(1) there is two nonnegative functions $p, q \in \mathbf{L}_{\mathbb{R}}^{1}([a, b])$, satisfying $\|p+q\|_{\mathbf{L}_{\mathbb{R}}^{1}}<\frac{b-a}{b^{2}}$, such that $F(x, y) \subset(p(t)\|x\|+b q(t)\|y\|) \overline{\mathbf{B}}_{E}$ for all $(x, y) \in E \times E$,
(2) $F(x, \xi y) \subseteq \xi F(x, y)$ for all $(x, y) \in E \times E$ and for every $\xi>0$.

Let $v_{0} \in E$. Then there is at least $a \mathbf{W}_{E}^{2,1}([a, b])$-solution of the problem $\left(P_{F}\right)$.

For the proof we need the following result.
Theoreme 3.7. Let $F: E \times E \rightrightarrows E$ be a multifunction upper semicontinuous on $E \times E$. Suppose that the assumption (2) in Theorem 3.6 is also satisfied. Let $v_{0} \in E$ and let $x:[a, b] \rightarrow E$, be a solution of the problem

$$
\left(P_{c o(F)}\right)\left\{\begin{array}{c}
\ddot{u}(t) \in c o(F(u(t), \dot{u}(t))), \text { a.e. } t \in[a, b], \\
u(a)=u(b)=v_{0},
\end{array}\right.
$$

and assume that there are two constants λ_{1} and λ_{2}, satisfying $0 \leq \lambda_{1} \leq 1 \leq$ λ_{2}, such that for almost every $t \in[a, b]$, we have

$$
\lambda_{1} \ddot{x}(t) \in F(x(t), \dot{x}(t)) \text { and } \lambda_{2} \ddot{x}(t) \in F(x(t), \dot{x}(t)) .
$$

Then there exists $t=t(\tau)$, a nondecreasing absolutely continuous map of the interval $[a, b]$ onto itself, such that the map $\tilde{x}(\tau)=x(t(\tau))$ is a solution of the problem $\left(P_{F}\right)$. Moreover $\tilde{x}(a)=\tilde{x}(b)=v_{0}$.

Proof. Step 1. Let $[\alpha, \beta](0 \leq \alpha<\beta<+\infty)$ be an interval, and assume that there exist two constants λ_{1}, λ_{2}, with the properties stated above.
Assume that $\lambda_{1}>0$. We claim that there exist two measurable subsets of $[\alpha, \beta]$, having characteristic functions \mathcal{X}_{1} and \mathcal{X}_{2} such that $\mathcal{X}_{1}+\mathcal{X}_{2}=$ $\mathcal{X}_{[\alpha, \beta]}$, and an absolutely continuous function $s=s(\tau)$ on $[\alpha, \beta]$, satisfying $s(\alpha)-s(\beta)=\alpha-\beta$, such that

$$
\dot{s}(\tau)=\frac{1}{\lambda_{1}} \mathcal{X}_{1}(\tau)+\frac{1}{\lambda_{2}} \mathcal{X}_{2}(\tau) .
$$

EJQTDE, 2011 No. 34, p. 10

Indeed, set

$$
\gamma=\left\{\begin{array}{l}
\frac{1}{2} \text { when } \lambda_{1}=\lambda_{2}=1 \\
\frac{\lambda_{2}-1}{\lambda_{2}-\lambda_{1}} \text { otherwise }
\end{array}\right.
$$

With this definition we have that $0 \leq \gamma \leq 1$ and that both equalities

$$
1=\gamma+(1-\gamma)=\gamma \lambda_{1}+(1-\gamma) \lambda_{2}
$$

In particular, we have

$$
\int_{\alpha}^{\beta} 1 d t=\int_{\alpha}^{\beta}\left[\frac{\gamma \lambda_{1}}{\lambda_{1}}+\frac{(1-\gamma) \lambda_{2}}{\lambda_{2}}\right] d t
$$

Applying Liapunov's theorem on the range of measures, to infer the existence of two subsets having characteristic functions $\mathcal{X}_{1}(),. \mathcal{X}_{2}($.$) such that \mathcal{X}_{1}+$ $\mathcal{X}_{2}=\mathcal{X}_{[\alpha, \beta]}$ and with the property that

$$
\int_{\alpha}^{\beta} 1 d t=\int_{\alpha}^{\beta}\left[\frac{1}{\lambda_{1}} \mathcal{X}_{1}(t)+\frac{1}{\lambda_{2}} \mathcal{X}_{2}(t)\right] d t
$$

Define $\dot{s}(\tau)=\frac{1}{\lambda_{1}} \mathcal{X}_{1}(\tau)+\frac{1}{\lambda_{2}} \mathcal{X}_{2}(\tau)$. Then $\int_{\alpha}^{\beta} \dot{s}(\tau) d \tau=\beta-\alpha$.
Step 2. (a) Consider

$$
C=\{\tau \in[a, b]: \quad 0 \in F(x(\tau), \dot{x}(\tau))\}
$$

We have that C is a closed set. Indeed, let $\left(\tau_{n}\right)$ be a sequence in C converging to $\tau \in[a, b]$. Then, for each $n \in \mathbb{N}$,

$$
0 \in F\left(x\left(\tau_{n}\right), \dot{x}\left(\tau_{n}\right)\right)
$$

Since F is upper semicontinuous with compact values we have that it's graph is closed, and since $x(\cdot)$ and $\dot{x}(\cdot)$ are continuous we get $0 \in F(x(\tau), \dot{x}(\tau))$, that is C is closed.
(b) Consider the case in which C is empty. In this case, it cannot be that $\lambda_{1}=0$, and the Step 1 can be applied to the interval $[a, b]$. Set $s(\tau)=a+$ $\int_{a}^{\tau} \dot{s}(\omega) d \omega, s$ is increasing and we have $s(a)=a$ and $s(b)=a+\int_{a}^{b} \dot{s}(\omega) d \omega=$ $a+b-a=b$, that is s maps $[a, b]$ onto itself. Let $t:[a, b] \rightarrow[a, b]$ be its inverse, so $t(a)=a ; t(b)=b$, and we have $\frac{d}{d \tau} s(t(\tau))=\dot{s}(t(\tau)) \dot{t}(\tau)=1$. Then, $\dot{t}(\tau)=\frac{1}{\dot{s}(t(\tau))}=\lambda_{1} \mathcal{X}_{1}(t(\tau))+\lambda_{2} \mathcal{X}_{2}(t(\tau))$, and $\ddot{t}(\tau)=0$. Consider the map $\tilde{x}(\tau)=x(t(\tau))$. We have $\frac{d}{d \tau} \tilde{x}(\tau)=\dot{t}(\tau) \dot{x}(t(\tau))$, and $\frac{d^{2}}{d \tau^{2}} \tilde{x}(\tau)=$

$$
\begin{aligned}
&(\dot{t}(\tau))^{2} \ddot{x}(t(\tau))+\ddot{t}(\tau) \\
&\left.\frac{1}{\dot{t}(\tau)} \frac{d^{2}}{d \tau^{2}} \tilde{x}(\tau)\right)=\ddot{x}(t(\tau))(\dot{t}(\tau))^{2} . \text { Hence }=\ddot{x}(t(\tau))(\dot{t}(\tau))=\ddot{x}(t(\tau))\left[\lambda_{1} \mathcal{X}_{1}(t(\tau))+\lambda_{2} \mathcal{X}_{2}(t(\tau))\right] \\
& \in F(x(t(\tau)), \dot{x}(t(\tau)))=F\left(\tilde{x}(\tau), \frac{1}{\dot{t}(\tau)} \dot{\tilde{x}}(\tau)\right)
\end{aligned}
$$

and by the assumption 2 , we have

$$
F\left(\tilde{x}(\tau), \frac{1}{\dot{t}(\tau)} \dot{\tilde{x}}(\tau)\right) \subseteq \frac{1}{\dot{t}(\tau)} F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau))
$$

then we get

$$
\frac{1}{\dot{t}(\tau)} \frac{d^{2}}{d \tau^{2}} \tilde{x}(\tau) \in \frac{1}{\dot{t}(\tau)} F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau))
$$

Consequently

$$
\frac{d^{2}}{d \tau^{2}} \tilde{x}(\tau) \in F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau))
$$

(c) Now we shall assume that C is nonempty. Let $c=\sup \{\tau ; \tau \in C\}$, there is a sequence $\left(\tau_{n}\right)$ in C such that $\lim _{n \rightarrow \infty} \tau_{n}=c$. Since C is closed we get $c \in C$. The complement of C is open relative to $[a, b]$, it consists of at most countably many nonoverlapping open intervals $] a_{i}, b_{i}[$, with the possible exception of one of the form $\left[a_{i_{i}}, b_{i_{i}}\left[\right.\right.$ with $a_{i_{i}}=a$ and one of the form $\left.] a_{i_{f}}, b_{i_{f}}\right]$ with $a_{i_{f}}=c$. For each i, apply Step 1 to the interval $] a_{i}, b_{i}[$ to infer the existence of K_{1}^{i} and K_{2}^{i}, two subsets of] a_{i}, b_{i} [with characteristic functions $\mathcal{X}_{1}^{i}(),. \mathcal{X}_{2}^{i}($.$) such that \mathcal{X}_{1}^{i}+\mathcal{X}_{2}^{i}=\mathcal{X}_{a_{i}, b_{i}}$, setting

$$
\dot{s}(\tau)=\frac{1}{\lambda_{1}} \mathcal{X}_{1}^{i}(\tau)+\frac{1}{\lambda_{2}} \mathcal{X}_{2}^{i}(\tau)
$$

we obtain

$$
\int_{a_{i}}^{b_{i}} \dot{s}(\omega) d \omega=b_{i}-a_{i}
$$

(d) On $[a, c]$ set

$$
\dot{s}(\tau)=\frac{1}{\lambda_{2}} \mathcal{X}_{C}(\tau)+\sum_{i}\left(\frac{1}{\lambda_{1}} \mathcal{X}_{1}^{i}(\tau)+\frac{1}{\lambda_{2}} \mathcal{X}_{2}^{i}(\tau)\right)
$$

where the sum is over all intervals contained in $[a, c]$, i.e., with the exception of $] c, b]$. We have that

$$
\int_{a}^{c} \dot{s}(\omega) d \omega=\kappa \leq c-a
$$

since $\lambda_{2} \geq 1$ and $\int_{a_{i}}^{b_{i}} \dot{s}(\omega) d \omega=b_{i}-a_{i}$. Setting $s(\tau)=a+\int_{a}^{\tau} \dot{s}(\omega) d \omega$, we obtain that s is an invertible map from $[a, c]$ to $[a, \kappa+a]$.

EJQTDE, 2011 No. 34, p. 12
(e) Define $t:[a, \kappa+a] \rightarrow[a, c]$ to be the inverse of $s($.$) . Extend t($.$) as an$ absolutely continuous map $\tilde{t}($.) on $[a, c]$, setting $\dot{\tilde{t}}(\tau)=0$ for $\tau \in] \kappa+a, c]$. We claim that the function $\tilde{x}(\tau)=x(\tilde{t}(\tau))$ is a solution to the problem $\left(P_{F}\right)$ on the interval $[a, c]$. Moreover, we claim that it satisfies $\tilde{x}(c)=x(c)$.
Observe that, as in (b), we have that for $\tau \in[a, \kappa+a], \quad \tilde{t}(\tau)=t(\tau)$ is invertible, such that $\dot{t}(\tau)=\lambda_{2} \mathcal{X}_{C}(\tau)+\sum_{i}\left(\lambda_{1} \mathcal{X}_{1}^{i}(\tau)+\lambda_{2} \mathcal{X}_{2}^{i}(\tau)\right)$. Since

$$
\frac{d^{2}}{d \tau^{2}} \tilde{x}(\tau)=(\dot{t}(\tau))^{2} \ddot{x}(t(\tau))+\ddot{t}(\tau) \dot{x}(t(\tau))=\ddot{x}(t(\tau))(\dot{t}(\tau))^{2}
$$

we get

$$
\begin{aligned}
\frac{1}{\dot{t}(\tau)} \frac{d^{2} \tilde{x}(\tau)}{d \tau^{2}} & =\ddot{x}(t(\tau))(\dot{t}(\tau))=\left[\lambda_{2} \mathcal{X}_{C}(t(\tau))+\sum_{i}\left(\lambda_{1} \mathcal{X}_{1}^{i}(t(\tau))+\lambda_{2} \mathcal{X}_{2}^{i}(t(\tau))\right)\right] \ddot{x}(t(\tau)) \\
& \in F(x(t(\tau)), \dot{x}(t(\tau)))=F\left(\tilde{x}(\tau), \frac{1}{\dot{t}(\tau)} \dot{\tilde{x}}(\tau)\right) \\
& \subseteq \frac{1}{\dot{t}(\tau)} F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau))
\end{aligned}
$$

Consequently

$$
\frac{d^{2}}{d \tau^{2}} \tilde{x}(\tau) \in F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau))
$$

In particular, from $t(\kappa+a)=c$ and $\dot{\widetilde{t}}(\tau)=0$ for all $\tau \in] \kappa+a, c]$ we obtain

$$
\tilde{t}(\tau)=\tilde{t}(\kappa+a)=t(\kappa+a), \forall \tau \in] \kappa+a, c]
$$

then

$$
\tilde{x}(\kappa+a)=x(\tilde{t}(\kappa+a))=x(\tilde{t}(\tau))=\tilde{x}(\tau), \forall \tau \in] \kappa+a, c]
$$

so, on $] \kappa+a, c], \tilde{x}$ is constant, and since $c \in C$ we have

$$
\frac{d^{2}}{d \tau^{2}} \tilde{x}(\tau)=0 \in F(x(c), \dot{x}(c))=F\left(\tilde{x}(\kappa+a), \frac{1}{\dot{t}(\kappa+a)} \dot{\tilde{x}}(\kappa+a)\right) \subset F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau))
$$

This proves the claim.
(f) It is left to define the solution on $[c, b]$. On it, $\lambda_{1}>0$ and the construction of Step 1 and (b) can be repeated to find a solution to problem $\left(P_{F}\right)$ on $[c, b]$. This completes the proof of the theorem.

Proof of the Theorem 3.6. In view of Theorem 3.4, and since $c o(F)$: $E \times E \rightrightarrows E$ is a multifunction with compact values, upper semicontinuous on $E \times E$ and furthermore, for all $(x, y) \in E \times E$,

$$
c o(F(x, y)) \subset(p(t)\|x\|+b q(t)\|y\|) c o\left(\overline{\mathbf{B}}_{E}\right)=(p(t)\|x\|+b q(t)\|y\|) \overline{\mathbf{B}}_{E}
$$

we conclude the existence of a $\mathbf{W}_{E}^{2,1}([a, b])$-solution x of the problem $\left(P_{c o(F)}\right)$. By the almost convexity of the values of F, there exist two constants λ_{1} and
λ_{2}, satisfying $0 \leq \lambda_{1} \leq 1 \leq \lambda_{2}$, such that, for almost every $t \in[a, b]$, we have

$$
\lambda_{1} \ddot{x}(t) \in F(x(t), \dot{x}(t)) \quad \text { and } \quad \lambda_{2} \ddot{x}(t) \in F(x(t), \dot{x}(t)) .
$$

Using Theorem 3.7, we conclude the existence of a $\mathbf{W}_{E}^{2,1}([a, b])$-solution of the problem $\left(P_{F}\right)$.
This completes the proof of our main result.

References

[1] D. Azzam-Laouir, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusion in Banach spaces, Control and cybernetics, vol. 31 (2002) No.3.
[2] D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, Topological Methods in Nonlinear Analysis. Volume 35, 2010, 305-317.
[3] S.R. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary value problems, Academic Press, Inc. New York and London, 1974.
[4] A. Cellina and G. Colombo, On a classical problem of the calculus of variations without convexity assumption, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 7 (1990), pp. 97106.
[5] A. Cellina and A. Ornelas, Existence of solutions to differential inclusion and optimal control problems in the autonomous case, Siam J. Control Optim. Vol. 42, (2003) No. 1, pp. 260-265.
[6] A. F. Filippov, On certain questions in the theory of optimal control, Vestnik. Univ., Ser. Mat. Mech., 2(1959), pp. 25-32; translated in SIAM J. Control, 1(1962), pp. 76-84.
[7] A. G. Ibrahim and A. M. M. Gomaa, Existence theorems for functional multivalued three-point boundary value problem of second order, J. Egypt. Math. Soc. 8(2) (2000), 155-168.
(Received December 12, 2010)

D. AFFANE

Laboratoire de Mathématiques Pures et Appliquées, Université de Jijel, Algérie
E-mail address: affanedoria@yahoo.fr
D.L. AZZAM

Laboratoire de Mathématiques Pures et Appliquées, Université de Jijel, Algérie E-mail address: azzam-d@yahoo.com

