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SECOND-ORDER DIFFERENTIAL INCLUSIONS WITH

ALMOST CONVEX RIGHT-HAND SIDES

D. AFFANE AND D. AZZAM-LAOUIR

Abstract. We study the existence of solutions of a boundary second
order differential inclusion under conditions that are strictly weaker than
the usual assumption of convexity on the values of the right-hand side.

1. Introduction

The existence of solutions for second order differential inclusions of the
form ü(t) ∈ F (t, u(t), u̇(t))(t ∈ [0, 1]) with boundary conditions, where F :
[0, 1]×E×E ⇉ E is a convex compact multifunction, Lebesgue-measurable
on [0, 1], upper semicontinuous on E × E and integrably compact in finite
and infinite dimensional spaces has been studied by many authors see for
example [1],[7]. Our aim in this article is to provide an existence result
for the differential inclusion with two-point boundary conditions in a finite
dimensional space E of the form

(PF )

{
ü(t) ∈ F (u(t), u̇(t)), a.e. t ∈ [a, b], (0 ≤ a < b < +∞)

u(a) = u(b) = v0,

where F : E×E ⇉ E is an upper semicontinuous multifunction with almost
convex values, i.e., the convexity is replaced by a strictly weaker condition.

For the first order differential inclusions with almost convex values we
refer the reader to [5].

After some preliminaries, we present a result which is the existence of
W

2,1
E ([a, b])-solutions of (PF ) where F is a convex valued multifunction.

Using this convexified problem we show that the differential inclusion (PF )
has solutions if the values of F are almost convex. As an example of the
almost convexity of the values of the right-hand side, notice that, if F (t, x, y)
is a convex set not containing the origin then the boundary of F (x, y),
∂F (x, y), is almost convex.

2. Notation and preliminaries

Throughout, (E, ‖.‖) is a real separable Banach space and E′ is its topo-
logical dual, BE is the closed unit ball of E and σ(E,E′) the weak topology
on E. We denote by L1

E([a, b]) the space of all Lebesgue-Bochner integrable
E valued mappings defined on [a, b].
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Let CE([a, b]) be the Banach space of all continuous mappings u : [a, b] →
E endowed with the sup-norm, and C1

E([a, b]) be the Banach space of all
continuous mappings u : [a, b] → E with continuous derivative, equipped
with the norm

‖u‖C1 = max{max
t∈[a,b]

‖u(t)‖, bmax
t∈[a,b]

‖u̇(t)‖}.

Recall that a mapping v : [a, b] → E is said to be scalarly derivable when
there exists some mapping v̇ : [a, b] → E (called the weak derivative of v)
such that, for every x′ ∈ E′, the scalar function 〈x′, v(·)〉 is derivable and its
derivative is equal to 〈x′, v̇(·)〉. The weak derivative v̈ of v̇ when it exists is
the weak second derivative.

By W
2,1
E ([a, b]) we denote the space of all continuous mappings in CE([a, b])

such that their first derivatives are continuous and their second weak deriva-
tives belong to L1

E([a, b]).
For a subset A ⊂ E, co(A) denotes its convex hull and co(A) its closed

convex hull.
Let X be a vector space, a set K ⊂ X is called almost convex if for every

ξ ∈ co(K) there exist λ1 and λ2, 0 ≤ λ1 ≤ 1 ≤ λ2, such that λ1ξ ∈ K,
λ2ξ ∈ K.
Note that every convex set is almost convex.

3. The Main result

We begin with a lemma which summarizes some properties of some Green
type function. It will after be used in the study of our boundary value
problems (see [1], [7] and [3]).

Lemma 3.1. Let E be a separable Banach space, v0 ∈ E and G : [a, b] ×
[a, b] → R (0 ≤ a < b < ∞) be the function defined by

G(t, s) =





−
1

b
(b − t)(s − a) if a ≤ s ≤ t ≤ b,

−
1

b
(t − a)(b − s) if a ≤ t ≤ s ≤ b.

Then the following assertions hold.
(1) If u ∈ W

2,1
E ([a, b]) with u(a) = u(b) = v0, then

u(t) = v0 +
b

b − a

∫ b

a

G(t, s)ü(s)ds, ∀t ∈ [a, b].

(2) G(., s) is derivable on [a, b[ for every s ∈ [a, b], except on the diagonal,
and its derivative is given by

∂G

∂t
(t, s) =





1

b
(s − a) if a ≤ s < t ≤ b

−
1

b
(b − s) if a ≤ t < s ≤ b.
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(3) G(., .) and
∂G

∂t
(., .) satisfy

sup
t,s∈[a,b]

|G(t, s)| ≤ b, sup
t,s∈[a,b],t6=s

|
∂G

∂t
(t, s)| ≤ 1. (3.1)

(4) For f ∈ L1
E([a, b]) and for the mapping uf : [a, b] → E defined by

uf (t) = v0 +
b

b − a

∫ b

a

G(t, s)f(s)ds, ∀t ∈ [a, b] (3.2)

one has uf (a) = uf (b) = v0.

Furthermore, the mapping uf is derivable, and its derivative u̇f satisfies

lim
h→0

uf (t + h) − uf (t)

h
= u̇f (t) =

b

b − a

∫ b

a

∂G

∂t
(t, s)f(s)ds, (3.3)

for all t ∈ [a, b]. Consequently, u̇f is a continuous mapping from [a, b] into
the space E.
(5) The mapping u̇f is scalarly derivable, that is, there exists a mapping
üf : [a, b] → E such that, for every x′ ∈ E′, the scalar function 〈x′, u̇f (.)〉 is

derivable, with
d

dt
〈x′, u̇f (t)〉 = 〈x′, üf (t)〉, furthermore

üf = f a.e. on [a, b]. (3.4)

Let us mention a useful consequence of Lemma 3.1.

Proposition 3.2. Let E be a separable Banach space and let f : [a, b] → E

be a continuous mapping (respectively a mapping in L1
E([a, b])). Then the

mapping

uf (t) = v0 +
b

b − a

∫ b

a

G(t, s)f(s)ds, ∀t ∈ [a, b]

is the unique C2
E([a, b])-solution (respectively W

2,1
E ([a, b])-solution) to the

differential equation
{

ü(t) = f(t), ∀t ∈ [a, b],
u(a) = u(b) = v0.

The following is an existence result for a second order differential inclusion
with boundary conditions and a convex valued right hand side. It will be
used in the proof of our main theorem.

Proposition 3.3. Let E be a finite dimensional space, F : E × E ⇉ E

be a convex compact valued multifunction, upper semicontinuous on E ×
E. Suppose that there is a nonnegative function m ∈ L1

R
([a, b]) such that

F (x, y) ⊂ m(t)BE for all x, y ∈ [a, b]. Let v0 ∈ E. Then the W
2,1
E ([a, b])-

solutions set of the problem

(PF )

{
ü(t) ∈ F (u(t), u̇(t)), a.e. t ∈ [a, b],

u(a) = u(b) = v0,
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is nonempty and compact in C1
E([a, b]).

Proof. Step 1. Let

S = {f ∈ L1
E([a, b]) : ‖f(t)‖ ≤ m(t), a.e. t ∈ [a, b]}

and

X = {uf : [a, b] → E : uf (t) = v0+
b

b − a

∫ b

a

G(t, s)f(s)ds,∀t ∈ [a, b], f ∈ S}.

Obviously S and X are convex. Let us prove that S is a σ(L1
E([a, b]),L∞

E ([a, b]))-
compact subset of L1

E([a, b]). Indeed, let (fn) be a sequence of S. It is clear
that (fn) is bounded in L∞

E ([a, b]), taking a subsequence if necessary, we may
conclude that (fn) weakly* or σ(L∞

E ([a, b]),L1
E([a, b]))-converges to some

mapping f ∈ L∞
E ([a, b]) ⊂ L1

E([a, b]). Consequently, for all y(·) ∈ L1
E([a, b])

we have
lim

n→∞
〈fn(·), y(·)〉 = 〈f(·), y(·)〉.

Let z(·) ∈ L∞
E ([a, b]) ⊂ L1

E([a, b]), then

lim
n→∞

〈fn(·), z(·)〉 = 〈f(·), z(·)〉.

This shows that (fn) weakly or σ(L1
E([a, b]),L∞

E ([a, b]))-converges to f(·)
and that ‖f(t)‖ ≤ m(t) a.e on [a, b] since S is convex and strongly closed in
L1

E([a, b]) and hence it is weakly closed in L1
E([a, b]).

Now, let us prove that X is compact in C1
E([a, b]) equipped with the norm

‖ · ‖C1 . For any uf ∈ X and all t, τ ∈ [a, b] we have

‖uf (t) − uf (τ)‖ ≤
b

b − a

∫ b

a

|G(t, s) − G(τ, s)|‖f(s)‖ds

≤
b

b − a

∫ b

a

|G(t, s) − G(τ, s)|m(s)ds

and by the relation (3.3) in Lemma 3.1

‖u̇f (t) − u̇f (τ)‖ ≤
b

b − a

∫ b

a

|
∂G

∂t
(t, s) −

∂G

∂t
(τ, s)|‖f(s)‖ds

≤
b

b − a

∫ b

a

|
∂G

∂t
(t, s) −

∂G

∂t
(τ, s)|m(s)ds.

Since m ∈ L1
R
([a, b]) and the function G is uniformly continuous we get the

equicontinuity of the sets X and {u̇f : uf ∈ X}. On the other hand, for any
uf ∈ X and for all t ∈ [a, b] we have by the relations (3.1), (3.2) and (3.3)

‖uf (t)‖ ≤ ‖v0‖ +
b2

b − a
‖m‖L1 and ‖u̇f (t)‖ ≤

b

b − a
‖m‖L1 ,

that is, the sets X(t) and {u̇f (t) : uf ∈ X} are relatively compact in the
finite dimensional space E. Hence, we conclude that X is relatively compact
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in (C1
E([a, b]), ‖ · ‖C1 ). We claim that X is closed in (C1

E([a, b]), ‖ · ‖C1 ). Fix
any sequence (ufn

) of X converging to u ∈ C1
E([a, b]). Then, for each n ∈ N

ufn
(t) = v0 +

b

b − a

∫ b

a

G(t, s)fn(s)ds, ∀t ∈ [a, b]

and fn ∈ S. Since S is σ(L1
E([a, b]),L∞

E ([a, b]))-compact, by extracting a
subsequence if necessary we may conclude that (fn) σ(L1

E([a, b]),L∞
E ([a, b]))-

converges to f ∈ S. Putting for all t ∈ [a, b]

uf (t) = v0 +
b

b − a

∫ b

a

G(t, s)f(s)ds,

we obtain for all z(·) ∈ L∞
E ([a, b]) and for all t ∈ [a, b]

lim
n→∞

〈fn(·), G(t, ·)z(·)〉 = 〈f(·), G(t, ·)z(·)〉.

Hence

lim
n→∞

∫ b

a

〈G(t, s)fn(s), z(s)〉ds = lim
n→∞

∫ b

a

〈fn(s), G(t, s)z(s)〉ds

=

∫ b

a

〈f(s), G(t, s)z(s)〉ds

=

∫ b

a

〈G(t, s)f(s), z(s)〉ds.

In particular, for z(·) = χ[a,b](·)ej , where χ[a,b](·) stands for the characteristic
function of [a, b] and (ej) a basis of E, we obtain

lim
n→∞

∫ b

a

〈G(t, s)fn(s), χ[a,b](s)ej〉ds =

∫ b

a

〈G(t, s)f(s), χ[a,b](s)ej〉ds,

or equivalently

〈 lim
n→∞

∫ b

a

G(t, s)fn(s)ds, ej〉 = 〈

∫ b

a

G(t, s)f(s)ds, ej〉,

which entails

lim
n→∞

(v0 +
b

b − a

∫ b

a

G(t, s)fn(s)ds) = v0 +
b

b − a

∫ b

a

G(t, s)f(s)ds = uf (t).

Consequently, the sequence (ufn
) converges to uf in CE([a, b]). By the same

arguments, we prove that the sequence (u̇fn
) with

u̇fn
(t) =

b

b − a

∫ b

a

∂G

∂t
(t, s)fn(s)ds, ∀t ∈ [a, b]

converges to u̇f in CE([a, b]). That is, (ufn
) converges to uf in C1

E([a, b]).
This shows that X is compact in (C1

E([a, b]), ‖ · ‖C1).
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Step 2. Observe that a mapping u : [a, b] → E is a W
2,1
E ([a, b])-solution

of (PF ) iff there exists uf ∈ X and f(t) ∈ F (uf (t), u̇f (t)) for a.e t ∈ [a, b].
For any Lebesgue-measurable mappings v,w : [a, b] → E, there is a

Lesbegue-measurable selection s ∈ S such that s(t) ∈ F (v(t), w(t)) a.e.
Indeed, there exist sequences (vn) and (wn) of simple E-valued functions
such that (vn) converges pointwise to v and (wn) converges pointwise to
w for E endowed by the strong topology. Notice that the multifunctions
F (vn(.), wn(.)) are Lebesgue-measurable. Let sn be a Lesbegue-measurable
selection of F (vn(.), wn(.)). As sn(t) ∈ F (vn(t), wn(t)) ⊂ m(t)BE for all
t ∈ [a, b] and S is σ(L1

E([a, b]),L∞
E ([a, b]))-compact in L1

E([a, b]), by Eberlein-

S̆mulian theorem, we may extract from (sn) a subsequence (s′n) which con-
verges σ(L1

E([a, b]),L∞
E ([a, b])) to some mapping s ∈ S. Here we may invoke

the fact that S is a weakly compact metrizable set in the separable Banach
space L1

E([a, b]). Now, application of the Mazur’s trick to (s′n) provides a
sequence (zn) with zn ∈ co{s′m : m ≥ n} such that (zn) converges almost
every where to s. Then, for almost every t ∈ [a, b]

s(t) ∈
⋂

k≥0

{zn(t) : n ≥ k}

⊂
⋂

k≥0

co{s′n(t) : n ≥ k}.

As s′n(t) ∈ F (vn(t), wn(t)), we obtain

s(t) ∈
⋂

k≥0

co(
⋃

n≥k

F (vn(t), wn(t)))

= co(lim sup
n→∞

F (vn(t), wn(t))),

using the pointwise convergence of (vn(·)) and (wn(·)) to v(·) and (w(·))
respectively, the upper semicontinuity of F and the compactness of its values
we get

s(t) ∈ co(F (v(t), w(t))) = F (v(t), w(t))

since F (v(t), w(t)) is a closed convex set.
Step 3. Let us consider the multifunction Φ : S ⇉ S defined by

Φ(f) = {g ∈ S : g(t) ∈ F (uf (t), u̇f (t)) a.e.t ∈ [a, b]}

where uf ∈ X. In view of Step 2, Φ(f) is a nonempty set. These considera-
tions lead us to the application of the Kakutani-ky Fan fixed point theorem
to the multifunction Φ(.). It is clear that Φ(f) is a convex weakly compact
subset of S. We need to check that Φ is upper semicontinuous on the con-
vex weakly compact metrizable set S. Equivalently, we need to prove that
the graph of Φ is sequentially weakly compact in S × S. Let (fn, gn) be a
sequence in the graph of Φ. (fn) ⊂ S. By extracting a subsequence we may
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suppose that (fn) σ(L1
E([a, b]),L∞

E ([a, b])) converges to f ∈ S. It follows that
the sequences (ufn

) and (u̇fn
) converge pointwise to uf and u̇f respectively.

On the other hand, gn ∈ Φ(fn) ⊂ S. We may suppose that (gn) converges
weakly to some element g ∈ S. As gn(t) ∈ F (ufn

(t), u̇fn
(t)) a.e., by repeat-

ing the arguments given in Step 2, we obtain that g(t) ∈ F (uf (t), u̇f (t)) a.e.
This shows that the graph of Φ is weakly compact in the weakly compact
set S×S. Hence Φ admits a fixed point, that is, there exists f ∈ S such that
f ∈ Φ(f) and so f(t) ∈ F (uf (t), u̇f (t)) for almost every t ∈ [a, b]. Equiv-
alently (see Lemma 3.1) üf (t) ∈ F (uf (t), u̇f (t)) for almost evert t ∈ [a, b]
with uf (a) = u̇f (b) = v0, what in turn, means that the mapping uf is a

W
2,1
E ([a, b])-solution of the problem (PF ). Compactness of the solutions set

follows easily from the compactness in C1
E([a, b]) of X given in Step 1, and

the preceding arguments. �

Now, we present an existence result of solutions to the problem (PF ) if
we suppose on F a linear growth condition.

Theoreme 3.4. Let E be a finite dimensional space and F : E × E ⇉ E

be a convex compact valued multifunction, upper semicontinuous on E ×E.
Suppose that there is two nonnegative functions p and q in L1

R
([a, b]) with

‖p+q‖L1

R

<
b − a

b2
such that F (x, y) ⊂ (p(t)‖x‖+bq(t)‖y‖)BE for all t ∈ [a, b]

and for all (x, y) ∈ E × E. Let v0 ∈ E. Then the W
2,1
E ([a, b])-solutions set

of the problem (PF ) is nonempty and compact in C1
E([a, b]).

For the proof of our Theorem we need the following Lemma.

Lemma 3.5. Let E be a finite dimensional space. Suppose that the hypothe-
ses of Theorem 3.4 are satisfied. If u is a solution in W

2,1
E ([a, b]) of the

problem (PF ), then for all t ∈ [a, b] we have

‖u(t)‖ ≤ α, ‖u̇(t)‖ ≤
α

b

where

α =
‖v0‖

1 −
b2

b − a
‖p + q‖

L1

R

.

Proof. Suppose that u : [a, b] → E is a W
2,1
E ([a, b])-solution of (PF ).

Then, there exists a measurable mapping f : [a, b] → E such that f(t) ∈
F (uf (t), u̇f (t)) for almost every t ∈ [a, b] and

u(t) = uf (t) = v0 +
b

b − a

∫ b

a

G(t, s)f(s)ds ∀t ∈ [a, b].
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Consequently, for all t ∈ [a, b]

‖u(t)‖ = ‖v0 +
b

b − a

∫ b

a

G(t, s)f(s)ds‖

≤ ‖v0‖ +
b

b − a

∫ b

a

|G(t, s)|‖f(s)‖ds

≤ ‖v0‖ +
b

b − a

∫ b

a

b(p(s)‖u(s)‖ + bq(s)‖u̇(s)‖)ds

≤ ‖v0‖ +
b

b − a

∫ b

a

b(p(s)‖u‖C1

E
+ q(s)‖u‖C1

E
)ds

≤ ‖v0‖ +
b2

b − a
‖u‖

C1

E

∫ b

a

(p(s) + q(s))ds,

and hence,

‖u(t)‖ ≤ ‖v0‖ +
b2

b − a
‖p + q‖

L1

R

‖u‖
C1

E
.

In the same way we have

‖u̇(t)‖ = ‖
b

b − a

∫ b

a

∂G

∂t
(t, s)f(s)ds‖ ≤

b

b − a

∫ b

a

|
∂G

∂t
(t, s)|‖f(s)‖ds

≤
b

b − a

∫ b

a

(p(s)‖u(s)‖ + bq(s)‖u̇(s)‖)ds ≤
b

b − a
‖p + q‖

L1

R

‖u‖
C1

E
,

and hence

b‖u̇(t)‖ ≤
b2

b − a
‖p + q‖

L1

R

‖u‖
C1

E
≤ ‖v0‖ +

b2

b − a
‖p + q‖

L1

R

‖u‖
C1

E
.

These last inequalities show that

‖u‖
C1

E
≤ ‖v0‖ +

b2

b − a
‖p + q‖

L1

R

‖u‖
C1

E
,

or

(1 −
b2

b − a
‖p + q‖

L1

R

)‖u‖
C1

E
≤ ‖v0‖,

equivalently

‖u‖C1

E
≤

‖v0‖

1 −
b2

b − a
‖p + q‖

L1

R

= α.

By the definition of ‖u‖
C1

E
we conclude that for all t ∈ [a, b]

‖u(t)‖ ≤ α and ‖u̇(t)‖ ≤
α

b
.
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Proof of Theorem 3.4. Let us consider the mapping ϕκ : E → E defined
by

ϕκ(x) =

{
‖x‖ if ‖x‖ ≤ κ
κx
‖x‖ if ‖x‖ > κ,

and consider the multifunction F0 : E × E ⇉ E defined by

F0(x, y) = F (ϕα(x), ϕα
b
(y)).

Then F0 inherits the hypotheses on F , and furthermore, for all (x, y) ∈ E×E

F0(x, y) = F (ϕα(x), ϕα
b
(y))

⊂ (p(t)‖ϕα(x)‖ + bq(t)‖ϕα
b
(y)‖)BE

⊂ (p(t)α + b
1

b
q(t)α)BE = α(p(t) + q(t))BE = β(t)BE .

Consequently, F0 satisfies all the hypotheses of Proposition 3.3. Hence, we
conclude the existence of a W

2,1
E ([a, b])-solution of the problem (PF0

).
Now, let us prove that u is a solution of (PF0

) if and only if u is a solution
of (PF ).
If u is a solution of (PF0

), there exists a measurable mapping f0 such that
u = uf0

and f0(t) ∈ F0(u(t), u̇(t)), a.e., with for almost every t ∈ [a, b]

‖f0(t)‖ ≤ β(t) = α(p(t) + q(t)).

Using this inequality and the fact that for all t ∈ [a, b]

u(t) = v0 +
b

b − a

∫ b

a

G(t, s)f0(s)ds, and u̇(t) =
b

b − a

∫ b

a

∂G

∂t
(t, s)f0(s)ds,

we obtain

‖u(t)‖ ≤ ‖v0‖ +
b2

b − a
‖β‖

L1

R

= ‖v0‖ +
b2

b − a
α‖p + q‖

L1

R

= ‖v0‖ + (
b2

b − a
)

‖v0‖

1 − b2

b−a
‖p + q‖

L1

R

‖p + q‖L1

R

=
‖v0‖

1 − b2

b−a
‖p + q‖

L1

R

= α,

and

‖u̇(t)‖ ≤
b

b − a
‖β‖L1

R

=
b

b − a
α‖p + q‖L1

R

= (
b

b − a
)

‖v0‖

1 − b2

b−a
‖p + q‖

L1

R

‖p + q‖L1

R

< (
b

b − a
)(

‖v0‖

1 − b2

b−a
‖p + q‖

L1

R

)(
b − a

b2
) =

α

b
.

These last relations show that ϕα(u(t)) = u(t) and ϕα
b
(u̇(t)) = u̇(t), or

equivalently F0(u(t), u̇(t)) = F (u(t), u̇(t)). Consequently, u is a solution of
(PF ).
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Suppose now that u is a solution of (PF ). By Lemma 3.5, we have for all
t ∈ [a, b]

‖u(t)‖ ≤ α and ‖u̇(t)‖ ≤
α

b
.

Then, F (u(t), u̇(t)) = F0(u(t), u̇(t)), that is, u is a solution of (PF0
). �

Now we are able to give our main result.

Theoreme 3.6. Let E be a finite dimensional space and F : E × E ⇉ E

be an almost convex compact valued multifunction, upper semicontinuous on
E × E and satisfying the following assumptions:
(1) there is two nonnegative functions p, q ∈ L1

R
([a, b]), satisfying

‖p + q‖
L1

R

<
b − a

b2
, such that F (x, y) ⊂ (p(t)‖x‖ + bq(t)‖y‖)BE for all

(x, y) ∈ E × E,
(2) F (x, ξy) ⊆ ξF (x, y) for all (x, y) ∈ E × E and for every ξ > 0.

Let v0 ∈ E. Then there is at least a W
2,1
E ([a, b])-solution of the problem

(PF ).

For the proof we need the following result.

Theoreme 3.7. Let F : E × E ⇉ E be a multifunction upper semicontin-
uous on E × E. Suppose that the assumption (2) in Theorem 3.6 is also
satisfied. Let v0 ∈ E and let x : [a, b] → E, be a solution of the problem

(Pco(F ))

{
ü(t) ∈ co(F (u(t), u̇(t))), a.e. t ∈ [a, b],

u(a) = u(b) = v0,

and assume that there are two constants λ1 and λ2, satisfying 0 ≤ λ1 ≤ 1 ≤
λ2, such that for almost every t ∈ [a, b], we have

λ1ẍ(t) ∈ F (x(t), ẋ(t)) and λ2ẍ(t) ∈ F (x(t), ẋ(t)).

Then there exists t = t(τ), a nondecreasing absolutely continuous map of
the interval [a, b] onto itself, such that the map x̃(τ) = x(t(τ)) is a solution
of the problem (PF ). Moreover x̃(a) = x̃(b) = v0.

Proof. Step 1. Let [α, β] (0 ≤ α < β < +∞) be an interval, and assume
that there exist two constants λ1, λ2, with the properties stated above.
Assume that λ1 > 0. We claim that there exist two measurable subsets
of [α, β], having characteristic functions X1 and X2 such that X1 + X2 =
X[α,β], and an absolutely continuous function s = s(τ) on [α, β], satisfying
s(α) − s(β) = α − β, such that

ṡ(τ) =
1

λ1
X1(τ) +

1

λ2
X2(τ).
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Indeed, set

γ =





1

2
when λ1 = λ2 = 1

λ2 − 1

λ2 − λ1
otherwise.

With this definition we have that 0 ≤ γ ≤ 1 and that both equalities

1 = γ + (1 − γ) = γλ1 + (1 − γ)λ2.

In particular, we have

∫ β

α

1dt =

∫ β

α

[
γλ1

λ1
+

(1 − γ)λ2

λ2
]dt.

Applying Liapunov’s theorem on the range of measures, to infer the existence
of two subsets having characteristic functions X1(.),X2(.) such that X1 +
X2 = X[α,β] and with the property that

∫ β

α

1dt =

∫ β

α

[
1

λ1
X1(t) +

1

λ2
X2(t)]dt.

Define ṡ(τ) =
1

λ1
X1(τ) +

1

λ2
X2(τ). Then

∫ β

α

ṡ(τ)dτ = β − α.

Step 2. (a) Consider

C = {τ ∈ [a, b] : 0 ∈ F (x(τ), ẋ(τ))}.

We have that C is a closed set. Indeed, let (τn) be a sequence in C converging
to τ ∈ [a, b]. Then, for each n ∈ N,

0 ∈ F (x(τn), ẋ(τn)).

Since F is upper semicontinuous with compact values we have that it’s graph
is closed, and since x(·) and ẋ(·) are continuous we get 0 ∈ F (x(τ), ẋ(τ)),
that is C is closed.
(b) Consider the case in which C is empty. In this case, it cannot be that
λ1 = 0, and the Step 1 can be applied to the interval [a, b]. Set s(τ) = a +∫ τ

a

ṡ(ω)dω, s is increasing and we have s(a) = a and s(b) = a+

∫ b

a

ṡ(ω)dω =

a + b − a = b, that is s maps [a, b] onto itself. Let t : [a, b] → [a, b] be its

inverse, so t(a) = a; t(b) = b, and we have
d

dτ
s(t(τ)) = ṡ(t(τ))ṫ(τ) = 1.

Then, ṫ(τ) = 1
ṡ(t(τ)) = λ1X1(t(τ)) + λ2X2(t(τ)), and ẗ(τ) = 0. Consider

the map x̃(τ) = x(t(τ)). We have
d

dτ
x̃(τ) = ṫ(τ)ẋ(t(τ)), and

d2

dτ2
x̃(τ) =
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(ṫ(τ))2ẍ(t(τ)) + ẗ(τ)ẋ(t(τ)) = ẍ(t(τ))(ṫ(τ))2. Hence

1

ṫ(τ)

d2

dτ2
x̃(τ) = ẍ(t(τ))(ṫ(τ)) = ẍ(t(τ))[λ1X1(t(τ)) + λ2X2(t(τ))]

∈ F (x(t(τ)), ẋ(t(τ))) = F (x̃(τ),
1

ṫ(τ)
˙̃x(τ)),

and by the assumption 2, we have

F (x̃(τ),
1

ṫ(τ)
˙̃x(τ)) ⊆

1

ṫ(τ)
F (x̃(τ), ˙̃x(τ))

then we get
1

ṫ(τ)

d2

dτ2
x̃(τ) ∈

1

ṫ(τ)
F (x̃(τ), ˙̃x(τ)).

Consequently
d2

dτ2
x̃(τ) ∈ F (x̃(τ), ˙̃x(τ)).

(c) Now we shall assume that C is nonempty. Let c = sup{τ ; τ ∈ C}, there
is a sequence (τn) in C such that lim

n→∞
τn = c. Since C is closed we get c ∈ C.

The complement of C is open relative to [a, b], it consists of at most count-
ably many nonoverlapping open intervals ]ai, bi[, with the possible exception
of one of the form [aii , bii [ with aii = a and one of the form ]aif , bif ] with
aif = c. For each i, apply Step 1 to the interval ]ai, bi[ to infer the ex-

istence of Ki
1 and Ki

2, two subsets of ]ai, bi[ with characteristic functions
X i

1(.), X i
2(.) such that X i

1 + X i
2 = X]ai,bi[, setting

ṡ(τ) =
1

λ1
X i

1(τ) +
1

λ2
X i

2(τ)

we obtain ∫ bi

ai

ṡ(ω)dω = bi − ai.

(d) On [a, c] set

ṡ(τ) =
1

λ2
XC(τ) +

∑

i

(
1

λ1
X i

1(τ) +
1

λ2
X i

2(τ)),

where the sum is over all intervals contained in [a, c], i.e., with the exception
of ]c, b]. We have that

∫ c

a

ṡ(ω)dω = κ ≤ c − a

since λ2 ≥ 1 and

∫ bi

ai

ṡ(ω)dω = bi − ai. Setting s(τ) = a +

∫ τ

a

ṡ(ω)dω, we

obtain that s is an invertible map from [a, c] to [a, κ + a].
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(e) Define t : [a, κ + a] → [a, c] to be the inverse of s(.). Extend t(.) as an

absolutely continuous map t̃(.) on [a, c], setting ˙̃t(τ) = 0 for τ ∈]κ + a, c].
We claim that the function x̃(τ) = x(t̃(τ)) is a solution to the problem (PF )
on the interval [a, c]. Moreover, we claim that it satisfies x̃(c) = x(c).
Observe that, as in (b), we have that for τ ∈ [a, κ + a], t̃(τ) = t(τ) is
invertible, such that ṫ(τ) = λ2XC(τ) +

∑
i(λ1X

i
1(τ) + λ2X

i
2(τ)). Since

d2

dτ2
x̃(τ) = (ṫ(τ))2ẍ(t(τ)) + ẗ(τ)ẋ(t(τ)) = ẍ(t(τ))(ṫ(τ))2,

we get

1

ṫ(τ)

d2x̃(τ)

dτ2
= ẍ(t(τ))(ṫ(τ)) = [λ2XC(t(τ)) +

∑

i

(λ1X
i
1(t(τ)) + λ2X

i
2(t(τ)))]ẍ(t(τ))

∈ F (x(t(τ)), ẋ(t(τ))) = F (x̃(τ),
1

ṫ(τ)
˙̃x(τ))

⊆
1

ṫ(τ)
F (x̃(τ), ˙̃x(τ)).

Consequently

d2

dτ2
x̃(τ) ∈ F (x̃(τ), ˙̃x(τ)).

In particular, from t(κ + a) = c and ˙̃
t(τ) = 0 for all τ ∈]κ + a, c] we obtain

t̃(τ) = t̃(κ + a) = t(κ + a), ∀τ ∈]κ + a, c]

then

x̃(κ + a) = x(t̃(κ + a)) = x(t̃(τ)) = x̃(τ), ∀τ ∈]κ + a, c]

so, on ]κ + a, c], x̃ is constant, and since c ∈ C we have

d2

dτ2
x̃(τ) = 0 ∈ F (x(c), ẋ(c)) = F (x̃(κ+a),

1

ṫ(κ + a)
˙̃x(κ+a)) ⊂ F (x̃(τ), ˙̃x(τ)).

This proves the claim.
(f) It is left to define the solution on [c, b]. On it, λ1 > 0 and the construction
of Step 1 and (b) can be repeated to find a solution to problem (PF ) on [c, b].
This completes the proof of the theorem. �

Proof of the Theorem 3.6. In view of Theorem 3.4, and since co(F ) :
E × E ⇉ E is a multifunction with compact values, upper semicontinuous
on E × E and furthermore, for all (x, y) ∈ E × E,

co(F (x, y)) ⊂ (p(t)‖x‖ + bq(t)‖y‖)co(BE) = (p(t)‖x‖ + bq(t)‖y‖)BE ,

we conclude the existence of a W
2,1
E ([a, b])-solution x of the problem (Pco(F )).

By the almost convexity of the values of F , there exist two constants λ1 and
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λ2, satisfying 0 ≤ λ1 ≤ 1 ≤ λ2, such that, for almost every t ∈ [a, b], we
have

λ1ẍ(t) ∈ F (x(t), ẋ(t)) and λ2ẍ(t) ∈ F (x(t), ẋ(t)).

Using Theorem 3.7, we conclude the existence of a W
2,1
E ([a, b])-solution of

the problem (PF ).
This completes the proof of our main result. �
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Laboratoire de Mathématiques Pures et Appliquées, Université de Jijel, Algérie
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