SECOND-ORDER DIFFERENTIAL INCLUSIONS WITH ALMOST CONVEX RIGHT-HAND SIDES

D. AFFANE AND D. AZZAM-LAOUIR

ABSTRACT. We study the existence of solutions of a boundary second order differential inclusion under conditions that are strictly weaker than the usual assumption of convexity on the values of the right-hand side.

1. INTRODUCTION

The existence of solutions for second order differential inclusions of the form $\ddot{u}(t) \in F(t, u(t), \dot{u}(t))(t \in [0, 1])$ with boundary conditions, where $F : [0, 1] \times E \times E \Rightarrow E$ is a convex compact multifunction, Lebesgue-measurable on [0, 1], upper semicontinuous on $E \times E$ and integrably compact in finite and infinite dimensional spaces has been studied by many authors see for example [1],[7]. Our aim in this article is to provide an existence result for the differential inclusion with two-point boundary conditions in a finite dimensional space E of the form

$$(P_F) \begin{cases} \ddot{u}(t) \in F(u(t), \dot{u}(t)), & a.e. \ t \in [a, b], \ (0 \le a < b < +\infty) \\ u(a) = u(b) = v_0, \end{cases}$$

where $F: E \times E \Rightarrow E$ is an upper semicontinuous multifunction with almost convex values, i.e., the convexity is replaced by a strictly weaker condition.

For the first order differential inclusions with almost convex values we refer the reader to [5].

After some preliminaries, we present a result which is the existence of $\mathbf{W}_{E}^{2,1}([a,b])$ -solutions of (P_{F}) where F is a convex valued multifunction. Using this convexified problem we show that the differential inclusion (P_{F}) has solutions if the values of F are almost convex. As an example of the almost convexity of the values of the right-hand side, notice that, if F(t, x, y) is a convex set not containing the origin then the boundary of F(x, y), $\partial F(x, y)$, is almost convex.

2. NOTATION AND PRELIMINARIES

Throughout, $(E, \|.\|)$ is a real separable Banach space and E' is its topological dual, $\overline{\mathbf{B}}_E$ is the closed unit ball of E and $\sigma(E, E')$ the weak topology on E. We denote by $\mathbf{L}_E^1([a, b])$ the space of all Lebesgue-Bochner integrable E valued mappings defined on [a, b].

 $^{1991\} Mathematics\ Subject\ Classification.\ 34A60;\ 28A25;\ 28C20.$

Key words and phrases. Differential inclusion, almost convex.

EJQTDE, 2011 No. 34, p. 1

Let $\mathbf{C}_E([a, b])$ be the Banach space of all continuous mappings $u : [a, b] \to E$ endowed with the sup-norm, and $\mathbf{C}_E^1([a, b])$ be the Banach space of all continuous mappings $u : [a, b] \to E$ with continuous derivative, equipped with the norm

$$\|u\|_{\mathbf{C}^1} = \max\{\max_{t \in [a,b]} \|u(t)\|, b\max_{t \in [a,b]} \|\dot{u}(t)\|\}.$$

Recall that a mapping $v : [a, b] \to E$ is said to be scalarly derivable when there exists some mapping $\dot{v} : [a, b] \to E$ (called the weak derivative of v) such that, for every $x' \in E'$, the scalar function $\langle x', v(\cdot) \rangle$ is derivable and its derivative is equal to $\langle x', \dot{v}(\cdot) \rangle$. The weak derivative \ddot{v} of \dot{v} when it exists is the weak second derivative.

By $\mathbf{W}_{E}^{2,1}([a, b])$ we denote the space of all continuous mappings in $\mathbf{C}_{E}([a, b])$ such that their first derivatives are continuous and their second weak derivatives belong to $\mathbf{L}_{E}^{1}([a, b])$.

For a subset $A \subset E$, co(A) denotes its convex hull and $\overline{co}(A)$ its closed convex hull.

Let X be a vector space, a set $K \subset X$ is called almost convex if for every $\xi \in co(K)$ there exist λ_1 and λ_2 , $0 \leq \lambda_1 \leq 1 \leq \lambda_2$, such that $\lambda_1 \xi \in K$, $\lambda_2 \xi \in K$.

Note that every convex set is almost convex.

3. The Main Result

We begin with a lemma which summarizes some properties of some Green type function. It will after be used in the study of our boundary value problems (see [1], [7] and [3]).

Lemma 3.1. Let E be a separable Banach space, $v_0 \in E$ and $G : [a,b] \times [a,b] \to \mathbb{R} \ (0 \le a < b < \infty)$ be the function defined by

$$G(t,s) = \begin{cases} -\frac{1}{b}(b-t)(s-a) & \text{if } a \le s \le t \le b, \\ -\frac{1}{b}(t-a)(b-s) & \text{if } a \le t \le s \le b. \end{cases}$$

Then the following assertions hold. (1) If $u \in \mathbf{W}_{E}^{2,1}([a,b])$ with $u(a) = u(b) = v_0$, then

$$u(t) = v_0 + \frac{b}{b-a} \int_a^b G(t,s)\ddot{u}(s)ds, \ \forall t \in [a,b].$$

(2) G(.,s) is derivable on [a,b[for every $s \in [a,b]$, except on the diagonal, and its derivative is given by

$$\frac{\partial G}{\partial t}(t,s) = \begin{cases} \frac{1}{b}(s-a) & \text{if } a \leq s < t \leq b\\ -\frac{1}{b}(b-s) & \text{if } a \leq t < s \leq b. \\ & \text{EJQTDE, 2011 No. 34, p. 2} \end{cases}$$

(3)
$$G(.,.)$$
 and $\frac{\partial G}{\partial t}(.,.)$ satisfy

$$\sup_{t,s\in[a,b]} |G(t,s)| \le b, \quad \sup_{t,s\in[a,b],t\neq s} \left|\frac{\partial G}{\partial t}(t,s)\right| \le 1.$$
(3.1)

(4) For $f \in \mathbf{L}^1_E([a,b])$ and for the mapping $u_f:[a,b] \to E$ defined by

$$u_{f}(t) = v_{0} + \frac{b}{b-a} \int_{a}^{b} G(t,s)f(s)ds, \quad \forall t \in [a,b]$$
(3.2)

one has $u_f(a) = u_f(b) = v_0$.

Furthermore, the mapping u_f is derivable, and its derivative \dot{u}_f satisfies

$$\lim_{h \to 0} \frac{u_f(t+h) - u_f(t)}{h} = \dot{u}_f(t) = \frac{b}{b-a} \int_a^b \frac{\partial G}{\partial t}(t,s) f(s) ds, \qquad (3.3)$$

for all $t \in [a, b]$. Consequently, \dot{u}_f is a continuous mapping from [a, b] into the space E.

(5) The mapping \dot{u}_f is scalarly derivable, that is, there exists a mapping $\ddot{u}_f: [a,b] \to E$ such that, for every $x' \in E'$, the scalar function $\langle x', \dot{u}_f(.) \rangle$ is derivable, with $\frac{d}{dt} \langle x', \dot{u}_f(t) \rangle = \langle x', \ddot{u}_f(t) \rangle$, furthermore

$$\ddot{u}_f = f \ a.e. \ on \ [a, b].$$
 (3.4)

Let us mention a useful consequence of Lemma 3.1.

Proposition 3.2. Let E be a separable Banach space and let $f : [a, b] \to E$ be a continuous mapping (respectively a mapping in $\mathbf{L}^1_E([a, b])$). Then the mapping

$$u_f(t) = v_0 + \frac{b}{b-a} \int_a^b G(t,s)f(s)ds, \ \forall t \in [a,b]$$

is the unique $\mathbf{C}_{E}^{2}([a,b])$ -solution (respectively $\mathbf{W}_{E}^{2,1}([a,b])$ -solution) to the differential equation

$$\left\{ \begin{array}{ll} \ddot{u}(t)=f(t), \quad \forall t\in [a,b],\\ u(a)=u(b)=v_0. \end{array} \right.$$

The following is an existence result for a second order differential inclusion with boundary conditions and a convex valued right hand side. It will be used in the proof of our main theorem.

Proposition 3.3. Let *E* be a finite dimensional space, $F : E \times E \Rightarrow E$ be a convex compact valued multifunction, upper semicontinuous on $E \times E$. Suppose that there is a nonnegative function $m \in \mathbf{L}^1_{\mathbb{R}}([a, b])$ such that $F(x, y) \subset m(t)\overline{\mathbf{B}}_E$ for all $x, y \in [a, b]$. Let $v_0 \in E$. Then the $\mathbf{W}^{2,1}_E([a, b])$ solutions set of the problem

$$(P_F) \begin{cases} \ddot{u}(t) \in F(u(t), \dot{u}(t)), & a.e. \ t \in [a, b], \\ u(a) = u(b) = v_0, \\ EJQTDE, 2011 \text{ No. } 34, \text{ p. } 3 \end{cases}$$

is nonempty and compact in $\mathbf{C}^1_E([a,b])$.

Proof. Step 1. Let

$$\mathbf{S} = \{ f \in \mathbf{L}^1_E([a, b]) : \| f(t) \| \le m(t), a.e. \, t \in [a, b] \}$$

and

$$\mathbf{X} = \{u_f : [a,b] \to E : \ u_f(t) = v_0 + \frac{b}{b-a} \int_a^b G(t,s)f(s)ds, \forall t \in [a,b], f \in \mathbf{S}\}.$$

Obviously **S** and **X** are convex. Let us prove that **S** is a $\sigma(\mathbf{L}_{E}^{1}([a, b]), \mathbf{L}_{E}^{\infty}([a, b]))$ compact subset of $\mathbf{L}_{E}^{1}([a, b])$. Indeed, let (f_{n}) be a sequence of **S**. It is clear that (f_{n}) is bounded in $\mathbf{L}_{E}^{\infty}([a, b])$, taking a subsequence if necessary, we may conclude that (f_{n}) weakly* or $\sigma(\mathbf{L}_{E}^{\infty}([a, b]), \mathbf{L}_{E}^{1}([a, b]))$ -converges to some mapping $f \in \mathbf{L}_{E}^{\infty}([a, b]) \subset \mathbf{L}_{E}^{1}([a, b])$. Consequently, for all $y(\cdot) \in \mathbf{L}_{E}^{1}([a, b])$ we have

$$\lim_{n \to \infty} \langle f_n(\cdot), y(\cdot) \rangle = \langle f(\cdot), y(\cdot) \rangle.$$

Let $z(\cdot) \in \mathbf{L}_E^{\infty}([a, b]) \subset \mathbf{L}_E^1([a, b])$, then
$$\lim_{n \to \infty} \langle f_n(\cdot), z(\cdot) \rangle = \langle f(\cdot), z(\cdot) \rangle.$$

This shows that (f_n) weakly or $\sigma(\mathbf{L}_E^1([a, b]), \mathbf{L}_E^\infty([a, b]))$ -converges to $f(\cdot)$ and that $||f(t)|| \leq m(t)$ a.e on [a, b] since **S** is convex and strongly closed in $\mathbf{L}_E^1([a, b])$ and hence it is weakly closed in $\mathbf{L}_E^1([a, b])$.

Now, let us prove that **X** is compact in $\mathbf{C}_{E}^{1}([a, b])$ equipped with the norm $\|\cdot\|_{\mathbf{C}^{1}}$. For any $u_{f} \in \mathbf{X}$ and all $t, \tau \in [a, b]$ we have

$$\|u_{f}(t) - u_{f}(\tau)\| \leq \frac{b}{b-a} \int_{a}^{b} |G(t,s) - G(\tau,s)| \|f(s)\| ds$$
$$\leq \frac{b}{b-a} \int_{a}^{b} |G(t,s) - G(\tau,s)| m(s) ds$$

and by the relation (3.3) in Lemma 3.1

$$\begin{aligned} \|\dot{u}_f(t) - \dot{u}_f(\tau)\| &\leq \frac{b}{b-a} \int_a^b \left| \frac{\partial G}{\partial t}(t,s) - \frac{\partial G}{\partial t}(\tau,s) \right| \|f(s)\| ds \\ &\leq \frac{b}{b-a} \int_a^b \left| \frac{\partial G}{\partial t}(t,s) - \frac{\partial G}{\partial t}(\tau,s) \right| m(s) ds. \end{aligned}$$

Since $m \in \mathbf{L}^{1}_{\mathbb{R}}([a, b])$ and the function G is uniformly continuous we get the equicontinuity of the sets \mathbf{X} and $\{\dot{u}_{f} : u_{f} \in \mathbf{X}\}$. On the other hand, for any $u_{f} \in \mathbf{X}$ and for all $t \in [a, b]$ we have by the relations (3.1), (3.2) and (3.3)

$$||u_f(t)|| \le ||v_0|| + \frac{b^2}{b-a} ||m||_{\mathbf{L}^1} \text{ and } ||\dot{u}_f(t)|| \le \frac{b}{b-a} ||m||_{\mathbf{L}^1},$$

that is, the sets $\mathbf{X}(t)$ and $\{\dot{u}_f(t): u_f \in \mathbf{X}\}\$ are relatively compact in the finite dimensional space E. Hence, we conclude that \mathbf{X} is relatively compact EJQTDE, 2011 No. 34, p. 4

in $(\mathbf{C}_E^1([a,b]), \|\cdot\|_{\mathbf{C}^1})$. We claim that **X** is closed in $(\mathbf{C}_E^1([a,b]), \|\cdot\|_{\mathbf{C}^1})$. Fix any sequence (u_{f_n}) of **X** converging to $u \in \mathbf{C}^1_E([a, b])$. Then, for each $n \in \mathbb{N}$

$$u_{f_n}(t) = v_0 + \frac{b}{b-a} \int_a^b G(t,s) f_n(s) ds, \ \forall t \in [a,b]$$

and $f_n \in \mathbf{S}$. Since **S** is $\sigma(\mathbf{L}^1_E([a,b]), \mathbf{L}^\infty_E([a,b]))$ -compact, by extracting a subsequence if necessary we may conclude that $(f_n) \sigma(\mathbf{L}_E^1([a, b]), \mathbf{L}_E^{\infty}([a, b]))$ converges to $f \in \mathbf{S}$. Putting for all $t \in [a, b]$

$$u_f(t) = v_0 + \frac{b}{b-a} \int_a^b G(t,s)f(s)ds,$$

we obtain for all $z(\cdot) \in \mathbf{L}_E^{\infty}([a, b])$ and for all $t \in [a, b]$

$$\lim_{n \to \infty} \langle f_n(\cdot), G(t, \cdot) z(\cdot) \rangle = \langle f(\cdot), G(t, \cdot) z(\cdot) \rangle.$$

Hence

$$\begin{split} \lim_{n \to \infty} \int_{a}^{b} \langle G(t,s) f_{n}(s), z(s) \rangle ds &= \lim_{n \to \infty} \int_{a}^{b} \langle f_{n}(s), G(t,s) z(s) \rangle ds \\ &= \int_{a}^{b} \langle f(s), G(t,s) z(s) \rangle ds \\ &= \int_{a}^{b} \langle G(t,s) f(s), z(s) \rangle ds. \end{split}$$

In particular, for $z(\cdot) = \chi_{[a,b]}(\cdot)e_j$, where $\chi_{[a,b]}(\cdot)$ stands for the characteristic function of [a, b] and (e_i) a basis of E, we obtain

$$\lim_{n \to \infty} \int_{a}^{b} \langle G(t,s) f_{n}(s), \chi_{[a,b]}(s) e_{j} \rangle ds = \int_{a}^{b} \langle G(t,s) f(s), \chi_{[a,b]}(s) e_{j} \rangle ds,$$

or equivalently

$$\langle \lim_{n \to \infty} \int_{a}^{b} G(t,s) f_{n}(s) ds, e_{j} \rangle = \langle \int_{a}^{b} G(t,s) f(s) ds, e_{j} \rangle$$

which entails

$$\lim_{n \to \infty} (v_0 + \frac{b}{b-a} \int_a^b G(t,s) f_n(s) ds) = v_0 + \frac{b}{b-a} \int_a^b G(t,s) f(s) ds = u_f(t).$$

Consequently, the sequence (u_{f_n}) converges to u_f in $\mathbf{C}_E([a, b])$. By the same arguments, we prove that the sequence (\dot{u}_{f_n}) with

$$\dot{u}_{f_n}(t) = \frac{b}{b-a} \int_a^b \frac{\partial G}{\partial t}(t,s) f_n(s) ds, \ \forall t \in [a,b]$$

converges to \dot{u}_f in $\mathbf{C}_E([a,b])$. That is, (u_{f_n}) converges to u_f in $\mathbf{C}_E^1([a,b])$. converges to $u_f \text{ in } \mathbf{C}_{E([a, b])}$. This shows that **X** is compact in $(\mathbf{C}_{E}^{1}([a, b]), \|\cdot\|_{\mathbf{C}^{1}})$. EJQTDE, 2011 No. 34, p. 5

Step 2. Observe that a mapping $u : [a,b] \to E$ is a $\mathbf{W}_E^{2,1}([a,b])$ -solution of (P_F) iff there exists $u_f \in \mathbf{X}$ and $f(t) \in F(u_f(t), \dot{u}_f(t))$ for a.e $t \in [a,b]$.

For any Lebesgue-measurable mappings $v, w : [a, b] \to E$, there is a Lesbegue-measurable selection $s \in \mathbf{S}$ such that $s(t) \in F(v(t), w(t))$ a.e. Indeed, there exist sequences (v_n) and (w_n) of simple *E*-valued functions such that (v_n) converges pointwise to v and (w_n) converges pointwise to w for *E* endowed by the strong topology. Notice that the multifunctions $F(v_n(.), w_n(.))$ are Lebesgue-measurable. Let s_n be a Lesbegue-measurable selection of $F(v_n(.), w_n(.))$. As $s_n(t) \in F(v_n(t), w_n(t)) \subset m(t)\overline{\mathbf{B}}_E$ for all $t \in [a, b]$ and \mathbf{S} is $\sigma(\mathbf{L}_E^1([a, b]), \mathbf{L}_E^{\infty}([a, b]))$ -compact in $\mathbf{L}_E^1([a, b])$, by Eberlein-Šmulian theorem, we may extract from (s_n) a subsequence (s'_n) which converges $\sigma(\mathbf{L}_E^1([a, b]), \mathbf{L}_E^{\infty}([a, b]))$ to some mapping $s \in \mathbf{S}$. Here we may invoke the fact that \mathbf{S} is a weakly compact metrizable set in the separable Banach space $\mathbf{L}_E^1([a, b])$. Now, application of the Mazur's trick to (s'_n) provides a sequence (z_n) with $z_n \in co\{s'_m : m \ge n\}$ such that (z_n) converges almost every where to s. Then, for almost every $t \in [a, b]$

$$s(t) \in \bigcap_{k \ge 0} \overline{\{z_n(t) : n \ge k\}}$$
$$\subset \bigcap_{k \ge 0} \overline{co}\{s'_n(t) : n \ge k\}$$

As $s'_n(t) \in F(v_n(t), w_n(t))$, we obtain

$$\begin{split} s(t) &\in \bigcap_{k \ge 0} \overline{co}(\bigcup_{n \ge k} F(v_n(t), w_n(t))) \\ &= \overline{co}(\limsup_{n \to \infty} F(v_n(t), w_n(t))), \end{split}$$

using the pointwise convergence of $(v_n(\cdot))$ and $(w_n(\cdot))$ to $v(\cdot)$ and $(w(\cdot))$ respectively, the upper semicontinuity of F and the compactness of its values we get

$$s(t) \in \overline{co}(F(v(t), w(t))) = F(v(t), w(t))$$

since F(v(t), w(t)) is a closed convex set.

Step 3. Let us consider the multifunction $\Phi : \mathbf{S} \rightrightarrows \mathbf{S}$ defined by

$$\Phi(f) = \{ g \in \mathbf{S} : g(t) \in F(u_f(t), \dot{u}_f(t)) \ a.e.t \in [a, b] \}$$

where $u_f \in \mathbf{X}$. In view of Step 2, $\Phi(f)$ is a nonempty set. These considerations lead us to the application of the Kakutani-ky Fan fixed point theorem to the multifunction $\Phi(.)$. It is clear that $\Phi(f)$ is a convex weakly compact subset of \mathbf{S} . We need to check that Φ is upper semicontinuous on the convex weakly compact metrizable set \mathbf{S} . Equivalently, we need to prove that the graph of Φ is sequentially weakly compact in $\mathbf{S} \times \mathbf{S}$. Let (f_n, g_n) be a sequence in the graph of Φ . $(f_n) \subset \mathbf{S}$. By extracting a subsequence we may EJQTDE, 2011 No. 34, p. 6 suppose that $(f_n) \sigma(\mathbf{L}_E^1([a, b]), \mathbf{L}_E^\infty([a, b]))$ converges to $f \in \mathbf{S}$. It follows that the sequences (u_{f_n}) and (\dot{u}_{f_n}) converge pointwise to u_f and \dot{u}_f respectively. On the other hand, $g_n \in \Phi(f_n) \subset \mathbf{S}$. We may suppose that (g_n) converges weakly to some element $g \in \mathbf{S}$. As $g_n(t) \in F(u_{f_n}(t), \dot{u}_{f_n}(t))$ a.e., by repeating the arguments given in Step 2, we obtain that $g(t) \in F(u_f(t), \dot{u}_f(t))$ a.e. This shows that the graph of Φ is weakly compact in the weakly compact set $\mathbf{S} \times \mathbf{S}$. Hence Φ admits a fixed point, that is, there exists $f \in \mathbf{S}$ such that $f \in \Phi(f)$ and so $f(t) \in F(u_f(t), \dot{u}_f(t))$ for almost every $t \in [a, b]$. Equivalently (see Lemma 3.1) $\ddot{u}_f(t) \in F(u_f(t), \dot{u}_f(t))$ for almost evert $t \in [a, b]$ with $u_f(a) = \dot{u}_f(b) = v_0$, what in turn, means that the mapping u_f is a $\mathbf{W}_E^{2,1}([a, b])$ -solution of the problem (P_F) . Compactness of the solutions set follows easily from the compactness in $\mathbf{C}_E^1([a, b])$ of \mathbf{X} given in Step 1, and the preceding arguments.

Now, we present an existence result of solutions to the problem (P_F) if we suppose on F a linear growth condition.

Theoreme 3.4. Let E be a finite dimensional space and $F : E \times E \rightrightarrows E$ be a convex compact valued multifunction, upper semicontinuous on $E \times E$. Suppose that there is two nonnegative functions p and q in $\mathbf{L}^1_{\mathbb{R}}([a,b])$ with $\|p+q\|_{\mathbf{L}^1_{\mathbb{R}}} < \frac{b-a}{b^2}$ such that $F(x,y) \subset (p(t)\|x\|+bq(t)\|y\|)\mathbf{\overline{B}}_E$ for all $t \in [a,b]$ and for all $(x,y) \in E \times E$. Let $v_0 \in E$. Then the $\mathbf{W}^{2,1}_E([a,b])$ -solutions set of the problem (P_F) is nonempty and compact in $\mathbf{C}^1_E([a,b])$.

For the proof of our Theorem we need the following Lemma.

Lemma 3.5. Let *E* be a finite dimensional space. Suppose that the hypotheses of Theorem 3.4 are satisfied. If *u* is a solution in $\mathbf{W}_{E}^{2,1}([a,b])$ of the problem (P_F) , then for all $t \in [a,b]$ we have

$$||u(t)|| \le \alpha, \quad ||\dot{u}(t)|| \le \frac{\alpha}{b}$$

where

$$\alpha = \frac{\|v_0\|}{1 - \frac{b^2}{b - a} \|p + q\|_{\mathbf{L}^1_{\mathbb{R}}}}.$$

Proof. Suppose that $u : [a,b] \to E$ is a $\mathbf{W}_E^{2,1}([a,b])$ -solution of (P_F) . Then, there exists a measurable mapping $f : [a,b] \to E$ such that $f(t) \in F(u_f(t), \dot{u}_f(t))$ for almost every $t \in [a,b]$ and

$$u(t) = u_f(t) = v_0 + \frac{b}{b-a} \int_a^b G(t,s) f(s) ds \ \forall t \in [a,b].$$

EJQTDE, 2011 No. 34, p. 7

Consequently, for all $t \in [a,b]$

$$\begin{aligned} \|u(t)\| &= \|v_0 + \frac{b}{b-a} \int_a^b G(t,s)f(s)ds\| \\ &\leq \|v_0\| + \frac{b}{b-a} \int_a^b |G(t,s)| \|f(s)\| ds \\ &\leq \|v_0\| + \frac{b}{b-a} \int_a^b b(p(s)\|u(s)\| + bq(s)\|\dot{u}(s)\|) ds \\ &\leq \|v_0\| + \frac{b}{b-a} \int_a^b b(p(s)\|u\|_{\mathbf{C}_E^1} + q(s)\|u\|_{\mathbf{C}_E^1}) ds \\ &\leq \|v_0\| + \frac{b^2}{b-a} \|u\|_{\mathbf{C}_E^1} \int_a^b (p(s) + q(s)) ds, \end{aligned}$$

and hence,

$$||u(t)|| \le ||v_0|| + \frac{b^2}{b-a} ||p+q||_{\mathbf{L}^1_{\mathbb{R}}} ||u||_{\mathbf{C}^1_E}.$$

In the same way we have

$$\begin{split} \|\dot{u}(t)\| &= \|\frac{b}{b-a}\int_a^b \frac{\partial G}{\partial t}(t,s)f(s)ds\| \le \frac{b}{b-a}\int_a^b |\frac{\partial G}{\partial t}(t,s)| \|f(s)\|ds\\ &\le \frac{b}{b-a}\int_a^b (p(s)\|u(s)\| + bq(s)\|\dot{u}(s)\|)ds \le \frac{b}{b-a}\|p+q\|_{\mathbf{L}^1_{\mathbb{R}}}\|u\|_{\mathbf{C}^1_E}, \end{split}$$

and hence

$$b\|\dot{u}(t)\| \leq \frac{b^2}{b-a}\|p+q\|_{\mathbf{L}^1_{\mathbb{R}}}\|u\|_{\mathbf{C}^1_E} \leq \|v_0\| + \frac{b^2}{b-a}\|p+q\|_{\mathbf{L}^1_{\mathbb{R}}}\|u\|_{\mathbf{C}^1_E}.$$

These last inequalities show that

$$||u||_{\mathbf{C}_{E}^{1}} \leq ||v_{0}|| + \frac{b^{2}}{b-a} ||p+q||_{\mathbf{L}_{\mathbb{R}}^{1}} ||u||_{\mathbf{C}_{E}^{1}},$$

or

$$(1 - \frac{b^2}{b - a} \|p + q\|_{\mathbf{L}^1_{\mathbb{R}}}) \|u\|_{\mathbf{C}^1_E} \le \|v_0\|,$$

equivalently

$$\|u\|_{\mathbf{C}^{1}_{E}} \leq \frac{\|v_{0}\|}{1 - \frac{b^{2}}{b - a}\|p + q\|_{\mathbf{L}^{1}_{\mathbb{R}}}} = \alpha.$$

By the definition of $\|u\|_{\mathbf{C}^1_E}$ we conclude that for all $t\in[a,b]$

$$\|u(t)\| \leq \alpha$$
 and $\|\dot{u}(t)\| \leq \frac{\alpha}{b}$.
EJQTDE, 2011 No. 34, p. 8

Proof of Theorem 3.4. Let us consider the mapping $\varphi_{\kappa}: E \to E$ defined by

$$\varphi_{\kappa}(x) = \begin{cases} \|x\| \ if \ \|x\| \le \kappa \\ \frac{\kappa x}{\|x\|} \ if \ \|x\| > \kappa, \end{cases}$$

and consider the multifunction $F_0: E \times E \rightrightarrows E$ defined by

$$F_0(x,y) = F(\varphi_\alpha(x), \varphi_{\frac{\alpha}{h}}(y))$$

Then F_0 inherits the hypotheses on F, and furthermore, for all $(x, y) \in E \times E$

$$F_{0}(x,y) = F(\varphi_{\alpha}(x),\varphi_{\frac{\alpha}{b}}(y))$$

$$\subset (p(t)\|\varphi_{\alpha}(x)\| + bq(t)\|\varphi_{\frac{\alpha}{b}}(y)\|)\overline{\mathbf{B}}_{E}$$

$$\subset (p(t)\alpha + b\frac{1}{b}q(t)\alpha)\overline{\mathbf{B}}_{E} = \alpha(p(t) + q(t))\overline{\mathbf{B}}_{E} = \beta(t)\overline{\mathbf{B}}_{E}.$$

Consequently, F_0 satisfies all the hypotheses of Proposition 3.3. Hence, we conclude the existence of a $\mathbf{W}_E^{2,1}([a,b])$ -solution of the problem (P_{F_0}) . Now, let us prove that u is a solution of (P_{F_0}) if and only if u is a solution of (P_F) .

If u is a solution of (P_{F_0}) , there exists a measurable mapping f_0 such that $u = u_{f_0}$ and $f_0(t) \in F_0(u(t), \dot{u}(t))$, a.e., with for almost every $t \in [a, b]$

$$||f_0(t)|| \le \beta(t) = \alpha(p(t) + q(t)).$$

Using this inequality and the fact that for all $t \in [a, b]$

$$u(t) = v_0 + \frac{b}{b-a} \int_a^b G(t,s) f_0(s) ds, \text{ and } \dot{u}(t) = \frac{b}{b-a} \int_a^b \frac{\partial G}{\partial t}(t,s) f_0(s) ds,$$

we obtain

$$\begin{aligned} \|u(t)\| &\leq \|v_0\| + \frac{b^2}{b-a} \|\beta\|_{\mathbf{L}^1_{\mathbb{R}}} = \|v_0\| + \frac{b^2}{b-a} \alpha \|p+q\|_{\mathbf{L}^1_{\mathbb{R}}} \\ &= \|v_0\| + (\frac{b^2}{b-a}) \frac{\|v_0\|}{1 - \frac{b^2}{b-a} \|p+q\|_{\mathbf{L}^1_{\mathbb{R}}}} \|p+q\|_{\mathbf{L}^1_{\mathbb{R}}} = \frac{\|v_0\|}{1 - \frac{b^2}{b-a} \|p+q\|_{\mathbf{L}^1_{\mathbb{R}}}} = \alpha, \end{aligned}$$

and

$$\begin{split} \|\dot{u}(t)\| &\leq \frac{b}{b-a} \|\beta\|_{\mathbf{L}^{1}_{\mathbb{R}}} = \frac{b}{b-a} \alpha \|p+q\|_{\mathbf{L}^{1}_{\mathbb{R}}} = (\frac{b}{b-a}) \frac{\|v_{0}\|}{1 - \frac{b^{2}}{b-a}} \|p+q\|_{\mathbf{L}^{1}_{\mathbb{R}}} \|p+q\|_{\mathbf{L}^{1}_{\mathbb{R}}} \\ &< (\frac{b}{b-a}) (\frac{\|v_{0}\|}{1 - \frac{b^{2}}{b-a}} \|p+q\|_{\mathbf{L}^{1}_{\mathbb{R}}}) (\frac{b-a}{b^{2}}) = \frac{\alpha}{b}. \end{split}$$

These last relations show that $\varphi_{\alpha}(u(t)) = u(t)$ and $\varphi_{\frac{\alpha}{b}}(\dot{u}(t)) = \dot{u}(t)$, or equivalently $F_0(u(t), \dot{u}(t)) = F(u(t), \dot{u}(t))$. Consequently, u is a solution of (P_F) .

EJQTDE, 2011 No. 34, p. 9

Suppose now that u is a solution of (P_F) . By Lemma 3.5, we have for all $t \in [a, b]$

$$||u(t)|| \le \alpha \text{ and } ||\dot{u}(t)|| \le \frac{\alpha}{b}.$$

Then, $F(u(t), \dot{u}(t)) = F_0(u(t), \dot{u}(t))$, that is, u is a solution of (P_{F_0}) .

Now we are able to give our main result.

Theoreme 3.6. Let E be a finite dimensional space and $F : E \times E \rightrightarrows E$ be an almost convex compact valued multifunction, upper semicontinuous on $E \times E$ and satisfying the following assumptions: (1) there is two nonnegative functions $p, q \in \mathbf{L}^1_{\mathbb{R}}([a, b])$, satisfying

 $\|p+q\|_{\mathbf{L}^{1}_{\mathbb{R}}} < \frac{b-a}{b^{2}}$, such that $F(x,y) \subset (p(t)\|x\| + bq(t)\|y\|)\overline{\mathbf{B}}_{E}$ for all $(x,y) \in E \times E$, $(2) \ F(x,\xi y) \subseteq \xi F(x,y)$ for all $(x,y) \in E \times E$ and for every $\xi > 0$. Let $v_{0} \in E$. Then there is at least a $\mathbf{W}_{E}^{2,1}([a,b])$ -solution of the problem (P_{F}) .

For the proof we need the following result.

Theoreme 3.7. Let $F : E \times E \Longrightarrow E$ be a multifunction upper semicontinuous on $E \times E$. Suppose that the assumption (2) in Theorem 3.6 is also satisfied. Let $v_0 \in E$ and let $x : [a, b] \to E$, be a solution of the problem

$$(P_{co(F)}) \left\{ \begin{array}{ll} \ddot{u}(t) \in co(F(u(t), \dot{u}(t))), & a.e. \ t \in [a, b], \\ u(a) = u(b) = v_0, \end{array} \right.$$

and assume that there are two constants λ_1 and λ_2 , satisfying $0 \le \lambda_1 \le 1 \le \lambda_2$, such that for almost every $t \in [a, b]$, we have

$$\lambda_1 \ddot{x}(t) \in F(x(t), \dot{x}(t)) \text{ and } \lambda_2 \ddot{x}(t) \in F(x(t), \dot{x}(t)).$$

Then there exists $t = t(\tau)$, a nondecreasing absolutely continuous map of the interval [a, b] onto itself, such that the map $\tilde{x}(\tau) = x(t(\tau))$ is a solution of the problem (P_F) . Moreover $\tilde{x}(a) = \tilde{x}(b) = v_0$.

Proof. Step 1. Let $[\alpha, \beta]$ $(0 \le \alpha < \beta < +\infty)$ be an interval, and assume that there exist two constants λ_1, λ_2 , with the properties stated above. Assume that $\lambda_1 > 0$. We claim that there exist two measurable subsets of $[\alpha, \beta]$, having characteristic functions \mathcal{X}_1 and \mathcal{X}_2 such that $\mathcal{X}_1 + \mathcal{X}_2 =$ $\mathcal{X}_{[\alpha,\beta]}$, and an absolutely continuous function $s = s(\tau)$ on $[\alpha, \beta]$, satisfying $s(\alpha) - s(\beta) = \alpha - \beta$, such that

$$\dot{s}(\tau) = \frac{1}{\lambda_1} \mathcal{X}_1(\tau) + \frac{1}{\lambda_2} \mathcal{X}_2(\tau).$$
EJQTDE, 2011 No. 34, p. 10

Indeed, set

$$\gamma = \begin{cases} \frac{1}{2} & when \ \lambda_1 = \lambda_2 = 1\\ \frac{\lambda_2 - 1}{\lambda_2 - \lambda_1} & otherwise. \end{cases}$$

With this definition we have that $0 \le \gamma \le 1$ and that both equalities

$$1 = \gamma + (1 - \gamma) = \gamma \lambda_1 + (1 - \gamma) \lambda_2.$$

In particular, we have

$$\int_{\alpha}^{\beta} 1dt = \int_{\alpha}^{\beta} \left[\frac{\gamma\lambda_1}{\lambda_1} + \frac{(1-\gamma)\lambda_2}{\lambda_2}\right] dt.$$

Applying Liapunov's theorem on the range of measures, to infer the existence of two subsets having characteristic functions $\mathcal{X}_1(.), \mathcal{X}_2(.)$ such that $\mathcal{X}_1 + \mathcal{X}_2 = \mathcal{X}_{[\alpha,\beta]}$ and with the property that

$$\int_{\alpha}^{\beta} 1dt = \int_{\alpha}^{\beta} \left[\frac{1}{\lambda_1} \mathcal{X}_1(t) + \frac{1}{\lambda_2} \mathcal{X}_2(t)\right] dt.$$

Define $\dot{s}(\tau) = \frac{1}{\lambda_1} \mathcal{X}_1(\tau) + \frac{1}{\lambda_2} \mathcal{X}_2(\tau)$. Then $\int_{\alpha}^{\beta} \dot{s}(\tau) d\tau = \beta - \alpha$. Step 2. (a) Consider

$$C = \{ \tau \in [a, b] : 0 \in F(x(\tau), \dot{x}(\tau)) \}$$

We have that C is a closed set. Indeed, let (τ_n) be a sequence in C converging to $\tau \in [a, b]$. Then, for each $n \in \mathbb{N}$,

$$0 \in F(x(\tau_n), \dot{x}(\tau_n)).$$

Since F is upper semicontinuous with compact values we have that it's graph is closed, and since $x(\cdot)$ and $\dot{x}(\cdot)$ are continuous we get $0 \in F(x(\tau), \dot{x}(\tau))$, that is C is closed.

(b) Consider the case in which C is empty. In this case, it cannot be that $\lambda_1 = 0$, and the Step 1 can be applied to the interval [a, b]. Set $s(\tau) = a + \int_a^{\tau} \dot{s}(\omega)d\omega$, s is increasing and we have s(a) = a and $s(b) = a + \int_a^b \dot{s}(\omega)d\omega = a + b - a = b$, that is s maps [a, b] onto itself. Let $t : [a, b] \to [a, b]$ be its inverse, so t(a) = a; t(b) = b, and we have $\frac{d}{d\tau}s(t(\tau)) = \dot{s}(t(\tau))\dot{t}(\tau) = 1$. Then, $\dot{t}(\tau) = \frac{1}{\dot{s}(t(\tau))} = \lambda_1 \mathcal{X}_1(t(\tau)) + \lambda_2 \mathcal{X}_2(t(\tau))$, and $\ddot{t}(\tau) = 0$. Consider the map $\tilde{x}(\tau) = x(t(\tau))$. We have $\frac{d}{d\tau}\tilde{x}(\tau) = \dot{t}(\tau)\dot{x}(t(\tau))$, and $\frac{d^2}{d\tau^2}\tilde{x}(\tau) = EJQTDE$, 2011 No. 34, p. 11

$$\begin{aligned} (\dot{t}(\tau))^2 \ddot{x}(t(\tau)) + \ddot{t}(\tau) \dot{x}(t(\tau)) &= \ddot{x}(t(\tau))(\dot{t}(\tau))^2. \text{ Hence} \\ \frac{1}{\dot{t}(\tau)} \frac{d^2}{d\tau^2} \tilde{x}(\tau) &= \ddot{x}(t(\tau))(\dot{t}(\tau)) = \ddot{x}(t(\tau))[\lambda_1 \mathcal{X}_1(t(\tau)) + \lambda_2 \mathcal{X}_2(t(\tau))] \\ &\in F(x(t(\tau)), \dot{x}(t(\tau))) = F(\tilde{x}(\tau), \frac{1}{\dot{t}(\tau)} \dot{\check{x}}(\tau)), \end{aligned}$$

and by the assumption 2, we have

$$F(\tilde{x}(\tau), \frac{1}{\dot{t}(\tau)}\dot{\tilde{x}}(\tau)) \subseteq \frac{1}{\dot{t}(\tau)}F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau))$$

then we get

$$\frac{1}{\dot{t}(\tau)}\frac{d^2}{d\tau^2}\tilde{x}(\tau) \in \frac{1}{\dot{t}(\tau)}F(\tilde{x}(\tau),\dot{\tilde{x}}(\tau)).$$

Consequently

$$\frac{d^2}{d\tau^2}\tilde{x}(\tau)\in F(\tilde{x}(\tau),\dot{\tilde{x}}(\tau)).$$

(c) Now we shall assume that C is nonempty. Let $c = \sup\{\tau; \tau \in C\}$, there is a sequence (τ_n) in C such that $\lim_{n \to \infty} \tau_n = c$. Since C is closed we get $c \in C$. The complement of C is open relative to [a, b], it consists of at most countably many nonoverlapping open intervals $]a_i, b_i[$, with the possible exception of one of the form $[a_{i_i}, b_{i_i}[$ with $a_{i_i} = a$ and one of the form $]a_{i_f}, b_{i_f}]$ with $a_{i_f} = c$. For each i, apply Step 1 to the interval $]a_i, b_i[$ to infer the existence of K_1^i and K_2^i , two subsets of $]a_i, b_i[$ with characteristic functions $\mathcal{X}_1^i(.), \ \mathcal{X}_2^i(.)$ such that $\mathcal{X}_1^i + \mathcal{X}_2^i = \mathcal{X}_{]a_i, b_i[}$, setting

$$\dot{s}(\tau) = \frac{1}{\lambda_1} \mathcal{X}_1^i(\tau) + \frac{1}{\lambda_2} \mathcal{X}_2^i(\tau)$$

we obtain

$$\int_{a_i}^{b_i} \dot{s}(\omega) d\omega = b_i - a_i.$$

(d) On [a, c] set

$$\dot{s}(\tau) = \frac{1}{\lambda_2} \mathcal{X}_C(\tau) + \sum_i (\frac{1}{\lambda_1} \mathcal{X}_1^i(\tau) + \frac{1}{\lambda_2} \mathcal{X}_2^i(\tau)),$$

where the sum is over all intervals contained in [a, c], i.e., with the exception of]c, b]. We have that

$$\int_{a}^{c} \dot{s}(\omega) d\omega = \kappa \leq c - a$$

since $\lambda_{2} \geq 1$ and $\int_{a_{i}}^{b_{i}} \dot{s}(\omega) d\omega = b_{i} - a_{i}$. Setting $s(\tau) = a + \int_{a}^{\tau} \dot{s}(\omega) d\omega$, we
obtain that s is an invertible map from $[a, c]$ to $[a, \kappa + a]$.
EJQTDE, 2011 No. 34, p. 12

(e) Define $t : [a, \kappa + a] \to [a, c]$ to be the inverse of s(.). Extend t(.) as an absolutely continuous map $\tilde{t}(.)$ on [a, c], setting $\dot{\tilde{t}}(\tau) = 0$ for $\tau \in]\kappa + a, c]$. We claim that the function $\tilde{x}(\tau) = x(\tilde{t}(\tau))$ is a solution to the problem (P_F) on the interval [a, c]. Moreover, we claim that it satisfies $\tilde{x}(c) = x(c)$. Observe that, as in (b), we have that for $\tau \in [a, \kappa + a]$, $\tilde{t}(\tau) = t(\tau)$ is invertible, such that $\dot{t}(\tau) = \lambda_2 \mathcal{X}_C(\tau) + \sum_i (\lambda_1 \mathcal{X}_1^i(\tau) + \lambda_2 \mathcal{X}_2^i(\tau))$. Since

$$\frac{d^2}{d\tau^2}\tilde{x}(\tau) = (\dot{t}(\tau))^2 \ddot{x}(t(\tau)) + \ddot{t}(\tau)\dot{x}(t(\tau)) = \ddot{x}(t(\tau))(\dot{t}(\tau))^2,$$

we get

$$\frac{1}{\dot{t}(\tau)} \frac{d^2 \tilde{x}(\tau)}{d\tau^2} = \ddot{x}(t(\tau))(\dot{t}(\tau)) = [\lambda_2 \mathcal{X}_C(t(\tau)) + \sum_i (\lambda_1 \mathcal{X}_1^i(t(\tau)) + \lambda_2 \mathcal{X}_2^i(t(\tau)))] \ddot{x}(t(\tau))$$
$$\in F(x(t(\tau)), \dot{x}(t(\tau))) = F(\tilde{x}(\tau), \frac{1}{\dot{t}(\tau)} \dot{\tilde{x}}(\tau))$$
$$\subseteq \frac{1}{\dot{t}(\tau)} F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau)).$$

Consequently

$$\frac{d^2}{d\tau^2}\tilde{x}(\tau) \in F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau)).$$

In particular, from $t(\kappa + a) = c$ and $\dot{t}(\tau) = 0$ for all $\tau \in]\kappa + a, c]$ we obtain

$$\tilde{t}(\tau) = \tilde{t}(\kappa + a) = t(\kappa + a), \; \forall \tau \in]\kappa + a, c]$$

then

$$\tilde{x}(\kappa+a) = x(\tilde{t}(\kappa+a)) = x(\tilde{t}(\tau)) = \tilde{x}(\tau), \; \forall \tau \in]\kappa+a,c]$$

so, on $]\kappa + a, c]$, \tilde{x} is constant, and since $c \in C$ we have

$$\frac{d^2}{d\tau^2}\tilde{x}(\tau) = 0 \in F(x(c), \dot{x}(c)) = F(\tilde{x}(\kappa+a), \frac{1}{\dot{t}(\kappa+a)}\dot{\tilde{x}}(\kappa+a)) \subset F(\tilde{x}(\tau), \dot{\tilde{x}}(\tau)).$$

This proves the claim.

(f) It is left to define the solution on [c, b]. On it, $\lambda_1 > 0$ and the construction of Step 1 and (b) can be repeated to find a solution to problem (P_F) on [c, b]. This completes the proof of the theorem.

Proof of the Theorem 3.6. In view of Theorem 3.4, and since co(F): $E \times E \rightrightarrows E$ is a multifunction with compact values, upper semicontinuous on $E \times E$ and furthermore, for all $(x, y) \in E \times E$,

$$co(F(x,y)) \subset (p(t)||x|| + bq(t)||y||)co(\overline{\mathbf{B}}_E) = (p(t)||x|| + bq(t)||y||)\overline{\mathbf{B}}_E,$$

we conclude the existence of a $\mathbf{W}_{E}^{2,1}([a, b])$ -solution x of the problem $(P_{co(F)})$. By the almost convexity of the values of F, there exist two constants λ_1 and EJQTDE, 2011 No. 34, p. 13 λ_2 , satisfying $0 \leq \lambda_1 \leq 1 \leq \lambda_2$, such that, for almost every $t \in [a, b]$, we have

$$\lambda_1 \ddot{x}(t) \in F(x(t), \dot{x}(t))$$
 and $\lambda_2 \ddot{x}(t) \in F(x(t), \dot{x}(t))$.

Using Theorem 3.7, we conclude the existence of a $\mathbf{W}_{E}^{2,1}([a,b])$ -solution of the problem (P_{F}) .

This completes the proof of our main result.

References

- D. Azzam-Laouir, C. Castaing and L. Thibault, *Three boundary value problems for* second order differential inclusion in Banach spaces, Control and cybernetics, vol. 31 (2002) No.3.
- [2] D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, *Topological Methods in Nonlinear Analysis*. Volume 35, 2010, 305-317.
- [3] S.R. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary value problems, Academic Press, Inc. New York and London, 1974.
- [4] A. Cellina and G. Colombo, On a classical problem of the calculus of variations without convexity assumption, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 7 (1990), pp. 97-106.
- [5] A. Cellina and A. Ornelas, Existence of solutions to differential inclusion and optimal control problems in the autonomous case, *Siam J. Control Optim. Vol.* 42, (2003) No. 1, pp. 260-265.
- [6] A. F. Filippov, On certain questions in the theory of optimal control, Vestnik. Univ., Ser. Mat. Mech., 2(1959), pp. 25-32; translated in SIAM J. Control, 1(1962), pp. 76-84.
- [7] A. G. Ibrahim and A. M. M. Gomaa, Existence theorems for functional multivalued three-point boundary value problem of second order, J. Egypt. Math. Soc. 8(2) (2000), 155-168.

(Received December 12, 2010)

D. AFFANE

LABORATOIRE DE MATHÉMATIQUES PURES ET APPLIQUÉES, UNIVERSITÉ DE JIJEL, ALGÉRIE E-mail address: affanedoria@yahoo.fr

D.L. AZZAM

LABORATOIRE DE MATHÉMATIQUES PURES ET APPLIQUÉES, UNIVERSITÉ DE JIJEL, ALGÉRIE *E-mail address*: azzam-d@yahoo.com

EJQTDE, 2011 No. 34, p. 14