
Electronic Journal of Qualitative Theory of Differential Equations

2011, No. 1, 1-15; http://www.math.u-szeged.hu/ejqtde/

Positive solutions for higher-order nonlinear fractional differential

equation with integral boundary condition
∗

Aijun Yang†, Helin Wang

College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China.

Abstract: In this paper, we study a kind of higher-order nonlinear fractional differential

equation with integral boundary condition. The fractional differential operator here is

the Caputo’s fractional derivative. By means of fixed point theorems, the existence and

multiplicity results of positive solutions are obtained. Furthermore, some examples given

here illustrate that the results are almost sharp.

Keywords: Fractional differential equation; Positive solution; Boundary value problem;

Higher-order; Integral boundary condition.

2000 MSC: 26A33; 34B18; 34B27

1. INTRODUCTION

We are interested in the following nonlinear fractional differential equation

Dτ
0+u(t) −

n−1
∑

i=1

aiD
τ−i
0+ u(t) = f(t, u(t), u′(t)), 0 < t < 1, n− 1 < τ < n, (1.1)

subject to the boundary conditions

u(1) − u(0) =

n−1
∑

i=1

ai[I
i
0+u(t)]t=1, u(k)(0) = bk, k = 1, 2, · · · , n− 1, (1.2)

where Dτ
0+ is the the Caputo’s fractional derivative of order τ , n ∈ N, n ≥ 2.

Throughout we assume:
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(i) ai ≥ 0, bi ≥ ai ·
n−i−1
∑

k=1

i!
(k+i)!

bk for i = 1, 2, · · · , n− 1, and 0 <
n−1
∑

i=1

ai

(i−1)!
< 1,

(ii) f : [0, 1] × R+ × R → R+ is continuous.

There has been a significant development in fractional differential equations (in short:FDEs)

in recent years. The motivation for those works stems from both the development of the theory

of fractional calculus itself and the applications of such constructions in various sciences such

as physics, mechanics, chemistry, engineering, etc. For an extensive collection of such results,

we refer the readers to the monographs by Samko et al [1], Podlubny [2], Miller and Ross [3]

and Kilbas et al [4].

Some basic theory for the initial value problems of FDE involving Riemann-Liouville differ-

ential operator has been discussed by Lakshmikantham and Vatsala [5,6,7], A. M. A. El-Sayed et

al [8,9], Kai Diethelm and Neville J. Ford [10] and C. Bai [11], etc. Also, there are some papers

which deal with the existence and multiplicity of solutions for nonlinear FDE boundary value

problems (in short:BVPs) by using techniques of topological degree theory (see [12-15,20,21]

and the references therein). For example, Bai and Lü [12] obtained positive solutions of the

two-point BVP of FDE

Dα
0+u(t) = f(t, u(t)), 0 < t < 1, 1 < α ≤ 2, (1.3)

u(0) = u(1) = 0 (1.4)

by means of Krasnosel’skii fixed point theorem and Leggett-Williams fixed point theorem. Dα
0+

is the standard Riemann-Liouville fractional derivative.

Zhang discussed the existence of solutions of the nonlinear FDE

cDα
0+u(t) = f(t, u(t)), 0 < t < 1, 1 < α ≤ 2 (1.5)

with the boundary conditions

u(0) = ν 6= 0, u(1) = ρ 6= 0 (1.6)

and

u(0) + u′(0) = 0, u(1) + u′(1) = 0 (1.7)

in [13] and [14], respectively. Since conditions (1.6) and (1.7) are not zero boundary value, the

Riemann-Liouville fractional derivative Dα
0+ is not suitable. Therefore, the author investigated

the BVPs (1.5)-(1.6) and (1.5)-(1.7) by involving in the Caputo’s fractional derivative cDα
0+ .
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In [15], M. Benchohra et al considered the following BVP:















cDαy(t) = f(t, y), for each t ∈ [0, T ], 1 < α ≤ 2,

y(0) − y′(0) =
∫ T

0
g(s, y)ds,

y(T ) + y′(T ) =
∫ T

0
h(s, y)ds,

(1.8)

where cDα is the Caputo’s fractional derivative. By using a series of fixed point theorems, some

existence results were given.

From above works, we can see two facts: the first, although the BVPs of nonlinear FDE

have been studied by some authors, to the best of our knowledge, higher-order fractional equa-

tions with integral boundary conditions are seldom considered; the second, the author in [15]

studied the BVP with integral conditions, however, those results can’t ensure the solutions to

be positive. Since only positive solutions are useful for many applications, we investigate the

existence and multiplicity of positive solutions for BVP (1.1)-(1.2) in this paper. In addition,

two examples are given to demonstrate our results.

2. PRELIMINARIES

For the convenience of the reader, we first recall some definitions and fundamental facts of

fractional calculus theory, which can be found in the recent literatures [1-4].

Definition 2.1. The fractional integral of order τ > 0 of a function f : (0,∞) → R is given by

Iτ
0+f(x) =

1

Γ(τ)

∫ x

0

f(t)

(x− t)1−τ
dt, x > 0, (2.1)

provided that the integral exists, where Γ(τ) is the Euler gamma function defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt, (z > 0), (2.2)

for which, the reduction formula

Γ(z + 1) = zΓ(z), Γ(1) = 1, Γ(
1

2
) =

√
π (2.3)

and the Dirichlet formula
∫ 1

0

tz−1(1 − t)ω−1dt =
Γ(z)Γ(ω)

Γ(z + ω)
, (z, ω 6∈ Z

−
0 ) (2.4)

hold.
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Definition 2.2. The Caputo’s fractional derivative of order τ > 0 of a continuous function

f : (0,∞) → R can be written as

Dτ
0+f(x) =

1

Γ(n− τ)

∫ x

0

f (n)(t)

(x− t)τ+1−n
dt, n = [τ ] + 1, (2.5)

where [τ ] denotes the integer part of τ , provided that the right side is pointwise defined on

(0,∞).

Lemma 2.1. Let τ > 0, then the differential equation

Dτ
0+f(x) = 0

has solutions f(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1. Moreover,

Iτ
0+D

τ
0+f(x) = f(x) − (c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1)

for some ci ∈ R, i = 0, 1, 2, · · · , n− 1.

We present the useful Lemmas which are fundamental in the proof of our main results below.

Lemma 2.2[16]. Let C be a convex subset of a normed linear space E, and U be an open subset

of C with p∗ ∈ U . Then every compact continuous map N : U → C has at least one of the

following two properties:

(A1) N has a fixed point;

(A2) there is an x ∈ ∂U with x = (1 − λ)p∗ + λNx for some 0 < λ < 1.

Lemma 2.3[17]. Let C be a closed convex nonempty subset of Banach space E. Suppose that

A and B map C into E such that

(A1) x, y ∈ C imply Ax+By ∈ C;

(A2) A is a contraction mapping;

(A2) B is compact and continuous.

Then there exists z ∈ C with z = Az +Bz.

Definition 2.3. The map α is said to be a nonnegative continuous concave functional on a

cone P of a real Banach space E provided that α : P → [0,∞) is continuous and

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1].
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Let α and β be nonnegative continuous convex functionals on the cone P , ψ be a nonnegative

continuous concave functional on P . Then for positive real numbers r > a and L, we define

the following convex sets:

P (α, r; β, L) = {x ∈ P : α(x) < r, β(x) < L},
P (α, r; β, L) = {x ∈ P : α(x) ≤ r, β(x) ≤ L},
P (α, r; β, L;ψ, a) = {x ∈ P : α(x) < r, β(x) < L, ψ(x) > a},
P (α, r; β, L;ψ, a) = {x ∈ P : α(x) ≤ r, β(x) ≤ L, ψ(x) ≥ a}.

The assumptions below about the nonnegative continuous convex functionals α, β will be used:

(B1) there exists M > 0 such that ||x|| ≤M max{α(x), β(x)} for all x ∈ P ;

(B2) P (α, r; β, L) 6= ∅ for all r > 0, L > 0.

Lemma 2.4[18]. Let P be a cone in a real Banach space E, and r2 ≥ d > b > r1 > 0,

L2 ≥ L1 > 0. Assume that α, β are nonnegative continuous convex functionals satisfying (B1)

and (B2), ψ is a nonnegative continuous concave functional on P such that ψ(y) ≤ α(y) for

all y ∈ P (α, r1; β, L1), and T : P (α, r2; β, L2) → P (α, r2; β, L2) is a completely continuous

operator. Suppose

(C1) {y ∈ P (α, d; β, L2;ψ, b) : ψ(y) > b} 6= ∅, ψ(Ty) > b for y ∈ P (α, d; β, L2;ψ, b);

(C2) α(Ty) < r1, β(Ty) < L1 for all y ∈ P (α, r1; β, L1);

(C3) ψ(Ty) > b for all y ∈ P (α, d; β, L2;ψ, b) with α(Ty) > d.

Then T has at least three fixed points y1, y2, y3 ∈ P (α, r2; β, L2) with

y1 ∈ P (α, r1; β, L1),

y2 ∈ {y ∈ P (α, r2; β, L2;ψ, b) : ψ(y) > b},
y3 ∈ P (α, r2; β, L2) \ (P (α, r2; β, L2;ψ, b) ∪ P (α, r1; β, L1)).

3. MAIM RESULTS

Let X = C1[0, 1] with the norm ||x|| = max{||x||∞, ||x′||∞}, where || · ||∞ is the standard

sup norm of the space C[0, 1]. Obviously, X is a Banach space. Define the cone P ⊂ X by

P = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}.
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Lemma 3.1. Assume that φ ∈ C[0, 1]. Then u ∈ X is a solution of the BVP















Dτ
0+u(t) −

n−1
∑

i=1

aiD
τ−i
0+ u(t) = φ(t), 0 < t < 1,

u(1) − u(0) =
n−1
∑

i=1

ai[I
i
0+u(t)]t=1, u(k)(0) = bk, k = 1, 2, · · · , n− 1

(3.1)

if and only if u is a solution of the fractional integral equation

u(t) = Υ(t) +

n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds+

∫ 1

0

G(t, s)φ(s)ds (3.2)

where

Υ(t) =
n−1
∑

i=1

(
bit

i

i!
− ai

n−i−1
∑

k=1

bkt
k+i

(k + i)!
) +B(t)

n−1
∑

i=1

(
bi

i!
− ai

n−i−1
∑

k=1

bk

(k + i)!
), (3.3)

G(t, s) =
1

Γ(τ)

{

B(t)(1 − s)τ−1 + (t− s)τ−1, 0 ≤ s ≤ t ≤ 1,

B(t)(1 − s)τ−1, 0 ≤ t ≤ s ≤ 1,
(3.4)

here note

B(t) =

1 −
n−1
∑

i=1

ait
i

i!

n−1
∑

i=1

ai

i!

.

For simplicity, for θ ∈ (0, 1
2
), let

ω := max{Υ(t) : t ∈ [0, 1]}, ω∗ := max{|Υ′(t)| : t ∈ [0, 1]},

ω∗∗ := min{Υ(t) : t ∈ [θ, 1 − θ]}, σ1 := max
t∈[0,1]

∫ 1

0

G(t, s)ds,

σ2 := min
t∈[θ,1−θ]

∫ 1

0

G(t, s)ds, σ3 := max
t∈[0,1]

∫ 1

0

|∂G(t, s)

∂t
|ds,

σ4 := min
t∈[θ,1−θ]

∫ 1−θ

θ

G(t, s)ds.

Theorem 3.1. If there exist g, h, l ∈ C([0, 1],R+) satisfying

||h||∞ + ||l||∞ < min{
1 −

n−1
∑

i=1

ai

i!

σ1
,

1 −
n−1
∑

i=1

ai

(i−1)!

σ3
} (3.5)

such that

f(t, x, y) ≤ g(t) + h(t)x+ l(t)y.
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Then the BVP (1.1)-(1.2) has at least one positive solution.

Proof. Consider the operator T : P → P defined by

(Tu)(t) = Υ(t) +

n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds+

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds. (3.6)

Clearly, the fixed point of T is a positive solution of the BVP (1.1)-(1.2). In order to apply

Lemma 2.2, we shall first show T is completely continuous.

T is continuous on P follows from the Lebesgue dominated convergence theorem, which is

valid due to the continuity of the function f .

Now, we will show that T is relatively compact. For any given bounded set U ⊂ P , there

exists M > 0 such that ||u|| ≤M for all u ∈ U . We take

κ = max{|f(t, u, v)| : t ∈ [0, 1], |u| ≤M, |v| ≤M}.

For any u ∈ U ,

||Tu||∞ = max
t∈[0,1]

|Υ(t) +
n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds+

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds|

≤ ω + ||u||∞
n−1
∑

i=1

ai

i!
+ max

(t,x,y)∈[0,1]×[0,M ]×[−M,M ]
f(t, x, y) · max

t∈[0,1]

∫ 1

0

G(t, s)ds

≤ ω +M + κσ1 <∞,

||(Tu)′||∞ = max
t∈[0,1]

|Υ′(t) + a1u(t) +
n−1
∑

i=2

ai

(i− 2)!

∫ t

0

(t− s)i−2u(s)ds

+

∫ 1

0

∂G(t, s)

∂t
f(s, u(s), u′(s))ds|

≤ ω∗ + ||u||∞
n−1
∑

i=1

ai

(i− 1)!
+ max

(t,x,y)∈[0,1]×[0,M ]×[−M,M ]
f(t, x, y) · max

t∈[0,1]

∫ 1

0

|∂G(t, s)

∂t
|ds

≤ ω∗ +M + κσ3 <∞,

that is, TU is uniformly bounded. For u ∈ U , let t1, t2 ∈ [0, 1] be such that t1 < t2, we have

|Tu(t2) − Tu(t1)| = |
∫ t2

t1

(Tu)′(s)ds| ≤ (ω∗ +M + κσ3)|t2 − t1| → 0, as t2 − t1 → 0.

Notice that

(Tu)′(t) = Υ′(t) + a1u(t) +

n−1
∑

i=2

ai

(i− 2)!

∫ t

0

(t− s)i−2u(s)ds
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+
1

Γ(τ)
[−

n−1
∑

i=1

ait
i−1

(i−1)!

n−1
∑

i=1

ai

i!

∫ 1

0

f(s, u(s), u′(s))

(1 − s)1−τ
ds+ (τ − 1)

∫ t

0

f(s, u(s), u′(s))

(t− s)2−τ
ds],

we have

|(Tu)′(t2) − (Tu)′(t1)|

≤ |Υ′(t2) − Υ′(t1)| + a1|u(t2) − u(t1)| +
n−1
∑

i=2

ai

(i− 2)!
|
∫ t2

0

(t2 − s)i−2u(s)ds−
∫ t1

0

(t1 − s)i−2u(s)ds|

+
1

Γ(τ)

n−1
∑

i=2

ai|ti−1
1 − ti−1

2 |
n−1
∑

i=1

ai

i!

∫ 1

0

(1 − s)τ−1f(s, u(s), u′(s))ds

+
1

Γ(τ − 1)
|
∫ t2

0

f(s, u(s), u′(s))

(t2 − s)2−τ
ds−

∫ t1

0

f(s, u(s), u′(s))

(t1 − s)2−τ
ds|

≤ |Υ′(t2) − Υ′(t1)| + a1|u(t2) − u(t1)| +
n−1
∑

i=2

ai

(i− 2)!
[

∫ t1

0

|(t2 − s)i−2 − (t1 − s)i−2|u(s)ds

+

∫ t2

t1

(t2 − s)i−2u(s)ds] +
1

Γ(τ)

n−1
∑

i=2

ai|ti−1
1 − ti−1

2 |
n−1
∑

i=1

ai

i!

∫ 1

0

(1 − s)τ−1f(s, u(s), u′(s))ds

+
1

Γ(τ − 1)
[

∫ t2

t1

f(s, u(s), u′(s))

(t2 − s)2−τ
ds+ |

∫ t1

0

(
1

(t2 − s)2−τ
− 1

(t1 − s)2−τ
)f(s, u(s), u′(s))ds|],

≤ |Υ′(t2) − Υ′(t1)| + a1|u(t2) − u(t1)| +M

n−1
∑

i=2

ai

(i− 1)!
|ti−1

2 − ti−1
1 |

+
κ

Γ(τ + 1)

n−1
∑

i=2

ai|ti−1
1 − ti−1

2 |
n−1
∑

i=1

ai

i!

+
κ

Γ(τ)
[2(t2 − t1)

τ−1 + (tτ−1
2 − tτ−1

1 )] → 0, as t2 − t1 → 0.

That is, TU is an equicontinuous set. Thus, T is relatively compact. By means of the Arzela-

Ascoli theorem, T : P → P is completely continuous.

In the following, let

Q > max{ ω + σ1||g||∞
1 −

n−1
∑

i=1

ai

i!
− σ1(||h||∞ + ||l||∞)

,
ω∗ + σ3||g||∞

1 −
n−1
∑

i=1

ai

(i−1)!
− σ3(||h||∞ + ||l||∞)

}.
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Define Ω = {u ∈ P : ||u|| < Q}, then ||u||∞ ≤ Q and ||u′||∞ ≤ Q for u ∈ ∂Ω.

||Tu||∞ = max
t∈[0,1]

|Υ(t) +

n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds+

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds|

≤ ω +Q

n−1
∑

i=1

ai

i!
+ σ1[||g||∞ +Q(||h||∞ + ||l||∞)] < Q

and

||(Tu)′||∞ = max
t∈[0,1]

|Υ′(t) + a1u(t) +
n−1
∑

i=2

ai

(i− 2)!

∫ t

0

(t− s)i−2u(s)ds

+

∫ 1

0

∂G(t, s)

∂t
f(s, u(s), u′(s))ds|

≤ ω∗ +Q

n−1
∑

i=1

ai

(i− 1)!
+ σ3[||g||∞ +Q(||h||∞ + ||l||∞)] < Q

indicate that ||Tu|| < Q for u ∈ ∂Ω. Take p∗ = 0 in Lemma 2.2, then u = λTu (0 < λ < 1)

for any x ∈ ∂Ω dose not hold. Hence, the operator T has at least a fixed point, i.e. the BVP

(1.1)-(1.2) has at least one positive solution.

Theorem 3.2. Under the assumptions (i) and (ii), the BVP (1.1)-(1.2) has a positive solution.

Proof. Define the functions T1, T2 : P → P by

(T1u)(t) = Υ(t) +
n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds,

(T2u)(t) =

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds.

For x, y ∈ P , it is easy to see that (T1x)(t) + (T2y)(t) ≥ 0, i.e. T1x+ T2y ∈ P .

Firstly, we show that T1 is a contraction mapping. For any u, v ∈ P , we have

|(T1u)(t) − (T1v)(t)| ≤
n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1|u(s) − v(s)|ds

≤
n−1
∑

i=1

ai

i!
||u− v||∞ ≤

n−1
∑

i=1

ai

i!
||u− v||

and

|(T1u)
′(t) − (T1v)

′(t)| ≤ a1|u(t) − v(t)| +
n−1
∑

i=2

ai

(i− 2)!

∫ t

0

(t− s)i−2|u(s) − v(s)|ds
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≤
n−1
∑

i=1

ai

(i− 1)!
||u− v||∞ ≤

n−1
∑

i=1

ai

(i− 1)!
||u− v||.

Since 0 <
n−1
∑

i=1

ai

(i−1)!
< 1 from the condition (i), T1 is contractive.

Next, we shall verify that T2 is completely continuous, which follows from the proof of

Theorem 3.1. As a result, Lemma 2.3 implies that there exists an x∗ ∈ P such that x∗ =

T1x
∗ + T2x

∗. In view of Lemma 3.1, x∗ is a positive solution of the BVP (1.1)-(1.2).

Let the nonnegative continuous convex functionals α, β and the nonnegative continuous

concave functional ψ be defined on the cone P by

α(x) = ||x||∞, β(x) = ||x′||∞, ψ(x) = min
θ≤t≤1−θ

|x(t)|

Obviously, α and β satisfy (B1) and (B2), ψ(x) ≤ α(x) for all x ∈ P .

Theorem 3.3. Assume there exist constants r2 ≥ b
θ
> b > r1 > 0, L2 ≥ L1 > 0 such that

ω < (1 −
n−1
∑

i=1

ai

i!
)r1 and ω∗ < Lj − rj

n−1
∑

i=1

ai

(i−1)!
, j = 1, 2. Suppose

(H1) f(t, u, v) ≤ min{
(1−

n−1
P

i=1

ai

i!
)r2−ω

σ1
,

L2−ω∗−r2

n−1
P

i=1

ai

(i−1)!

σ3
}, (t, u, v) ∈ [0, 1]× [0, r2]× [−L2, L2];

(H2) f(t, u, v) > b−ω∗∗

σ2
, (t, u, v) ∈ [0, 1] × [b, b

θ
] × [−L2, L2];

(H3) f(t, u, v) < min{
(1−

n−1
P

i=1

ai

i!
)r1−ω

σ1
,

L1−ω∗−r1

n−1
P

i=1

ai

(i−1)!

σ3
}, (t, u, v) ∈ [0, 1]× [0, r1]× [−L1, L1];

(H4) f(t, u, v) ≥ θr2−ω∗∗

σ4
, (t, u, v) ∈ [θ, 1 − θ] × [b, r2] × [−L2, L2].

Then the BVP (1.1)-(1.2) has at least three positive solutions x1, x2 and x3 such that

0 ≤ xi(t) ≤ ri, ||x′i||∞ ≤ Li, i = 1, 2,

r1 ≤ x3(t) ≤ r2, − L1 ≤ x′3(t) ≤ L2, t ∈ [0, 1],

x2(t) > b, x3(t) ≤ b, t ∈ [θ, 1 − θ].

Proof. Let the operator T : P → P be defined by (3.6). From the proof of Theorem 3.1, we

know that T is completely continuous. Now, we will verify that all the conditions of Lemma

2.4 are satisfied. The proof is based on the following steps.

Step1. We will show that (H1) implies T : P (α, r2; β, L2) → P (α, r2; β, L2).

In fact, for u ∈ P (α, r2; β, L2), ||u||∞ ≤ r2, ||u′||∞ ≤ L2. In view of (H1), we have

||Tu||∞ = max
t∈[0,1]

|Υ(t) +

n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds+

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds|
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≤ ω + r2

n−1
∑

i=1

ai

i!
+ σ1 max

(t,u,v)∈[0,1]×[0,r2]×[−L2,L2]
f(t, u, v) ≤ r2,

||(Tu)′||∞ = max
t∈[0,1]

|Υ′(t) + a1u(t) +

n−1
∑

i=2

ai

(i− 2)!

∫ t

0

(t− s)i−2u(s)ds

+

∫ 1

0

∂G(t, s)

∂t
f(s, u(s), u′(s))ds|

≤ ω∗ + r2

n−1
∑

i=1

ai

(i− 1)!
+ σ3 max

(t,u,v)∈[0,1]×[0,r2]×[−L2,L2]
f(t, u, v)

≤ L2.

Thus, Tu ∈ P (α, r2; β, L2).

Step2. To check the condition (C1) in Lemma 2.4, we choose x∗(t) ≡ b
θ

on [0, 1]. It is easy

to see that x∗ ∈ {x ∈ P (α, b
θ
; β, L2;ψ, b) : ψ(x) > b}. For u ∈ P (α, b

θ
; β, L2;ψ, b), from (H2),

one gets

min
t∈[θ,1−θ]

|Tu(t)| = min
t∈[θ,1−θ]

|Υ(t) +
n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds+

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds|

≥ ω∗∗ + σ2 min
(t,u,v)∈[0,1]×[b, b

θ
]×[−L,L]

f(t, u, v) > b,

then we can obtain ψ(Tu) > b.

Step3. It is similar to Step1 that we can prove T : P (α, r1; β, L1) → P (α, r1; β, L1) by

condition (H3), that is, (C2) in Lemma 2.4 holds.

Step4. We verify that (C3) in Lemma 2.4 is satisfied. For u ∈ P (α, r2; β, L2;ψ, b) with

α(Tu) > b
θ
, from Step1, we know that α(Tu) ≤ r2, Then, from (H4), we can obtain

min
t∈[θ,1−θ]

|Tu(t)| ≥ min
t∈[θ,1−θ]

|Υ(t) +
n−1
∑

i=1

ai

(i− 1)!

∫ t

0

(t− s)i−1u(s)ds+

∫ 1−θ

θ

G(t, s)f(s, u(s), u′(s))ds|

≥ ω∗∗ + σ4 · min
(t,u,v)∈[θ,1−θ]×[b,r2]×[−L,L]

f(t, u, v)

≥ θr2 ≥ θα(Tu) > b.

Thus, ψ(Tu) > b, (C3) in Lemma 2.3 is satisfied.

Therefore, the operator T has three fixed points x1, x2, x3 ∈ P (α, r2; β, L2) with

x1 ∈ P (α, r1; β, L1), x2 ∈ P (α, r2; β, L2;ψ, b),

x3 ∈ P (α, r2; β, L2) \ (P (α, r2; β, L2;ψ, b) ∪ P (α, r1; β, L1)).
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Then the BVP (1.1)-(1.2) has at least three positive solutions x1, x2 and x3 such that

0 ≤ xi(t) ≤ ri, ||x′i||∞ ≤ Li, i = 1, 2,

r1 ≤ x3(t) ≤ r2, − L1 ≤ x′3(t) ≤ L2, t ∈ [0, 1],

x2(t) > b, x3(t) ≤ b, t ∈ [θ, 1 − θ].

4. EXAMPLES

In this section, we give two applications to illustrate our main results.

Example 4.1. Consider the problem

{

D
5
4
0+x(t) − 1

e
D

1
4
0+x(t) = f(t, x(t), x′(t)), 0 < t < 1,

x(1) − x(0) = 1
e

∫ 1

0
x(s)ds, x′(0) = 1,

(4.1)

where

f(t, u, v) = t+
2

e2
(t− t2)u+

t

e
(
1

2
− 1

e
)v.

Corresponding to the BVP (1.1)-(1.2), τ = 5
4
, n = 2, a1 = 1

e
and b1 = 1. In order to apply

Theorem 3.1, choose

g(t) = 1 + t, h(t) =
2

e2
(t− t2), l(t) =

t

e
(
1

2
− 1

e
).

It is easy to see that ||h||∞ = 1
2e2 , ||l||∞ = 1

2e
− 1

e2 . Notice that

G(t, s) =
1

Γ(5
4
)

{

(e− t)(1 − s)
1
4 + (t− s)

1
4 , 0 ≤ s ≤ t ≤ 1,

(e− t)(1 − s)
1
4 , 0 ≤ t ≤ s ≤ 1.

We can calculate that

σ1 = max
t∈[0,1]

∫ 1

0

G(t, s)ds =
e

Γ(9
4
)
, σ3 = max

t∈[0,1]

∫ 1

0

|∂G(t, s)

∂t
|ds =

9

4Γ(5
4
)
.

Obviously, the inequality in (3.5) is satisfied. Thus, by Theorem 3.1, the BVP (4.1) has at least

one positive solution.

Example 4.2. Consider














D
9
4
0+x(t) − 1

8
D

5
4
0+x(t) − 1

4
D

1
4
0+x(t) = f(t, x(t), x′(t)), 0 < t < 1,

x(1) − x(0) = 1
8

∫ 1

0
x(s)ds+ 1

4

∫ 1

0
(1 − s)x(s)ds,

x′(0) = 1, x′′(0) = 1,

(4.2)
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where

f(t, u, v) =























( 1
10

)t+1 + u2

103 + |v|
103 , u ∈ [0, 10],

( 1
10

)t+1 + 11
125
u2 + |v|

103 − 87
10
, u ∈ [10, 15],

( 1
10

)t+1 + |v|
103 + 111

10
, u ∈ [15, 45],

( 1
10

)t+1 + 111
450
u+ |v|

103 , u ∈ [45,+∞].

Corresponding to the BVP (1.1)-(1.2), we have τ = 9
4
, n = 3, a1 = 1

8
, a2 = 1

4
, b1 = b2 = 1.

Thus, we can obtain B(t) = 4 − 1
2
(t+ t2), Υ(t) = 23

4
+ 9

32
(t− t2), and

G(t, s) =
1

Γ(9
4
)

{

(4 − 1
2
(t+ t2))(1 − s)

5
4 + (t− s)

5
4 , 0 ≤ s ≤ t ≤ 1,

(4 − 1
2
(t+ t2))(1 − s)

5
4 , 0 ≤ t ≤ s ≤ 1.

By choosing θ = 1
3
, one gets

ω =
745

128
, ω∗ =

9

32
, ω∗∗ =

91

16
,

σ1 ≤
5

Γ(13
4
)
, σ2 ≥

31 + 3−
1
4

9Γ(13
4
)
, σ3 =

5

3Γ(9
4
)
, σ4 =

31(4 · 2 1
4 − 1)

81 · 3 1
4 Γ(13

4
)
.

Taking r1 = 10, r2 = 60, b = 15, L1 = 5 and L2 = 40, using Γ(1
4
) ≈ 3.62, we have

(1) f(t, u, v) ≤ min{
3
4
r2 − ω

5
Γ( 13

4
)

,
L2 − ω∗ − 1

4
r2

5
3Γ( 9

4
)

} ≈ min{19.7, 16.8} = 16.8,

for (t, u, v) ∈ [0, 1] × [0, 60] × [−40, 40],

(2) f(t, u, v) >
b− ω∗

31+3−
1
4

9Γ( 13
4

)

≈ 6.7, for (t, u, v) ∈ [0, 1] × [15, 45] × [−40, 40],

(3) f(t, u, v) < min{
3
4
r1 − ω

5
Γ( 13

4
)

,
L1 − ω∗ − 1

4
r1

5
3Γ( 9

4
)

} ≈ min{0.8, 0.5} = 0.5,

for (t, u, v) ∈ [0, 1] × [0, 10] × [−5, 5],

(4) f(t, u, v) ≥ θr2 − ω∗∗

31(4·2
1
4 −1)

81·3
1
4 Γ( 13

4
)

≈ 10.24, for (t, u, v) ∈ [
1

3
,
2

3
] × [15, 60] × [−40, 40],

that is, f satisfies the conditions (H1)-(H4) of Theorem 3.3. Hence, by Theorem 3.3, the BVP

(4.2) has at least three positive solutions x1, x2 and x3 such that

0 ≤ x1(t) ≤ 10, 0 ≤ x2(t) ≤ 60, ||x′1||∞ ≤ 5, ||x′2||∞ ≤ 40,

10 ≤ x3(t) ≤ 60, − 5 ≤ x′3(t) ≤ 40, t ∈ [0, 1],

x2(t) > 15, x3(t) ≤ 15, t ∈ [
1

3
,
2

3
].
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