Boundary value problems for systems of second-order functional differential equations

Svatoslav Staněk ${ }^{* i}$
Department of Mathematical Analysis, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: stanek@risc.upol.cz

Abstract

Systems of second-order functional differential equations $\left(x^{\prime}(t)+L(x)(t)\right)^{\prime}=$ $F(x)(t)$ together with nonlinear functional boundary conditions are considered. Here L : $C^{1}\left([0, T] ; \mathbb{R}^{n}\right) \rightarrow C^{0}\left([0, T] ; \mathbb{R}^{n}\right)$ and $F: C^{1}\left([0, T] ; \mathbb{R}^{n}\right) \rightarrow L_{1}\left([0, T] ; \mathbb{R}^{n}\right)$ are continuous operators. Existence results are proved by the Leray-Schauder degree and the Borsuk antipodal theorem for α-condensing operators. Examples demonstrate the optimality of conditions.

Key words and phrases. Functional boundary value problem, existence, LeraySchauder degree, Borsuk theorem, α-condensing operator.

1991 Mathematics Subject Classification. 34K10, 34B15

1 Introduction, notation

Let $J=[0, T]$ be a compact interval, $n \in \mathbb{N}$. For $a \in \mathbb{R}^{n}, a=\left(a_{1}, \ldots, a_{n}\right)$, we set $|a|=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}$. For any $x: J \rightarrow \mathbb{R}^{n}(n \geq 2)$ we write $x(t)=$ $\left(x_{1}(t), \ldots, x_{n}(t)\right)$ and $\int_{a}^{b} x(t) d t=\left(\int_{a}^{b} x_{1}(t) d t, \ldots, \int_{a}^{b} x_{n}(t) d t\right)$ for $0 \leq a<b \leq T$.

From now on, $C^{0}(J ; \mathbb{R}), C^{0}\left(J ; \mathbb{R}^{n}\right), C^{1}\left(J ; \mathbb{R}^{n}\right), C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}, L_{1}(J ; \mathbb{R})$ and $L_{1}\left(J ; \mathbb{R}^{n}\right)$ denote the Banach spaces with the norms $\|x\|_{0}=\max \{|x(t)|: t \in$ $J\},\|x\|=\max \left\{\left\|x_{1}\right\|_{0}, \ldots,\left\|x_{n}\right\|_{0}\right\},\|x\|_{1}=\max \left\{\|x\|,\left\|x^{\prime}\right\|\right\},\|(x, a, b)\|_{*}=\|x\|+$ $|a|+|b|,\|x\|_{L_{1}}^{0}=\int_{0}^{T}|x(t)| d t$ and $\|x\|_{L_{1}}=\max \left\{\left\|x_{1}\right\|_{L_{1}}^{0}, \ldots,\left\|x_{n}\right\|_{L_{1}}^{0}\right\}$, respectively. $\mathcal{K}(J \times[0, \infty) ;[0, \infty))$ denotes the set of all functions $\omega: J \times[0, \infty) \rightarrow[0, \infty)$ which are integrable on J in the first variable, nondecreasing on $[0, \infty)$ in the second variable and $\lim _{\varrho \rightarrow \infty} \frac{1}{\varrho} \int_{0}^{T} \omega(t, \varrho) d t=0$.

[^0]Denote by \mathcal{A}_{0} the set of all functionals $\alpha: C^{0}(J ; \mathbb{R}) \rightarrow \mathbb{R}$ which are
a) continuous, $\operatorname{Im}(\alpha)=\mathbb{R}$, and
b) increasing (i.e. $x, y \in C^{0}(J ; \mathbb{R}), x(t)<y(t)$ for $\left.t \in J \Rightarrow \alpha(x)<\alpha(y)\right)$.

Here $\operatorname{Im}(\alpha)$ stands for the range of α. If k is an increasing homeomorphism on \mathbb{R} and $0 \leq a<b \leq T$, then the following functionals

$$
\max \{k(x(t)): a \leq t \leq b\}, \quad \min \{k(x(t)): a \leq t \leq b\}, \quad \int_{a}^{b} k(x(t)) d t
$$

belong to the set \mathcal{A}_{0}. Next examples of functionals belonging to the set \mathcal{A}_{0} can be found for example in [2], [3].

Let $\mathcal{A}=\underbrace{\mathcal{A}_{0} \times \ldots \times \mathcal{A}_{0}}_{n}$. For each $x \in C^{0}\left(J ; \mathbb{R}^{n}\right), x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ and $\varphi \in \mathcal{A}, \varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, we define $\varphi(x)$ by

$$
\begin{equation*}
\varphi(x)=\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right) . \tag{1}
\end{equation*}
$$

Let $L: C^{1}\left(J ; \mathbb{R}^{n}\right) \rightarrow C^{0}\left(J ; \mathbb{R}^{n}\right), F: C^{1}\left(J ; \mathbb{R}^{n}\right) \rightarrow L_{1}\left(J ; \mathbb{R}^{n}\right)$ be continuous operators, $L=\left(L_{1}, \ldots, L_{n}\right), F=\left(F_{1}, \ldots, F_{n}\right)$. Consider the functional boundary value problem (BVP for short)

$$
\begin{gather*}
\left(x^{\prime}(t)+L(x)(t)\right)^{\prime}=F(x)(t) \tag{2}\\
\varphi(x)=A, \quad \psi\left(x^{\prime}\right)=B \tag{3}
\end{gather*}
$$

Here $\varphi, \psi \in \mathcal{A}, \varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right), \psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ and $A, B \in \mathbb{R}^{n}, A=$ $\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right)$.

A function $x \in C^{1}\left(J ; \mathbb{R}^{n}\right)$ is said to be a solution of $B V P(2),(3)$ if the vector function $x^{\prime}(t)+L(x)(t)$ is absolutely continuous on $J,(2)$ is satisfied for a.e. $t \in J$ and x satisfies the boundary conditions (3).

The aim of this paper is to state sufficient conditions for the existence results of BVP (2), (3). These results are proved by the Leray-Schauder degree and the Borsuk theorem for α-condensing operators (see e.g. [1]). In our case α-condensing operators have the form $U+V$, where U is a compact operator and V is a strict contraction. We recall that this paper is a continuation of the previous paper by the author [3], where the scalar BVP

$$
\begin{gathered}
\left(x^{\prime}(t)+L_{1}\left(x^{\prime}\right)(t)\right)^{\prime}=F_{1}(x)(t) \\
\varphi_{1}(x)=0, \quad \psi_{1}\left(x^{\prime}\right)=0
\end{gathered}
$$

was considered. Here $L_{1}: C^{0}(J ; \mathbb{R}) \rightarrow C^{0}(J ; \mathbb{R}), F_{1}: C^{1}(J ; \mathbb{R}) \rightarrow L_{1}(J ; \mathbb{R})$ are continuous operators and $\varphi_{1}, \psi_{1} \in \mathcal{A}_{0}$ satisfy $\varphi_{1}(0)=0=\psi_{1}(0)$.

We assume throughout the paper that the continuous operators L and F in (2) satisfy the following assumptions:
$\left(H_{1}\right)$ There exists $k \in\left[0, \frac{1}{2 \mu}\right), \mu=\max \{1, T\}$, such that

$$
\|L(x)-L(y)\| \leq k\|x-y\|_{1} \quad \text { for } x, y \in C^{1}\left(J ; \mathbb{R}^{n}\right)
$$

$\left(H_{2}\right)$ There exists $\omega \in \mathcal{K}(J \times[0, \infty) ;[0, \infty))$ such that

$$
|F(x)(t)| \leq \omega\left(t,\|x\|_{1}\right)
$$

for a.e. $t \in J$ and each $x \in C^{1}\left(J ; \mathbb{R}^{n}\right)$.
Remark 1. If assumption $\left(H_{1}\right)$ is satisfied then

$$
\|L(x)\| \leq k\|x\|_{1}+\|L(0)\| \quad \text { for } x \in C^{1}\left(J ; \mathbb{R}^{n}\right)
$$

Example 1. Let $w \in C^{0}\left(J \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, $\chi, \phi \in C^{0}(J ; J)$ and

$$
\begin{aligned}
&\left|w\left(t, r_{1}, u_{1}, v_{1}, z_{1}\right)-w\left(t, r_{2}, u_{2}, v_{2}, z_{2}\right)\right| \\
& \leq k \max \left\{\left|r_{1}-r_{2}\right|,\left|u_{1}-u_{2}\right|,\left|v_{1}-v_{2}\right|,\left|z_{1}-z_{2}\right|\right\}
\end{aligned}
$$

for $t \in J$ and $r_{i}, u_{i}, v_{i}, z_{i} \in \mathbb{R}^{n}(i=1,2)$, where $k \in\left[0, \frac{1}{2 \mu}\right)$. Then the Nemytskii operator $L: C^{1}\left(J ; \mathbb{R}^{n}\right) \rightarrow C^{0}\left(J ; \mathbb{R}^{n}\right)$,

$$
L(x)(t)=w\left(t, x(t), x(\chi(t)), x^{\prime}(t), x^{\prime}(\phi(t))\right)
$$

satisfies assumption $\left(H_{1}\right)$.
Example 2. Let $f: J \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfy the Carathéodory conditions on $J \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ and

$$
|f(t, u, v)| \leq \omega(t, \max \{|u|,|v|\})
$$

for a.e. $t \in J$ and each $u, v \in \mathbb{R}^{n}$, where $\omega \in \mathcal{K}(J \times[0, \infty) ;[0, \infty))$. Then the Nemytskii operator $F: C^{1}\left(J ; \mathbb{R}^{n}\right) \rightarrow L_{1}\left(J ; \mathbb{R}^{n}\right)$,

$$
F(x)(t)=f\left(t, x(t), x^{\prime}(t)\right)
$$

satisfies assumption $\left(H_{2}\right)$.
The existence results for BVP (2), (3) are given in Sec. 3. Here the optimality of our assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ is studied as well. We shall show that $k \in\left[0, \frac{1}{2}\right)$ can not be replaced be the weaker assumption $k \in\left[0, \frac{1}{2}\right]$ in $\left(H_{1}\right)$ provided $T \leq 1$ (see Example 4), and if $k>\frac{1}{2 \mu}$ in $\left(H_{2}\right)$ then there exists unsolvable BVP of the type (2), (3) provided $T>1$ (see Example 5). Example 6 shows that the condition $\lim _{\varrho \rightarrow \infty} \frac{1}{\varrho} \int_{0}^{T} \omega(t, \varrho) d t=0$ which appears for ω in $\left(H_{2}\right)$ can not be replaced by $\limsup _{\varrho \rightarrow \infty} \frac{1}{\varrho} \int_{0}^{T} \omega(t, \varrho) d t<\infty$.

2 Auxiliary results

For each $\alpha \in \mathcal{A}_{0}$, we define the function $p_{\alpha} \in C^{0}(\mathbb{R} ; \mathbb{R})$ by

$$
p_{\alpha}(c)=\alpha(c) .{ }^{1}
$$

Then p_{α} is increasing on \mathbb{R} and maps \mathbb{R} onto itself. Hence there exists the inverse function $p_{\alpha}^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ to p_{α}.

From now on, $m_{\gamma C} \in \mathbb{R}$ is defined for each $\gamma \in \mathcal{A}, \gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $C \in \mathbb{R}^{n}, C=\left(C_{1}, \ldots, C_{n}\right)$, by

$$
\begin{equation*}
m_{\gamma C}=\max \left\{\left|p_{\gamma_{i}}^{-1}\left(C_{i}\right)\right|: i=1, \ldots, n\right\} . \tag{4}
\end{equation*}
$$

Lemma 1. Let $\gamma \in \mathcal{A}, A \in \mathbb{R}^{n}$ and let $\gamma(x)=A$ for some $x \in C^{0}\left(J ; \mathbb{R}^{n}\right)$. Then there exists $\xi \in \mathbb{R}^{n}$ such that

$$
\left(x_{1}\left(\xi_{1}\right), \ldots, x_{n}\left(\xi_{n}\right)\right)=\left(p_{\gamma_{1}}^{-1}\left(A_{1}\right), \ldots, p_{\gamma_{n}}^{-1}\left(A_{n}\right)\right) .
$$

Proof. Fix $j \in\{1, \ldots, n\}$. If $x_{j}(t)>p_{\gamma_{j}}^{-1}\left(A_{j}\right)\left(\right.$ resp. $\left.x_{j}(t)<p_{\gamma_{j}}^{-1}\left(A_{j}\right)\right)$ on J, then $\gamma_{j}\left(x_{j}\right)>\gamma_{j}\left(p_{\gamma_{j}}^{-1}\left(A_{j}\right)\right)=A_{j}\left(\right.$ resp. $\left.\gamma_{j}\left(x_{j}\right)<\gamma_{j}\left(p_{\gamma_{j}}^{-1}\left(A_{j}\right)\right)=A_{j}\right)$, contrary to $\gamma_{j}\left(A_{j}\right)=A_{j}$. Hence there exists $\xi_{j} \in \mathbb{R}$ such that $x_{j}\left(\xi_{j}\right)=p_{\gamma_{j}}^{-1}\left(A_{j}\right)$.

Define the operators

$$
\begin{gathered}
\Pi: C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \rightarrow C^{1}\left(J ; \mathbb{R}^{n}\right), \quad P: C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \rightarrow C^{0}\left(J ; \mathbb{R}^{n}\right), \\
Q: C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \rightarrow L_{1}\left(J ; \mathbb{R}^{n}\right)
\end{gathered}
$$

by the formulas

$$
\begin{gather*}
\Pi(x, a)(t)=\int_{0}^{t} x(s) d s+a \tag{5}\\
P(x, a)(t)=L(\Pi(x, a))(t) \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
Q(x, a)(t)=F(\Pi(x, a))(t) . \tag{7}
\end{equation*}
$$

Here L and F are the operators in (2).
Consider BVP

$$
\begin{gather*}
x(t)=a+\lambda\left(-P(x, b)(t)+\int_{0}^{t} Q(x, b)(s) d s\right) \tag{8}\\
\varphi\left(\int_{0}^{t} x(s) d s+b\right)=A \tag{9}\\
\psi(x)=B \tag{10}
\end{gather*}
$$

[^1]depending on the parameters $\lambda, a, b,(\lambda, a, b) \in[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n}$. Here $\varphi, \psi \in \mathcal{A}$ and $A, B \in \mathbb{R}^{n}$.

We say that $x \in C^{0}\left(J ; \mathbb{R}^{n}\right)$ is a solution of $B V P(8)_{(\lambda, a, b)},(9)_{b}$, (10) for some $(\lambda, a, b) \in[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ if $(8)_{(\lambda, a, b)}$ is satisfied for $t \in J$ and $x(t)$ satisfies the boundary conditions (9) ${ }_{b}$, (10).

Lemma 2. (A priori bounds). Let assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ be satisfied. Let $x(t)$ be a solution of $B V P(8)_{(\lambda, a, b)}$, $(9)_{b}$, (10) for some $(\lambda, a, b) \in[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n}$. Then

$$
\|x\|<S, \quad|a|<(1-k \mu) S, \quad|b|<m_{\varphi A}+S T
$$

where S is a positive constant such that

$$
\begin{equation*}
\frac{m_{\psi B}+2 k m_{\varphi A}+2\|L(0)\|}{u}+\frac{1}{u} \int_{0}^{T} \omega\left(t, m_{\varphi A}+\mu u\right) d t<1-2 k \mu \tag{11}
\end{equation*}
$$

for $u \in[S, \infty)$ and $m_{\varphi A}, m_{\psi B}$ are given by (4).
Proof. By Lemma 1 (cf. (9) $)_{b}$ and (10)), there exist $\xi, \nu \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\int_{0}^{\xi_{i}} x_{i}(s) d s+b_{i}=p_{\varphi_{i}}^{-1}\left(A_{i}\right), \quad x_{i}\left(\nu_{i}\right)=p_{\psi_{i}}^{-1}\left(B_{i}\right), \quad i=1, \ldots, n . \tag{12}
\end{equation*}
$$

Then (cf. $\left.(8)_{(\lambda, a, b)}\right)$

$$
\begin{equation*}
p_{\psi_{i}}^{-1}\left(B_{i}\right)=a_{i}+\lambda\left(-P_{i}(x, b)\left(\nu_{i}\right)+\int_{0}^{\nu_{i}} Q_{i}(x, b)(s) d s\right), \tag{13}
\end{equation*}
$$

and consequently (for $i=1, \ldots, n$)

$$
x_{i}(t)=p_{\psi_{i}}^{-1}\left(B_{i}\right)+\lambda\left(P_{i}(x, b)\left(\nu_{i}\right)-P_{i}(x, b)(t)+\int_{\nu_{i}}^{t} Q_{i}(x, b)(s) d s\right) .
$$

Hence (cf. (4), $\left(H_{1}\right),\left(H_{2}\right)$ and Remark 1)

$$
\begin{equation*}
\left|x_{i}(t)\right| \leq m_{\psi B}+2 k\|\Pi(x, b)\|_{1}+2\|L(0)\|+\int_{0}^{T} \omega\left(t,\|\Pi(x, b)\|_{1}\right) d t \tag{14}
\end{equation*}
$$

for $t \in J$ and $i=1, \ldots, n$. Since (cf. (5) and (12))

$$
\begin{array}{r}
\|\Pi(x, b)\|=\left\|\left(\int_{0}^{t} x_{1}(s) d s+b_{1}, \ldots, \int_{0}^{t} x_{n}(s) d s+b_{n}\right)\right\| \\
=\left\|\left(\int_{\xi_{1}}^{t} x_{1}(s) d s+p_{\varphi_{1}}^{-1}\left(A_{1}\right), \ldots, \int_{\xi_{n}}^{t} x_{n}(s) d s+p_{\varphi_{n}}^{-1}\left(A_{n}\right)\right)\right\| \tag{15}\\
=\max \left\{\left\|\int_{\xi_{i}}^{t} x_{i}(s) d s+p_{\varphi_{i}}^{-1}\left(A_{i}\right)\right\|_{0}: i=1, \ldots, n\right\} \leq m_{\varphi A}+T\|x\|,
\end{array}
$$

we have

$$
\begin{equation*}
\|\Pi(x, b)\|_{1} \leq \max \left\{m_{\varphi A}+T\|x\|,\|x\|\right\} \leq m_{\varphi A}+\mu\|x\| \tag{16}
\end{equation*}
$$

Then (cf. (14)-(16))

$$
\begin{equation*}
\|x\| \leq m_{\psi B}+2 k\left(m_{\varphi A}+\mu\|x\|\right)+2\|L(0)\|+\int_{0}^{T} \omega\left(t, m_{\varphi A}+\mu\|x\|\right) d t . \tag{17}
\end{equation*}
$$

Set

$$
q(u)=\frac{m_{\psi B}+2 k m_{\varphi A}+2\|L(0)\|}{u}+\frac{1}{u} \int_{0}^{T} \omega\left(t, m_{\varphi A}+\mu u\right) d t
$$

for $u \in(0, \infty)$. Then $\lim _{u \rightarrow \infty} q(u)=0$. Whence there exists $S>0$ such that $q(u)<1-2 k \mu$ for $u \geq S$, and so (cf. (17))

$$
\|x\|<S
$$

Therefore (cf. (12), (13) and (15))

$$
\begin{aligned}
& \left|b_{i}\right|=\left|p_{\varphi_{i}}^{-1}\left(A_{i}\right)-\int_{0}^{\xi_{i}} x_{i}(s) d s\right|<m_{\varphi A}+S T \\
\left|a_{i}\right|= & \left|p_{\psi_{i}}^{-1}\left(B_{i}\right)+\lambda\left(P_{i}(x, b)\left(\nu_{i}\right)-\int_{0}^{\nu_{i}} Q_{i}(x, b)(s) d s\right)\right| \\
\leq & m_{\psi B}+k\|\Pi(x, b)\|_{1}+\|L(0)\|+\int_{0}^{T} \omega\left(t,\|\Pi(x, b)\|_{1}\right) d t \\
\leq & m_{\psi B}+k\left(m_{\varphi A}+\mu S\right)+\|L(0)\|+\int_{0}^{T} \omega\left(t, m_{\varphi A}+\mu S\right) d t \\
< & k \mu S+(1-2 k \mu) S=(1-k \mu) S
\end{aligned}
$$

for $i=1, \ldots, n$, and consequently

$$
|a|<(1-k \mu) S, \quad|b|<m_{\varphi A}+S T
$$

Lemma 3. Let assumption $\left(H_{2}\right)$ be satisfied, $\varphi, \psi \in \mathcal{A}, A, B \in \mathbb{R}^{n}$ and $S>0$ be a constant such that (11) is satisfied for $u \geq S$. Set

$$
\begin{align*}
\Omega=\{ & (x, a, b):(x, a, b) \in C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n} \\
& \left.\|x\|<S,|a|<S,|b|<m_{\varphi A}+S T\right\} \tag{18}
\end{align*}
$$

and let $\Gamma: \bar{\Omega} \rightarrow C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ be given by

$$
\begin{equation*}
\Gamma(x, a, b)=\left(a, a+\varphi\left(\int_{0}^{t} x(s) d s+b\right)-A, b+\psi(x)-B\right) \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{D}(I-\Gamma, \Omega, 0) \neq 0 \tag{20}
\end{equation*}
$$

where " D " denotes the Leray-Schauder degree and I is the identity operator on $C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}$.

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 28, p. 6

Proof. Let $U:[0,1] \times \bar{\Omega} \rightarrow C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\begin{aligned}
U(\lambda, x, a, b)= & \left(a, a+\varphi\left(\int_{0}^{t} x(s) d s+b\right)-(1-\lambda) \varphi\left(-\int_{0}^{t} x(s) d s-b\right)-\lambda A\right. \\
& b+\psi(x)-(1-\lambda) \psi(-x)-\lambda B)
\end{aligned}
$$

By the theory of homotopy and the Borsuk antipodal theorem, to prove (20) it is sufficient to show that
(j) $U(0, \cdot)$ is an odd operator,
($j j) U$ is a compact operator, and
$(j j j) U(\lambda, x, a, b) \neq(x, a, b)$ for $(\lambda, x, a, b) \in[0,1] \times \partial \Omega$.
Since

$$
\begin{aligned}
U(0,-x,-a,-b)= & \left(-a,-a+\varphi\left(-\int_{0}^{t} x(s) d s-b\right)-\varphi\left(\int_{0}^{t} x(s) d s+b\right),\right. \\
& -b+\psi(-x)-\psi(x))=-U(0, x, a, b)
\end{aligned}
$$

for $(x, a, b) \in \bar{\Omega}, U$ is an odd operator.
The compactness of U follows from the properties of φ, ψ and applying the Bolzano-Weierstrass theorem.

Assume that $U\left(\lambda_{0}, x_{0}, a_{0}, b_{0}\right)=\left(x_{0}, a_{0}, b_{0}\right)$ for some $\left(\lambda_{0}, x_{0}, a_{0}, b_{0}\right) \in[0,1] \times \partial \Omega$, $a_{0}=\left(a_{01}, \ldots, a_{0 n}\right), b_{0}=\left(b_{01}, \ldots, b_{0 n}\right)$. Then

$$
\begin{gather*}
x_{0}(t)=a_{0}, \quad t \in J, \tag{21}\\
\varphi\left(a_{0} t+b_{0}\right)=\left(1-\lambda_{0}\right) \varphi\left(-a_{0} t-b_{0}\right)+\lambda_{0} A, \tag{22}\\
\psi\left(a_{0}\right)=\left(1-\lambda_{0}\right) \psi\left(-a_{0}\right)+\lambda_{0} B, \tag{23}
\end{gather*}
$$

and consequently (cf. (22) and (23))

$$
\begin{gather*}
\varphi_{i}\left(a_{0 i} t+b_{0 i}\right)=\left(1-\lambda_{0}\right) \varphi_{i}\left(-a_{0 i} t-b_{0 i}\right)+\lambda_{0} A_{i}, \tag{24}\\
\psi_{i}\left(a_{0 i}\right)=\left(1-\lambda_{0}\right) \psi_{i}\left(-a_{0 i}\right)+\lambda_{0} B_{i} \tag{25}
\end{gather*}
$$

for $i=1, \ldots, n$. Fix $i \in\{1, \ldots, n\}$. If $a_{0 i}>0$ then $\psi_{i}\left(-a_{0 i}\right)<\psi_{i}\left(a_{0 i}\right)$, and so (cf. (25)) $\psi_{i}\left(a_{0 i}\right) \leq\left(1-\lambda_{0}\right) \psi_{i}\left(a_{0 i}\right)+\lambda_{0} B_{i}$. Therefore

$$
\begin{equation*}
\lambda_{0} \psi_{i}\left(a_{0 i}\right) \leq \lambda_{0} B_{i} . \tag{26}
\end{equation*}
$$

For $\lambda_{0}=0$ we obtain (cf. (25)) $\psi_{i}\left(a_{0 i}\right)=\psi_{i}\left(-a_{0 i}\right)$, a contradiction. Let $\lambda_{0} \in(0,1]$. Then (cf. (26)) $\psi_{i}\left(a_{0 i}\right) \leq B_{i}$ and

$$
\begin{equation*}
0<a_{0 i} \leq p_{\psi_{i}}^{-1}\left(B_{i}\right) \leq m_{\psi B} . \tag{27}
\end{equation*}
$$

If $a_{0 i}<0$ then $\psi_{i}\left(a_{0 i}\right)<\psi_{i}\left(-a_{0 i}\right)$ and (cf. (25)) $\psi_{i}\left(a_{0 i}\right) \geq\left(1-\lambda_{0}\right) \psi_{i}\left(a_{0 i}\right)+\lambda_{0} B_{i}$. Hence

$$
\begin{equation*}
\lambda_{0} \psi_{i}\left(a_{0 i}\right) \geq \lambda_{0} B_{i} . \tag{28}
\end{equation*}
$$

For $\lambda_{0}=0$ we obtain (cf. (25)) $\psi_{i}\left(a_{0 i}\right)=\psi_{i}\left(-a_{0 i}\right)$, which is impossible. Let $\lambda_{0} \in(0,1]$. Then (cf. (28))

$$
\begin{equation*}
0>a_{0 i} \geq p_{\psi_{i}}^{-1}\left(B_{i}\right) \geq-m_{\psi B} \tag{29}
\end{equation*}
$$

From (27) and (29) we deduce

$$
\begin{equation*}
\left|a_{0 i}\right| \leq m_{\psi B} \tag{30}
\end{equation*}
$$

Assume that $a_{0 i} t+b_{0 i}>0$ for $t \in J$. Then $\varphi_{i}\left(-a_{0 i} t-b_{0 i}\right)<\varphi_{i}\left(a_{0 i} t+b_{0 i}\right)$, and so (cf. (24)) $\lambda_{0} \neq 0$ and $\varphi_{i}\left(a_{0 i} t+b_{0 i}\right) \leq\left(1-\lambda_{0}\right) \varphi_{i}\left(a_{0 i} t+b_{0 i}\right)+\lambda_{0} A_{i}$. Hence

$$
\varphi_{i}\left(a_{0 i} t+b_{0 i}\right) \leq A_{i} .
$$

If $a_{0 i} t+b_{0 i}>p_{\varphi_{i}}^{-1}\left(A_{i}\right)$ for $t \in J$ then $A_{i} \geq \varphi_{i}\left(a_{0 i} t+b_{0 i}\right)>\varphi_{i}\left(p_{\varphi_{i}}^{-1}\left(A_{i}\right)\right)=A_{i}$, a contradiction. Thus there is $\xi_{i} \in J$ such that

$$
\begin{equation*}
0<a_{0 i} \xi_{i}+b_{0 i} \leq p_{\varphi_{i}}^{-1}\left(A_{i}\right) \leq m_{\varphi A} . \tag{31}
\end{equation*}
$$

Let $a_{0 i} t+b_{0 i}<0$ for $t \in J$. Then $\varphi_{i}\left(a_{0 i} t+b_{0 i}\right)<\varphi_{i}\left(-a_{0 i} t-b_{0 i}\right)$ and (24) implies that $\lambda_{0} \neq 0$ and $\varphi_{i}\left(-a_{0 i} t-b_{0 i}\right) \leq A_{i}$. If $-a_{0 i} t-b_{0 i}>p_{\varphi_{i}}^{-1}\left(A_{i}\right)$ for $t \in J$ then $A_{i} \geq \varphi_{i}\left(-a_{0 i} t-b_{0 i}\right)>\varphi_{i}\left(p_{\varphi_{i}}^{-1}\left(A_{i}\right)\right)=A_{i}$, a contradiction. Hence there exists $\nu_{i} \in J$ such that

$$
\begin{equation*}
0<-a_{0 i} \nu_{i}-b_{0 i} \leq p_{\varphi_{i}}^{-1}\left(A_{i}\right) \leq m_{\varphi A} . \tag{32}
\end{equation*}
$$

We have proved that there exists $\tau_{i} \in J$ such that (cf. (31) and (32))

$$
\left|a_{0 i} \tau_{i}+b_{0 i}\right| \leq m_{\varphi A},
$$

and consequently (cf. (30))

$$
\begin{equation*}
\left|b_{0 i}\right| \leq\left|a_{0 i} \tau_{i}+b_{0 i}\right|+\left|a_{0 i} \tau_{i}\right| \leq m_{\varphi A}+T m_{\psi B} \tag{33}
\end{equation*}
$$

Since (cf. (11)) $m_{\psi B}<(1-k \mu) S \leq S$, it follows that (cf. (21), (30) and (33))

$$
\left\|x_{0}\right\|<S, \quad|a|<S, \quad|b|<m_{\varphi A}+S T
$$

contrary to $\left(x_{0}, a_{0}, b_{0}\right) \in \partial \Omega$.

3 Existence results, examples

The main result of this paper is given in the following theorem.
Theorem 1. Let assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ be satisfied. Then for each $\varphi, \psi \in \mathcal{A}$ and $A, B \in \mathbb{R}^{n}$, $B V P(2)$, (3) has a solution.

Proof. Fix $\varphi, \psi \in \mathcal{A}$ and $A, B \in \mathbb{R}^{n}$. Let S be a positive constant such that (11) is satisfied for $u \geq S$ and $\Omega \subset C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ be defined by (18). Let $U, V: \bar{\Omega} \rightarrow C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\begin{gathered}
U(x, a, b)=\left(a+\int_{0}^{t} Q(x, b)(s) d s, a+\varphi\left(\int_{0}^{t} x(s) d s+b\right)-A, b+\psi(x)-B\right) \\
V(x, a, b)=(-P(x, b)(t), 0,0)
\end{gathered}
$$

and let $W, Z:[0,1] \times \bar{\Omega} \rightarrow C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\begin{gathered}
W(\lambda, x, a, b)=\left(a+\lambda \int_{0}^{t} Q(x, b)(s) d s, a+\varphi\left(\int_{0}^{t} x(s) d s+b\right)-A, b+\psi(x)-B\right) \\
Z(\lambda, x, a, b)=\lambda V(x, a, b)
\end{gathered}
$$

Then $W(0, \cdot)+Z(0, \cdot)=\Gamma(\cdot)$ and $W(1, \cdot)+Z(1, \cdot)=U(\cdot)+V(\cdot)$, where Γ is defined by (19). By Lemma $3, \mathrm{D}(I-W(0, \cdot)-Z(0, \cdot), \Omega, 0) \neq 0$, and consequently, by the theory of homotopy (see e.g. [1]), to show that

$$
\begin{equation*}
\mathrm{D}(I-U-V, \Omega, 0) \neq 0 \tag{34}
\end{equation*}
$$

it suffices to prove:
(i) W is a compact operator,
(ii) there exists $m \in[0,1)$ such that

$$
\|Z(\lambda, x, a, b)-Z(\lambda, y, c, d)\|_{*} \leq m\|(x, a, b)-(y, c, d)\|_{*}
$$

for $\lambda \in[0,1]$ and $(x, a, b),(y, c, d) \in \bar{\Omega}$,
(iii) $W(\lambda, x, a, b)+Z(\lambda, x, a, b) \neq(x, a, b)$ for $(\lambda, x, a, b) \in[0,1] \times \partial \Omega$.

The continuity of W follows from that of Q, φ and ψ. We claim that $W([0,1] \times$ $\bar{\Omega})$ is a relatively compact subset of the Banach space $C^{0}\left(J ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{n}$.

Indeed, let $\left\{\left(\lambda_{j}, x_{j}, a_{j}, b_{j}\right)\right\} \subset[0,1] \times \bar{\Omega}, x_{j}=\left(x_{j 1}, \ldots, x_{j n}\right), a_{j}=\left(a_{j 1}, \ldots, a_{j n}\right)$, $b_{j}=\left(b_{j 1}, \ldots, b_{j n}\right)(j \in \mathbb{N})$. Then (cf. (7), (H_{2}) and (18))

$$
\begin{array}{r}
\left|a_{j i}+\lambda \int_{0}^{t} Q_{i}\left(x_{j}, b_{j}\right)(s) d s\right| \leq\left|a_{j i}\right|+\int_{0}^{T}\left|Q_{i}\left(x_{j}, b_{j}\right)(s)\right| d s \\
<S+\int_{0}^{T} \omega\left(t,\left\|\Pi\left(x_{j}, b_{j}\right)\right\|_{1}\right) d t \leq S+\int_{0}^{T} \omega\left(t, \mu\left\|x_{j}\right\|+\left|b_{j}\right|\right) d t \\
\leq S+\int_{0}^{T} \omega\left(t, m_{\varphi A}+S(\mu+T)\right) d t \\
\left|\int_{t_{1}}^{t_{2}} Q_{i}\left(x_{j}, b_{j}\right)(s) d s\right| \leq\left|\int_{t_{1}}^{t_{2}} \omega\left(t, m_{\varphi A}+S(\mu+T)\right) d t\right|, \\
\left|a_{j i}+\varphi_{i}\left(\int_{0}^{t} x_{j i}(s) d s+b_{j i}\right)-A_{i}\right| \\
<S+\max \left\{\left|p_{\varphi_{i}}\left(-m_{\varphi A}-2 S T\right)\right|,\left|p_{\varphi_{i}}\left(m_{\varphi A}+2 S T\right)\right|\right\}+|A|
\end{array}
$$

and

$$
\left|b_{j i}+\psi_{i}\left(x_{j i}\right)-B_{i}\right|<m_{\varphi A}+S T+\max \left\{\left|p_{\psi_{i}}(-S)\right|,\left|p_{\psi_{i}}(S)\right|\right\}+|B|
$$

for $t, t_{1}, t_{2} \in J, i=1, \ldots, n$ and $j \in \mathbb{N}$. Therefore there exists a convergent subsequence of $\left\{W\left(\lambda_{j}, x_{j}, a_{j}, b_{j}\right)\right\}$ by the Arzelà-Ascoli theorem and the BolzanoWeierstrass theorem. Hence W is a compact operator.

Let $(\lambda, x, a, b),(\lambda, y, c, d) \in[0,1] \times \bar{\Omega}$. Then (cf. $\left(H_{1}\right)$ and (6))

$$
\begin{gathered}
\|Z(\lambda, x, a, b)-Z(\lambda, y, c, d)\|_{*} \leq\|P(x, b)-P(y, d)\|=\|L(\Pi(x, b))-L(\Pi(y, d))\| \\
\leq k\|\Pi(x, b)-\Pi(y, d)\|_{1}=k \max \{\|\Pi(x, b)-\Pi(y, d)\|,\|x-y\|\} \\
\leq k \max \{\|x-y\| T+|b-d|,\|x-y\|\} \\
\leq k \mu(\|x-y\|+|b-d|) \leq k \mu\|(x, a, b)-(y, c, d)\|_{*} .
\end{gathered}
$$

Hence (ii) holds with $m=k \mu<\frac{1}{2}$.
Suppose (iii) was false. Then we could find $\left(\lambda_{0}, x_{0}, a_{0}, b_{0}\right) \in[0,1] \times \partial \Omega$ such that

$$
W\left(\lambda_{0}, x_{0}, a_{0}, b_{0}\right)+Z\left(\lambda_{0}, x_{0}, a_{0}, b_{0}\right)=\left(x_{0}, a_{0}, b_{0}\right) .
$$

Then

$$
\begin{gathered}
x_{0}(t)=a_{0}+\lambda_{0}\left(-P\left(x_{0}, b_{0}\right)(t)+\int_{0}^{t} Q\left(x_{0}, b_{0}\right)(s) d s\right) \quad \text { for } t \in J, \\
\varphi\left(\int_{0}^{t} x_{0}(s) d s+b_{0}\right)=A, \quad \psi\left(x_{0}\right)=B,
\end{gathered}
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 28, p. 10
and consequently $x_{0}(t)$ is a solution of BVP $(8)_{\left(\lambda_{0}, a_{0}, b_{0}\right)},(9)_{b_{0}}$, (10). By Lemma 2, $\left\|x_{0}\right\|<S,\left|a_{0}\right|<(1-k \mu) S \leq S$ and $\left|b_{0}\right|<m_{\varphi A}+S T$, contrary to $\left(x_{0}, a_{0}, b_{0}\right) \in \partial \Omega$.

We have proved (34). Therefore there exists a fixed point of the operator $U+V$, say (u, a, b). It follows that

$$
\begin{gather*}
u(t)=a-P(u, b)(t)+\int_{0}^{t} Q(u, b)(s) d s \quad \text { for } t \in J, \tag{35}\\
\varphi\left(\int_{0}^{t} u(s) d s+b\right)=A, \quad \psi(u)=B \tag{36}
\end{gather*}
$$

Set $x(t)=\int_{0}^{t} u(s) d s+b, t \in J$. Then (cf. (5)-(7), (35) and (36))

$$
\begin{gathered}
x^{\prime}(t)=a-L(x)(t)+\int_{0}^{t} F(x)(s) d s \quad \text { for } t \in J, \\
\varphi(x)=A, \quad \psi\left(x^{\prime}\right)=B
\end{gathered}
$$

and we see that $x(t)$ is a solution of BVP (2), (3).
Example 3. Let $w_{j i} \in C^{0}(J ; \mathbb{R}), \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in C^{0}(J ; J)$ for $j=1,2, \ldots, 9$ and $i=1,2$. Define $L_{i}: C^{1}\left(J ; \mathbb{R}^{2}\right) \rightarrow C^{0}(J ; \mathbb{R})(i=1,2)$ by

$$
\begin{aligned}
L_{i}(x)(t) & =w_{1 i}(t) x_{1}(t)+w_{2 i}(t) x_{2}(t)+w_{3 i}(t) x_{1}\left(\alpha_{i}(t)\right)+w_{4 i}(t) x_{2}\left(\beta_{i}(t)\right) \\
& +w_{5 i}(t) x_{1}^{\prime}(t)+w_{6 i}(t) x_{2}^{\prime}(t)+w_{7 i}(t) x_{1}^{\prime}\left(\gamma_{i}(t)\right)+w_{8 i}(t) x_{2}^{\prime}\left(\delta_{i}(t)\right)+w_{9 i}(t) .
\end{aligned}
$$

Let $F_{i}: C^{1}\left(J ; \mathbb{R}^{2}\right) \rightarrow L_{1}(J ; \mathbb{R})(i=1,2)$ be continuous operators such that

$$
\left|F_{i}(x)(t)\right| \leq \widetilde{\omega}\left(t,\|x\|_{1}\right)
$$

for a.e. $t \in J$ and each $x \in C^{1}\left(J ; \mathbb{R}^{2}\right)$, where $\widetilde{\omega} \in \mathcal{K}(J \times[0, \infty) ;[0, \infty))$.
Consider BVP

$$
\begin{gather*}
\left(x_{1}^{\prime}(t)+L_{1}(x)(t)\right)^{\prime}=F_{1}(x)(t), \\
\left(x_{2}^{\prime}(t)+L_{2}(x)(t)\right)^{\prime}=F_{2}(x)(t), \tag{37}\\
\varphi_{1}\left(x_{1}\right)=A_{1}, \quad \varphi_{2}\left(x_{2}\right)=A_{2}, \quad \psi_{1}\left(x_{1}^{\prime}\right)=B_{1}, \quad \psi_{2}\left(x_{2}^{\prime}\right)=B_{2} \tag{38}
\end{gather*}
$$

By Theorem 1 , for each $\varphi_{i}, \psi_{i} \in \mathcal{A}_{0}$ and $A_{i}, B_{i} \in \mathbb{R}(i=1,2)$, BVP (37), (38) has a solution provided $\sum_{j=1}^{8}\left\|w_{j i}\right\|_{0}<\frac{1}{2 \mu}$ for $i=1,2$.

Next Example 4 shows that for $T \leq 1$ the condition $k \in\left[0, \frac{1}{2}\right)$ in $\left(H_{1}\right)$ is optimal and can not be replaced by $k \in\left[0, \frac{1}{2}\right]$. In the case of $T>1$ we will show (see Example 5) that for each $k>\frac{1}{2 T}$ in $\left(H_{1}\right)$ there exists an unsolvable BVP of the type (2), (3) satisfying $\left(H_{2}\right)$.

Example 4. Let $T \leq 1$. Consider BVP

$$
\begin{gather*}
\left(x_{1}^{\prime}(t)+\alpha(t)\left(x_{1}^{\prime}(T)+x_{2}^{\prime}(T)\right)\right)^{\prime}=1, \\
\left(x_{2}^{\prime}(t)+\alpha(t)\left(x_{1}^{\prime}(T)+x_{2}^{\prime}(T)\right)\right)^{\prime}=1, \tag{39}\\
\varphi_{1}\left(x_{1}\right)=A_{1}, \min \left\{x_{1}^{\prime}(t): t \in J\right\}=0, \\
\varphi_{2}\left(x_{2}\right)=A_{2}, \min \left\{x_{2}^{\prime}(t): t \in J\right\}=0, \tag{40}
\end{gather*}
$$

where $\alpha \in C^{0}(J ; \mathbb{R}),\|\alpha\|_{0}=\frac{1}{4}, \alpha(0)=\frac{1}{4}, \alpha(T)=-\frac{1}{4}, \varphi_{1}, \varphi_{2} \in \mathcal{A}_{0}$ and $A_{1}, A_{2} \in$ \mathbb{R}.

Let $L_{i}: C^{1}\left(J ; \mathbb{R}^{2}\right) \rightarrow C^{0}(J ; \mathbb{R}), L_{i}(x)(t)=\alpha(t)\left(x_{1}^{\prime}(T)+x_{2}^{\prime}(T)\right)(i=1,2)$. Then

$$
\begin{aligned}
& \left\|L_{i}(x)-L_{i}(y)\right\|_{0} \leq\|\alpha\|_{0}\left(\left|x_{1}^{\prime}(T)-y_{1}^{\prime}(T)\right|+\left|x_{2}^{\prime}(T)-y_{2}^{\prime}(T)\right|\right) \\
& \quad \leq \frac{1}{4}\left(\left\|x_{1}^{\prime}-y_{1}^{\prime}\right\|_{0}+\left\|x_{2}^{\prime}-y_{2}^{\prime}\right\|_{0}\right) \leq \frac{1}{2}\left\|x^{\prime}-y^{\prime}\right\| \leq \frac{1}{2}\|x-y\|_{1},
\end{aligned}
$$

and so $\|L(x)-L(y)\| \leq \frac{1}{2}\|x-y\|_{1}$ for $x, y \in C^{1}\left(J ; \mathbb{R}^{2}\right)$ where $L=\left(L_{1}, L_{2}\right)$. BVP (39), (40) satisfies $\left(H_{2}\right)$ with $\omega(t, \varrho)=1$ but in $\left(H_{1}\right)$ we have $k=\frac{1}{2}\left(=\frac{1}{2 \mu}\right)$.

Assume that $u(t)=\left(u_{1}(t), u_{2}(t)\right)$ is a solution of BVP (39), (40). Then $u_{1}^{\prime}=$ u_{2}^{\prime}. Indeed, since $\left(u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right)^{\prime}=0$ for $t \in J$ there exists $c \in \mathbb{R}$ such that $u_{1}^{\prime}(t)=$ $u_{2}^{\prime}(t)+c$ on J. From $\min \left\{u_{1}^{\prime}(t): t \in J\right\}=\min \left\{u_{2}^{\prime}(t): t \in J\right\}=0$ we deduce that $u_{1}^{\prime}(\nu)=0, u_{2}^{\prime}(\tau)=0$ for some $\nu, \tau \in J$, and so $0=u_{1}^{\prime}(\nu)=u_{2}^{\prime}(\nu)+c \geq c$. If $c<0$ then $0 \leq u_{1}^{\prime}(\tau)=c$, a contradiction. Hence $c=0$ and then

$$
\left(u_{1}^{\prime}(t)+2 \alpha(t) u_{1}^{\prime}(T)\right)^{\prime}=1 \quad \text { for } t \in J .
$$

Using the equality $u_{1}^{\prime}(\nu)=0$ we have

$$
\begin{equation*}
u_{1}^{\prime}(t)=2(\alpha(\nu)-\alpha(t)) u_{1}^{\prime}(T)+t-\nu \quad \text { for } t \in J . \tag{41}
\end{equation*}
$$

If $\nu=0$ then (cf. (41) with $t=T) u_{1}^{\prime}(T)=u_{1}^{\prime}(T)+T$, which is impossible. Assume $\nu \in(0, T]$. Then (cf. (41) with $t=0)$

$$
u_{1}^{\prime}(0)=2\left(\alpha(\nu)-\frac{1}{4}\right) u_{1}^{\prime}(T)-\nu \leq-\nu
$$

contrary to $u_{1}^{\prime}(t) \geq 0$ for $t \in J$. It follows that BVP (39), (40) is unsolvable.
Example 5. Let $T>1$ and $\varepsilon>1$. Consider BVP

$$
\begin{align*}
\left(x_{1}^{\prime}(t)+\alpha(t)\left(x_{1}(T)+x_{2}(T)\right)\right)^{\prime}=1, \\
\left(x_{2}^{\prime}(t)+\alpha(t)\left(x_{1}(T)+x_{2}(T)\right)\right)^{\prime}=1, \tag{42}\\
\min \left\{x_{i}(t): t \in J\right\}=0, \quad \min \left\{x_{i}^{\prime}(t): t \in J\right\}=0, \quad i=1,2, \tag{43}
\end{align*}
$$

where $\alpha \in C^{0}(J ; \mathbb{R}),\|\alpha\|_{0}=\frac{\varepsilon}{4 T}, \int_{0}^{T} \alpha(s) d s=-\frac{1}{4}, \alpha(0)=\frac{1}{4 T}, \alpha(T)=-\frac{\varepsilon}{4 T}$ and $\alpha(t) \leq \frac{1}{4 T}$ for $t \in J$.

Let $L_{i}: C^{1}\left(J ; \mathbb{R}^{2}\right) \rightarrow C^{0}(J ; \mathbb{R}),\left(L_{i} x\right)(t)=\alpha(t)\left(x_{1}(T)+x_{2}(T)\right)(i=1,2)$. Then

$$
\begin{aligned}
& \left\|L_{i}(x)-L_{i}(y)\right\|_{0} \leq\|\alpha\|_{0}\left(\left|x_{1}(T)-y_{1}(T)\right|+\left|x_{2}(T)-y_{2}(T)\right|\right) \\
\leq & \frac{\varepsilon}{4 T}\left(\left\|x_{1}-y_{1}\right\|_{0}+\left\|x_{2}-y_{2}\right\|_{0}\right) \leq \frac{\varepsilon}{2 T}\|x-y\| \leq \frac{\varepsilon}{2 T}\|x-y\|_{1},
\end{aligned}
$$

and so $\|L x-L y\| \leq \frac{\varepsilon}{2 T}\|x-y\|_{1}$ for $x, y \in C^{1}\left(J ; \mathbb{R}^{2}\right)$ where $L=\left(L_{1}, L_{2}\right)$. Hence BVP (42), (43) satisfies $\left(H_{2}\right)$ with $\omega(t, \varrho)=1$ but in $\left(H_{1}\right)$ we have $k=\frac{\varepsilon}{2 T}\left(>\frac{1}{2 \mu}\right)$.

Assume that $u(t)=\left(u_{1}(t), u_{2}(t)\right)$ is a solution of BVP (42), (43). Applying the same procedure as in Example 4, it is obvious that $u_{1}=u_{2}$. Hence

$$
\left(u_{1}^{\prime}(t)+2 \alpha(t) u_{1}(T)\right)^{\prime}=1 \quad \text { for } t \in J
$$

and since $\min \left\{u_{1}(t): t \in J\right\}=0$ and $\min \left\{u_{1}^{\prime}(t): t \in J\right\}=0$ we have $u_{1}(t) \geq 0$, $u_{1}^{\prime}(t) \geq 0$ on J and $u_{1}^{\prime}(\nu)=0$ for some $\nu \in J$. Therefore

$$
\begin{equation*}
u_{1}^{\prime}(t)=2(\alpha(\nu)-\alpha(t)) u_{1}(T)+t-\nu \quad \text { for } t \in J . \tag{44}
\end{equation*}
$$

Assume $\nu=0$. Then

$$
u_{1}^{\prime}(t)=2\left(\frac{1}{4 T}-\alpha(t)\right) u_{1}(T)+t \geq t
$$

and so $u_{1}(t)$ is increasing on J and $\min \left\{u_{1}(t): t \in J\right\}=0$ implies $u_{1}(0)=0$. Hence

$$
u_{1}(t)=2\left(\frac{t}{4 T}-\int_{0}^{t} \alpha(s) d s\right) u_{1}(T)+\frac{t^{2}}{2} \quad \text { for } t \in J
$$

and

$$
u_{1}(T)=2\left(\frac{1}{4}-\int_{0}^{T} \alpha(s) d s\right) u_{1}(T)+\frac{T^{2}}{2}=u_{1}(T)+\frac{T^{2}}{2}
$$

which is impossible.
Let $\nu \in(0, T]$. Then (cf. (44))

$$
u_{1}^{\prime}(0)=2\left(\alpha(\nu)-\frac{1}{4 T}\right) u_{1}(T)-\nu \leq-\nu
$$

contrary to $\min \left\{u_{1}^{\prime}(t): t \in J\right\}=0$. We have proved that BVP (42), (43) is unsolvable.

The following example demonstrates that the condition $\lim _{\varrho \rightarrow \infty} \int_{0}^{T} \omega(t, \varrho) d t=0$ in $\left(H_{2}\right)$ can not be replaced by $\limsup _{\varrho \rightarrow \infty} \int_{0}^{T} \omega(t, \varrho) d t<\infty$.

Example 6. Consider BVP

$$
\begin{equation*}
x_{1}^{\prime \prime}(t)=1+\frac{2}{T^{2}}\|x\|_{1}, \quad x_{2}^{\prime \prime}(t)=1+\sqrt{\|x\|}, \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
\min \left\{x_{1}(t): t \in J\right\}=0, \varphi_{1}\left(x_{2}\right)=A, \min \left\{x_{1}^{\prime}(t): t \in J\right\}=0, \varphi_{2}\left(x_{2}^{\prime}\right)=B \tag{46}
\end{equation*}
$$

where $\varphi_{1}, \varphi_{2} \in \mathcal{A}_{0}$ and $A, B \in \mathbb{R}$. Assume that BVP (45), (46) is solvable and let $u(t)=\left(u_{1}(t), u_{2}(t)\right)$ be its solution. Then $u_{1}^{\prime \prime}(t) \geq 1$ on J and the equality $\min \left\{u_{1}^{\prime}(t): t \in J\right\}=0$ implies $u_{1}^{\prime}(0)=0$. Hence

$$
\begin{equation*}
u_{1}^{\prime}(t)=\left(1+\frac{2}{T^{2}}\|u\|_{1}\right) t \quad \text { for } t \in J \tag{47}
\end{equation*}
$$

and consequently $u_{1}(t)$ is increasing on J. From $\min \left\{u_{1}(t): t \in J\right\}=0$ we deduce that $u_{1}(0)=0$ and then (cf. (47))

$$
u_{1}(t)=\frac{1}{2}\left(1+\frac{2}{T^{2}}\|u\|_{1}\right) t^{2} \quad \text { for } t \in J
$$

Therefore

$$
\left\|u_{1}\right\|_{0}=\frac{T^{2}}{2}+\|u\|_{1} \geq \frac{T^{2}}{2}+\left\|u_{1}\right\|_{0}
$$

which is impossible. Hence BVP (45), (46) is unsolvable.
We note that for (45) the inequality $|F(x)(t)| \leq \omega\left(t,\|x\|_{1}\right)$ in $\left(H_{2}\right)$ is optimal with respect to the function ω for $\omega(t, \varrho)=1+\max \left\{\frac{2}{T^{2}} \varrho, \sqrt{\varrho}\right\}$ and we see that $\lim _{\varrho \rightarrow \infty} \frac{1}{\varrho} \int_{0}^{T} \omega(t, \varrho) d t=\frac{2}{T}$.

Reference

[1] Deimling K., Nonlinear Functional Analysis. Springer Berlin Heidelberg, 1985.
[2] Staněk S., Multiple solutions for some functional boundary value problems. Nonlin. Anal. 32(1998), 427-438.
[3] Staněk S., Functional boundary value problems for second order functional differential equations of the neutral type. Glasnik Matematički (to apear).

[^0]: *This work was supported by grant no. 201/98/0318 of the Grant Agency of Czech Republic and by the Council of Czech Government J14/98:153100011
 ${ }^{\dagger}$ This paper is in final form and no version of it will be submitted for publication elsewhere

[^1]: ${ }^{1}$ We identify the set of all constant scalar functions on J with R.

