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1 Introduction

Nosocomial (hospital-acquired) infections caused by antibiotic resistant bacteria are a major
global public health problem. Numerous factors contribute to the emergence and spread of
these bacterial infections in hospital settings. To fully understand the impact of different fac-
tors, various mathematical models have been developed [3,4,6,8,13,14]. Many of these models
are formulated as ordinary differential equations (ODEs). These models divide patients and
health care workers (HCW) into different compartments, such as infected or uninfected pa-
tients and contaminated or uncontaminated HCW. The rate of change of each compartment is
described by an ODE under the assumption that the interactions among different groups are
deterministic. These models have been applied to the population-level analysis of the spread
of nosocomial epidemics [4, 5, 14].

One drawback of ODE models is that they cannot directly reflect randomness in epidemic
events. For instance, the parameters in ODE models should be viewed as averages. Conse-
quently, ODE models can only describe average behavior. Hence there is a need to formulate
randomness more precisely in nosocomial models. This is especially true for nosocomial
models in hospital subunits, such as an intensive care unit (ICU), which are usually very
small, and where randomness may have large influence. Thus, continuous-time Markov chain
models (CTMC) and individual based models (IBM) have been used to model nosocomial
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infections in many studies [11, 12, 14]. Despite the utility of simulations of CTMC and IBM,
analytical results are lacking due to the inherent complexity of these systems.

A modeling framework closer to ODE, which incorporates randomness and offers ana-
lytic tractability, are stochastic differential equations (SDEs). SDEs are useful for modeling
biological phenomena, and have been applied to many investigations [2, 7, 10, 15]. However,
to the best of our knowledge, little work has been done on modeling nosocomial infections
with SDE. Motivated by this problem, we will develop and analyze SDE models of nosocomial
epidemics in an ICU.

This paper is organized as follows: in Section 2 we formulate the SDE model, in Section 3
we analyze the model, in Section 4 we provide numerical simulations of the model, and in
Section 5 we discuss conclusions derived from the model.

2 Derivation of the stochastic model

In [13] an antibiotic resistant infection epidemic in an ICU is treated with both IBM and ODE
approaches. The epidemic population was divided into the following seven compartments:

• uninfected patients (PU);

• patients infected with a nonresistant bacterial strain not on antibiotics specific to this
strain (PNoff);

• patients infected with a nonresistant bacterial strain on antibiotics specific to this strain
(PNon);

• patients infected with the resistant strain of this bacteria (PR);

• uncontaminated HCW (HU);

• HCW contaminated with the nonresistant bacterial strain (HN);

• and HCW contaminated with the resistant strain (HR).

Then a system involving seven ODEs was derived; see [13, Eq. (1)–(7)]. That system was fur-
ther simplified based on certain assumptions and reduced to a model involving three ODEs;
the reader is referred to [13, Section 3] for the details.

In this section, we first use the idea similar to [13] to build an ODE model. To simplify
the problem, we combine PNoff and PNon defined above as a single compartment: patients
infected with a nonresistant bacterial strain (PN). All other compartments remain the same.
The transmission among the compartments is described by Figure 2.1.
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Figure 2.1: Schematic diagram of the model compartments.

Based on Figure 2.1, a system involving six ODEs is derived as follows:

P′U(t) =
1

TN
PN(t) +

1
TR

PR(t)−
NHπN HN(t)

NPTV NH
PU(t), (2.1)

P′N(t) =
NHπN HN(t)

NPTV NH
PU(t)−

NHπRHR(t)
NPTV NH

PN(t)−
1

TN
PN(t), (2.2)

P′R(t) =
NHπRHR(t)

NPTV NH
PN(t)−

1
TR

PR(t), (2.3)

H′U(t) =
1

TV
HN(t) +

1
TV

HR(t)−
ωN PN(t)

TV NP
HU(t)−

ωRPR(t)
TV NP

HU(t), (2.4)

H′N(t) =
ωN PN(t)

TV NP
HU(t)−

1
TV

HN(t), (2.5)

H′R(t) =
ωRPR(t)

TV NP
HU(t)−

1
TV

HR(t), (2.6)

where NP, NH, TV , TN , TR, ωN , ωR, πN , πR, are all positive constant parameters. The model
assumptions and meanings of parameters may be summarized as follows (the reader is re-
ferred to [13] for the details).

1. There are NP patients and NH HCWs in the ICU. The units of time are days.

2. All patients who exit the ICU are immediately replaced by uninfected patients. The exit
rate of an uninfected patient is not specified as another uninfected patient replaces such
a patient immediately.

3. TN is the average time of the length of stay (LOS) of a patient infected with the nonre-
sistant strain. It is assumed this value is additional to any time already spent in the ICU
as an uninfected patient. 1/TN is interpreted as the exit rate of a patient infected with
the nonresistant strain.

4. TR is the average time of the LOS of a patient infected with the resistant strain. It
is assumed this value is additional to any time already spent in the ICU as a patient
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uninfected plus time spent infected with the nonresistant strain. 1/TR is interpreted as
the exit rate of a patient infected with the resistant strain.

5. TV is the average time (in days) of a patient-HCW visit. NH/(NPTV) is the average
number of visits received by a patient per day.

6. During each visit of a patient by an uncontaminated HCW there is a probability ωN of
HCW contamination by a patient infected with a nonresistant strain and a probability
ωR of HCW contamination by a patient infected with a resistant strain. A contaminated
HCW remains contaminated only for the subsequent next visit to a patient.

7. During each visit of an uninfected patient by a HCW contaminated with the nonresistant
strain, there is a probability πN that the patient is infected with the nonresistant strain.
During each visit of a patient infected with the nonresistant strain by a HCW contami-
nated with the resistant strain, there is a probability πR that the patient is infected with
the resistant strain.

Implicitly assumed in the model is that patients infected with the non-resistant strain,
PN(t), are prescribed antibiotics and the resistant strain can only infect patients on antibiotics.
The justification for this assumption is that antibiotics provide a favorable environment for the
resistant strain to infect a patient and, in the absence of antibiotics, the resistant strain cannot
establish an infection. Additionally, within-host mutation from the non-resistant strain to the
resistant strain is assumed to be sufficiently rare, so that infected patients (on antibiotics) only
become resistant through exposure to the circulating resistant strain via contaminated HCW.
Since the populations of patients and HCW remain constant in time, equations (2.1) and (2.4)
can be eliminated, and the following system is obtained:

P′N(t) =
πN HN(t)

NPTV
(NP − PN(t)− PR(t))−

πRHR(t)
NPTV

PN(t)−
PN(t)

TN
, (2.7)

P′R(t) =
πRHR(t)

NPTV
PN(t)−

PR(t)
TR

, (2.8)

H′N(t) =
ωN PN(t)

TV NP
(NH − HN(t)− HR(t))−

HN(t)
TV

, (2.9)

H′R(t) =
ωRPR(t)

TV NP
(NH − HN(t)− HR(t))−

HR(t)
TV

, (2.10)

Further since the time-scale of patient-HCW visits is much faster than patient turnover, it is
assumed in [13] that

(H1) the HCW compartments are in a quasi-steady state, i.e.,

H′N(t) = H′R(t) ≡ 0, t ≥ 0.

Then, by (2.5), (2.6), and (H1),
HN(t) =

ωN NHPN(t)
NP + ωN PN(t) + ωRPR(t)

,

HR(t) =
ωRNHPR(t)

NP + ωN PN(t) + ωRPR(t)
.

(2.11)
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Hence, System (2.7)–(2.10) is simplified to two equations:

P′N(t) =
NHπNωN PN(t)(NP − PN(t)− PR(t))

NPTV(NP + ωN PN(t) + ωRPR(t))

− NHπRωRPR(t)PN(t)
NPTV(NP + ωN PN(t) + ωRPR(t))

− PN(t)
TN

, (2.12)

P′R(t) =
NHπRωRPR(t)PN(t)

NPTV(NP + ωN PN(t) + ωRPR(t))
− PR(t)

TR
. (2.13)

It is clear that (H1) plays an important role to derive System (2.12), (2.13). However, (H1) is
a simplification of large scale uncertainty in random events. Thus, it is more realistic to allow
HN and HR to vary from their quasi-steady states. We therefore weaken assumption (H1) by
introducing random perturbations into (2.11):

HN(t) =
ωN NHPN(t)

NP + ωN PN(t) + ωRPR(t)
(1 + σ1Ḃ(t)),

HR(t) =
ωRNHPR(t)

NP + ωN PN(t) + ωRPR(t)
(1 + σ2Ḃ(t)),

(2.14)

where Ḃ is a white noise, and σ1 ≥ 0 and σ2 ≥ 0 are the intensities of the noise. Thus, by (2.7),
(2.8), and (2.14), we obtain the following SDE model:

dPN(t) = f1(PN(t), PR(t))dt + g1(PN(t), PR(t))dB(t), (2.15)

dPR(t) = f2(PN(t), PR(t))dt + g2(PN(t), PR(t))dB(t), (2.16)

where

f1(x, y) =
NHπNωNx(NP − x− y)
NPTV(NP + ωNx + ωRy)

− NHπRωRxy
NPTV(NP + ωNx + ωRy)

− x
TN

, (2.17)

f2(x, y) =
NHπRωRxy

NPTV(NP + ωNx + ωRy)
− y

TR
, (2.18)

g1(x, y) =
σ1NHπNωNx(NP − x− y)
NPTV(NP + ωNx + ωRy)

− σ2NHπRωRxy
NPTV(NP + ωNx + ωRy)

, (2.19)

g2(x, y) =
σ2NHπRωRxy

NPTV(NP + ωNx + ωRy)
, (2.20)

and B(t) is a standard Brownian motion.

Remark 2.1. The solutions PN and PR of System (2.15), (2.16) are two continuous stochastic
processes defined on a probability space (Ω,A,P). Let T be an interval in time. Then both
PN : T× Ω → R and PR : T× Ω → R are functions of two variables t ∈ T and ω ∈ Ω.
The normal convention is that the variable ω is often suppressed; see for example [1] for the
details. In the sequel, we will use PN(t) and PR(t) to denote the solutions of System (2.15),
(2.16). ω is only included as needed.

Other parameters in the model, such as transmission probabilities, contact or removal
rates, may also vary randomly. However, we leave this for future research and only consider
random perturbations of the quasi-steady states for contaminated HCW. The inclusion of
random perturbations in these terms reflects the inherent uncertainty in the quasi-steady state
assumption. The fast dynamics associated with HCW contamination and decontamination
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which allow for the quasi-steady state assumption, also can lead to high-frequency noise
when stochasticity is included. Indeed, in multiple types of stochastic models of nosocomial
infections, HCW contamination is highly variable on small intervals of time [11, 12, 14]. Thus,
it seems that equations in (2.14) are an effective way to introduce random perturbations, while
also allowing for analysis of a reduced model afforded by the quasi-steady state assumption.

3 Analysis of the solutions

We first consider the positivity of solutions of System (2.15), (2.16). Using an idea similar to
[7, Theorem 4.1], we can prove the following theorem:

Theorem 3.1. Let (PN , PR) be the solution of (2.15), (2.16) starting from the initial value (P[0]
N , P[0]

R ) ∈
R2

++ with R++ = (0, ∞). Then (PN(t), PR(t)) remains in R2
++ with probability 1, i.e., PN(t) > 0

and PR(t) > 0 for all t ≥ 0 almost surely (a.s.).

Proof. Since f1, f2, g1, and g2 are locally Lipschitz continuous, for any initial value (P[0]
N , P[0]

R ) ∈
R2

++, there exists a unique local solution (PN(t), PR(t)) on [0, τe), where τe is the explosion
time. Let k0 > 0 be large enough so that P[0]

N ∈ (1/k0, k0) and P[0]
R ∈ (1/k0, k0). For any k ≥ k0,

define the stopping time by

τk = inf{t ∈ [0, τe) | PN(t) 6∈ (1/k, k) or PR(t) 6∈ (1/k, k)}.

Note that if τe < ∞, then {t ∈ [0, τe) | PN(t) 6∈ (1/k, k) or PR(t) 6∈ (1/k, k)} 6= ∅. Clearly, for
any k ≥ k0, τk ≤ τe, and τk is increasing. Let τ∞ = limk→∞ τk. Then we have τ∞ ≤ τe. If we
can prove that τ∞ = ∞ a.s., so is τe. Hence System (2.15), (2.16) has a unique global solution
which remains in R2

++ a.s.
Now we will prove τ∞ = ∞ a.s. Assume the contrary. There exist T > 0 and ε ∈ (0, 1)

such that

P{τ∞ ≤ T} > ε.

Hence there exists k1 ≥ k0 such that

P{τk ≤ T} ≥ ε for all k ≥ k1.

Let Ωk = {τk ≤ T}. For any ω ∈ Ωk, at least one of the follows must hold:

PN(τk, ω) = k, PN(τk, ω) = 1/k,

PR(τk, ω) = k, PR(τk, ω) = 1/k.
(3.1)

Define V1 : R2
++ → R++ by

V1(x, y) = x + 1− ln(x) + y + 1− ln(y).

It is easy to see that V1(x, y) ≥ 0 on R2
++. Furthermore, (3.1) implies that

V1(PN(τk, ω), PR(τk, ω)) ≥ min{k + 1− ln(k), 1/k + 1− ln(1/k)}. (3.2)

By (2.15), (2.16), and Itô’s formula,

dV1(PN(t),PR(t)) = F(PN(t), PR(t))dt + G(PN(t), PR(t))dB(t),



SDE nosocomial infection model 7

where F and G are defined by

F(x, y) =
(

1− 1
x

)
f1(x, y) +

(
1− 1

y

)
f2(x, y) +

g2
1(x, y)
2x2 +

g2
2(x, y)
2y2 ,

G(x, y) =
(

1− 1
x

)
g1(x, y) +

(
1− 1

y

)
g2(x, y),

with f1, f2, g1, and g2 defined by (2.17)–(2.20).
After some computation, we have

dV1(PN(t), PR(t)) ≤ (C0 + C1(PN(t) + PR(t))) dt + G(PN(t), PR(t))dB(t),

where

C0 =
NHπN

TV
+

NHπN

NPTV
+

NHπNωN

NPTVωR
+

NHπR

NPTV
+

1
TN

+
1

TR
+

3
2

(
σ1NHπNωN

NPTV

)2

+
3
2

(
σ1NHπN

NPTV

)2

+
3
2

(
σ1NHπNωN

NPTVωR

)2

+
1
2

(
σ2NHπR

NPTV

)2

+
1
2

(
σ2NHπRωR

NPTVωN

)2

+
σ1σ2N2

HπNπR

(NPTV)2 +
σ1σ2N2

HπNπRωN

(NPTV)2ωR
,

C1 =
NHπR

NPTV
.

By using the fact that x ≤ 2(x + 1− ln(x)), we have

dV1(PN(t), PR(t)) ≤ [C0 + 2C1(PN(t) + 1− ln(PN(t)) + PR(t) + 1− ln(PR(t)))] dt

+ G(PN(t), PR(t))dB(t)

≤ C2 (1 + V1(PN(t), PR(t))) dt + G(PN(t), PR(t))dB(t),

where C2 = max{C0, 2C1}. Then for any t1 ≤ T, we have∫ τk∧t1

0
dV1(PN(t), PR(t)) ≤

∫ τk∧t1

0
C2 (1 + V1(PN(t), PR(t))) dt +

∫ τk∧t1

0
G(PN(t), PR(t))dB(t),

where a ∧ b := min{a, b}. Hence,

V1(PN(τk ∧ t1), PR(τkt1)) ≤ V1(P[0]
N , P[0]

R ) +
∫ τk∧t1

0
C2 (1 + V1(PN(t), PR(t))) dt

+
∫ τk∧t1

0
G(PN(t), PR(t))dB(t).

Taking the expectation on both sides, we have

E[V1(PN(τk ∧ t1), PR(τkt1))]

≤ V1(P[0]
N , P[0]

R ) + E
[∫ τk∧t1

0
C2 (1 + V1(PN(t), PR(t))) dt

]
≤ V1(P[0]

N , P[0]
R ) + C2T + C2E

[∫ τk∧t1

0
V1(PN(t), PR(t))dt

]
≤ V1(P[0]

N , P[0]
R ) + C2T + C2E

[∫ t1

0
V1(PN(τk ∧ t), PR(τk ∧ t))dt

]
= V1(P[0]

N , P[0]
R ) + C2T + C2

∫ t1

0
E[V1(PN(τk ∧ t), PR(τk ∧ t))]dt.
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Then by the Gronwall inequality, we have

E[V1(PN(τk ∧ t1), PR(τkt1))] ≤ (V1(P[0]
N , P[0]

R ) + C2T) exp(C2t1) ≤ C3 (3.3)

with C3 := (V1(P[0]
N , P[0]

R ) + C2T) exp(C2T).
By (3.2) and (3.3), for k ≥ k1, we have

C3 ≥ E[1Ωk(ω)V1(PN(τk, ω), PR(τk, ω))]

≥ ε([k + 1− ln(k)] ∧ [1/k + 1− ln(1/k)]),

where 1Ωk is the indicator function. It is easy to see that [k+ 1− ln(k)]∧ [1/k+ 1− ln(1/k)]→
∞ as k→ ∞, which contradicts C3 < ∞. Therefore, τ∞ = ∞ a.s.

Next, we consider the stability of the trivial solution (0, 0) of (2.15), (2.16). In the sequel,
let PN(t) = PN(t; P[0]

N ) and PR(t) = PR(t; P[0]
R ) be the solutions of (2.15) and (2.16) starting from

the initial value (P[0]
N , P[0]

R ). Define

R0 =
NHTNπNωN

NPTV
. (3.4)

Theorem 3.2. When R0 < 1, the trivial solution of (2.15), (2.16) is almost surely exponentially stable
in probability, i.e.,

lim sup
t→∞

ln |PN(t; P[0]
N ) + PR(t; P[0]

R )|
t

< 0 a.s.

for any (P[0]
N , P[0]

R ) ∈ R2
++.

Proof. For any initial value (P[0]
N , P[0]

R ) ∈ R2
++, by Theorem 3.1, System (2.15), (2.16) has a

unique solution (PN , PR) that remains in R++ with probability 1. By (2.15), (2.16), we have

d(PN(t) + PR(t)) = f3(PN(t), PR(t))dt + g3(PN(t), PR(t))dB(t), (3.5)

where

f3(x, y) =
NHπNωNx(NP − x− y)
NPTV(NP + ωNx + ωRy)

− x
TN
− y

TR
, (3.6)

g3(x, y) =
σ1NHπNωNx(NP − x− y)
NPTV(NP + ωNx + ωRy)

. (3.7)

Define V2 : R2
++ → R by V2(x, y) = ln(x + y). Then by (3.4)–(3.7) and Itô’s formula,

dV2(PN(t), PR(t)) =

[
f3(PN(t), PR(t))
PN(t) + PR(t)

− 1
2

(
g3(PN(t), PR(t))
PN(t) + PR(t)

)2
]

dt +
g3(PN(t), PR(t))
PN(t) + PR(t)

dB(t)

=

[
1

PN(t) + PR(t)

(
R0PN(t)NP

TN(NP + ωN PN(t) + ωRPR(t))

− NHπNωN PN(t)(PN(t) + PR(t))
NPTV(NP + ωN PN(t) + ωRPR(t))

− PN(t)
TN

− PR(t)
TR

)
− 1

2

(
g3(PN(t), PR(t))
PN(t) + PR(t)

)2
]

dt +
g3(PN(t), PR(t))
PN(t) + PR(t)

dB(t).
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Since R0 < 1, PN and PR are positive with probability 1, we have

dV2(PN(t), PR(t)) ≤
[

1
PN(t) + PR(t)

(
R0

PN(t)
TN

− PN(t)
TN

− PR(t)
TR

)]
dt +

g3(PN(t), PR(t))
PN(t) + PR(t)

dB(t)

≤
[

1
PN(t) + PR(t)

(−C4PN(t)− C4PR(t))
]

dt +
g3(PN(t), PR(t))
PN(t) + PR(t)

dB(t)

= − C4dt +
g3(PN(t), PR(t))
PN(t) + PR(t)

dB(t),

where C4 = min{(1− R0)/TN , 1/TR} > 0. By the definition of V2, we have

d(ln(PN(t) + PR(t))) ≤ −C4dt +
g3(PN(t), PR(t))
PN(t) + PR(t)

dB(t). (3.8)

Note that by the law of the iterated logarithm (see for example, [9, Theorem 1.4.2]),

lim sup
t→∞

|B(t)|
t

= 0 a.s.

Then by (3.8), we have

lim sup
t→∞

ln(PN(t) + PR(t))
t

≤ −C4 < 0 a.s.,

i.e., (0, 0) is almost surely exponentially stable.

Remark 3.3. By the summary of parameters given in Section 2,

• TN is the average time of LOS of a patient infected with the nonresistant strain;

• NH/(NPTV) is the average number of visits received by a patient per day;

• ωN is the probability of an uncontaminated HCW contamination by a patient infected
with a nonresistant strain during each visit;

• πN is the probability that an uninfected patient is infected with the nonresistant strain
during each visit by a HCW contaminated with the nonresistant strain.

Therefore by (3.4), R0 relates to these 4 factors. Indeed, R0 can be interpreted as the number of
contacts between HCW and a patient infected with nonresistant strain during the infectious
period, TN NH/(NPTV), multiplied by the probability HCW contamination and subsequent
transmission during visit with next patient in wholly susceptible population, ωNπN . Further-
more, Theorem 3.2 enlightens us that one way to control the spread of the epidemic in an ICU
is to reduce the values of these four factors, especially the probabilities ωN and πN .

Remark 3.4. By Theorems 3.1 and 3.2 and their proofs, we know that the noise intensities σ1

and σ2 do not affect the positivity of solutions and the almost surely exponential stability of
the trivial solution of (2.15), (2.16) when R0 < 1.
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4 Numerical simulations

In this section, we use numerical simulations to verify the results obtained in Section 3. The
values of the parameters of (2.15), (2.16) and the initial values in the following examples are
chosen for illustration purpose and are not from actual ICU data.

Example 4.1. Let NP = 30, NH = 10, TV = 1/12, πN = 0.2, ωN = 0.3, ωR = 0.2, TN = 4,
TR = 2, σ1 = 0.5, and σ2 = 0.2. It is easy to see that R0 = 0.96 < 1. Then by Theorems 3.1 and
3.2, all the solutions of System (2.15), (2.16) remain in R2

++ and the trivial solution is almost
surely exponentially stable in probability. Simulation is performed by Matlab. A sample path
with the initial condition (19, 11) is given in Figure 4.1. Phase portraits of 12 solutions with
different initial conditions are given in Figure 4.2.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Days

 

 
PN

PR

(a)

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

 

 
HN

HR

(b)

Figure 4.1: (a) Sample path of PN(t) (blue) and PR(t) (green) with the initial
condition (19, 11) when R0 < 1. (b) Plot of the random perturbations about the
HCW quasi-steady state for this example, i.e. HN(t) (blue) and HR(t) (green) in
equation 2.14. The parameter values are stated in the text for Example 4.1.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

PN

P
R

Figure 4.2: Phase portraits of solutions with different initial conditions when
R0 < 1.
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Example 4.2. We also investigate the effect of varying the intensities σ1 and σ2 when R0 < 1 in
Figure 4.3. By Theorems 3.1 and 3.2, the positivity and convergence to the disease-free equi-
librium are not affected, but observe in the figures that the amplitude of random oscillations
in the transient dynamics increases with σ1 and σ2.
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Figure 4.3: Phase portraits of solutions with different initial conditions when
R0 < 1 and (a) σ1 = 0.01 and σ2 = 0.01, (b) σ1 = 1.1 and σ2 = 1.0. The other
parameter values are as in Figure 4.2.

We have also carried out numerical simulations when R0 > 1. Results show that the
solutions will approach certain stationary solutions, which depend on another reproduction
number R01. This work will appear in another paper.

5 Conclusions

In this paper we derive a SDE model of an antibiotic resistant infection epidemic in a hospital
ICU. The positivity of solutions and almost surely exponential stability of the trivial solution
are proved, when the reproduction number R0 < 1. These results are then illustrated by
numerical simulations. These behaviors are consistent with the results obtained in [13]. This
concurrence suggests that we may control the spread of nosocomial epidemics by adjusting
parameters such as πN , πR (the probabilities of patient infection due to patient-HCW visits)
or ωN , ωR (the probabilities of HCW contamination due to patient-HCW visits). Our work
demonstrates that SDE models are useful for investigating nosocomial epidemics, since SDE
models can better reflect the uncertainty and randomness that occur in actual ICU settings.
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