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1 Introduction

Impulsive differential equations have been studied extensively in recent years. The theory

of impulsive differential equations describes processes which experience a sudden change of their

state at certain moments. Processes with such a character arise naturally and often, especially

in phenomena studied in physics, chemical technology, population dynamics, biotechnology and

economics. Second order impulsive differential equations have been studied by many authors with

much of the attention given to positive solutions. For a small sample of such work, we refer

the reader to works [1-11]. The results of these papers are based on Schauder fixed point theorem,

Leggett-Williams theorem, fixed point index theorems in cones, Krasnoselskii’s fixed point theorem,

the method of upper-lower solutions, fixed point theorems in cones and so on. In this paper,we

consider the existence and uniqueness of positive solutions for the following Neumann boundary

value problems of second order impulsive differential equations:















−u′′(t) + γ2u(t) = f(t, u(t)), t 6= tk, k = 1, 2, · · ·m,

△u′ |t=tk= Ik(u(tk)), k = 1, 2, · · ·m,

u′(0) = u′(1) = 0,

(1.1)
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where γ is a positive constant,f ∈ C[J × R,R], J = [0, 1], 0 < t1 < t2 < · · · < tm < 1,△u′ |t=tk=

u′(t+k ) − u′(t−k ), u′(t+k ), u′(t−k ) denote the right limit (left limit)of u′(t) at t = tk, respectively. Ik ∈

C[R,R], k = 1, 2, · · ·m.

Neumann boundary value problem for the ordinary differential equations and elliptic equations

is an important kind of boundary value problems. During the last two decades, Neumann boundary

value problems have deserved the attention of many researchers [12-21]. However, few papers can be

found in the literature on the existence of positive solutions for Neumann boundary value problems

for second-order impulsive differential equations. In this paper, we shall study the problem (1.1) and

not suppose the existence of upper-lower solutions. Different from the above works mentioned, in

this paper we will use a fixed point theorem of generalized concave operators to show the existence

and uniqueness of positive solutions for the problem (1.1).

2 Preliminaries

Suppose that E is a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x ≤ y

if and only if y − x ∈ P. By θ we denote the zero element of E. A non-empty closed convex set

P ⊂ E is called a cone if it satisfies (i) x ∈ P, λ ≥ 0 ⇒ λx ∈ P ; (ii) x ∈ P,−x ∈ P ⇒ x = θ.

Moreover, P is called normal if there exists a constant N > 0 such that, for x, y ∈ E, θ ≤ x ≤ y

implies ‖x‖ ≤ N‖y‖; in this case N is called the normality constant of P . We say that an operator

A : E → E is increasing(decreasing) if x ≤ y implies Ax ≤ Ay(Ax ≥ Ay).

For x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such that λx ≤ y ≤ µx.

Clearly, ∼ is an equivalence relation. Given h > θ(i.e., h ≥ θ and h 6= θ), we denote by Ph the set

Ph = {x ∈ E| x ∼ h}. Clearly, Ph ⊂ P is convex and λPh = Ph for λ > 0.

We now present a fixed point theorem of generalized concave operators which will be used in

the latter proof. See [22] for further information.

Theorem 2.1(from the Lemma 2.1 and Theorem 2.1 in [22]). Let h > θ and P be a normal cone.

Assume that: (D1) A : P → P is increasing and Ah ∈ Ph; (D2) For any x ∈ P and t ∈ (0, 1), there

exists α(t) ∈ (t, 1] such that A(tx) ≥ α(t)Ax. Then (i) there are u0, v0 ∈ Ph and r ∈ (0, 1) such

that rv0 ≤ u0 < v0, u0 ≤ Au0 ≤ Av0 ≤ v0; (ii) operator equation x = Ax has a unique solution in

Ph.

Remark 2.2. An operator A is said to be generalized concave if A satisfies condition (D2).

In what follows, for the sake of convenience, let J ′ = J\{t1, t2, · · · , tm}, C[J,R] = {u|u : J → R

is continuous}, PC1[J,R] = {u ∈ C[J,R]|u′(t) is continuous at t 6= tk and left continuous at

t = tk, u
′(t+k ) exists, k = 1, 2, · · · ,m}. Evidently, C[J,R] is a Banach space with the norm ‖u‖C =

sup{|u(t)| : t ∈ J} and PC1[J,R] is a Banach space with the norm ‖u‖PC1 = sup{‖u‖C , ‖u
′‖C}.

Definition 2.3. A function u ∈ PC1[J,R]
⋂

C2[J ′,R] is called a solution of the problem (1.1), if

it satisfies the problem (1.1).

Lemma 2.4. u ∈ PC1[J,R] ∩ C2[J1,R] is a solution of the problem (1.1) if only and if u ∈
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PC1[J,R] is the solution of the following integral equation:

u(t) =

∫ 1

0
G(t, s)f(s, u(s))ds −

m
∑

k=1

G(t, tk)Ik(u(tk)), (2.1)

where

G(t, s) =
1

ρ

{

ψ(s)ψ(1 − t), 0 ≤ s ≤ t ≤ 1,

ψ(t)ψ(1 − s), 0 ≤ t ≤ s ≤ 1,
(2.2)

with

ρ =
1

2
γ(eγ − e−γ), ψ(t) =

1

2
(eγt + e−γt).

Proof. First suppose that u ∈ PC1[J,R] ∩C2[J1,R] is a solution of the problem (1.1). Then

−u′′(t) + γ2u(t) = f(t, u(t)), t 6= tk.

That is, (e−2γt(eγtu(t))′)′ = −f(t, u(t))e−γt, t 6= tk. Let

y(t) = e−2γt(eγtu(t))′ = e−γt(u′(t) + γu(t)). (2.3)

Then

y′(t) = −f(t, u(t))e−γt, t 6= tk. (2.4)

It is easy to see by integration of (2.4) that

y(t1) − y(0) = −

∫ t1

0
f(s, u(s))e−γsds,

y(t) − y(t+1 ) = −

∫ t

t1

f(s, u(s))e−γsds, t1 < t ≤ t2.

So

y(t) = y(0) −

∫ t

0
f(s, u(s))e−γsds+ y(t+1 ) − y(t1), t1 < t ≤ t2.

In the same way,we can show that

y(t) = y(0) −

∫ t

0
f(s, u(s))e−γsds+

∑

0<tk<t

e−γtkIk(u(tk)). (2.5)

In view of (2.3),we have

(eγtu(t))′ = e2γt(y(0) −

∫ t

0
f(s, u(s))e−γsds+

∑

0<tk<t

e−γtkIk(u(tk))).

Let

z(t) = eγtu(t), l(t) = e2γt(y(0) −

∫ t

0
f(s, u(s))e−γsds+

∑

0<tk<t

e−γtkIk(u(tk))). (2.6)
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Then z(t) = z(0) +
∫ t
0 l(s)ds, t ∈ J. Further,

u(t) = z(t)e−γt = e−γt(u(0) +

∫ t

0
l(s)ds), t ∈ J. (2.7)

By calculation,we can get
∫ t

0
l(s)ds =

1

2γ

{

y(0)(e2γt − 1) +

∫ t

0
eγsf(s, u(s))ds − e2γt

∫ t

0
e−γsf(s, u(s))ds

+
∑

0<tk<t

(e2γt − e2γtk )e−γtkIk(u(tk))







. (2.8)

Substituting (2.8) into (2.7),we obtain

u(t) =
1

2γ

{

(γu(0) − u′(0))e−γt + (γu(0) + u′(0))eγt + e−γt
∫ t

0
eγsf(s, u(s))ds

− eγt
∫ t

0
e−γsf(s, u(s))ds+

∑

0<tk<t

eγ(t−tk)Ik(u(tk))

−
∑

0<tk<t

e−γ(t−tk)Ik(u(tk))







, t ∈ J, (2.9)

u′(t) =
1

2

{

−(γu(0) − u′(0))e−γt + (γu(0) + u′(0))eγt − e−γt
∫ t

0
eγsf(s, u(s))ds

− eγt

∫ t

0
e−γsf(s, u(s))ds+

∑

0<tk<t

(eγ(t−tk) + e−γ(t−tk))Ik(u(tk))







, t ∈ J. (2.10)

In view of u′(0) = u′(1) = 0, we have

u(0) =
1

γ(eγ − e−γ)

{
∫ 1

0
(e−γ(1−s) + eγ(1−s))f(s, u(s))ds

−
m

∑

k=1

(eγ(1−tk) + e−γ(1−tk))Ik(u(tk))

}

. (2.11)

Substituting (2.11) into (2.9) and making use of the fact that
m

∑

k=1

Ik(u(tk)) =
∑

0<tk<1

Ik(u(tk)) =
∑

0<tk<t

Ik(u(tk)) +
∑

t≤tk<1

Ik(u(tk)),

we obtain

u(t) =
eγt + e−γt

2γ(eγ − e−γ)

{

∫ 1

0
(e−γ(1−s) + eγ(1−s))f(s, u(s))ds −

m
∑

k=1

(eγ(1−tk) + e−γ(1−tk))Ik(u(tk))

}

+
1

2γ

∫ t

0
(eγ(s−t) − eγ(t−s))f(s, u(s))ds +

1

2γ

∑

0<tk<t

(eγ(t−tk) − e−γ(t−tk))Ik(u(tk))

=
1

ρ

∫ t

0
ψ(s)ψ(1 − t)f(s, u(s))ds +

1

ρ

∫ 1

t
ψ(t)ψ(1 − s)f(s, u(s))ds

−
m

∑

k=1

1

ρ
ψ(t)ψ(1 − tk)Ik(u(tk)) +

1

2γ

∑

0<tk<t

(eγ(t−tk) − e−γ(t−tk))Ik(u(tk))

=

∫ 1

0
G(t, s)f(s, u(s))ds −

m
∑

k=1

G(t, tk)Ik(u(tk)).
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That is, u(t) is a solution of the equation (2.1).

Conversely,assume that u ∈ C[J,R] is a solution of the equation (2.1). Direct differentiation of

(2.1) implies, for t 6= tk

u′(t) =

∫ 1

0
Gt(t, s)f(s, u(s))ds −

m
∑

k=1

Gt(t, tk)Ik(u(tk))

=
1

ρ

[

(ψ(1 − t))′
∫ t

0
ψ(s)f(s, u(s))ds + ψ′(t)

∫ 1

t
ψ(1 − s)f(s, u(s))ds

]

−
1

ρ
ψ′(t)

m
∑

k=1

ψ(1 − tk)Ik(u(tk)) +
1

2

∑

0<tk<t

(eγ(t−tk) + e−γ(t−tk))Ik(u(tk)),

u′′(t) =
1

ρ

[

(ψ(1 − t))′′
∫ t

0
ψ(s)f(s, u(s))ds + (ψ(1 − t))′ψ(t)f(t, u(t))

+ ψ′′(t)

∫ 1

t
ψ(1 − s)f(s, u(s))ds− ψ′(t)ψ(1 − t)f(t, u(t))

]

−
1

ρ
ψ′′(t)

m
∑

k=1

ψ(1 − tk)Ik(u(tk)) +
γ

2

∑

0<tk<t

(eγ(t−tk) − e−γ(t−tk))Ik(u(tk)).

Making use of the facts

ψ′′(1 − t) = γ2ψ(1 − t), ψ′′(t) = γ2ψ(t), (ψ(1 − t))′ψ(t) − ψ′(t)ψ(1 − t) = −ρ,

we can easily obtain u′′(t) = γ2u(t) − f(t, u(t)), t 6= tk. Moreover,

△u′ |t=tk= u′(t+k ) − u′(t−k ) = Ik(u(tk)).

So u ∈ C2[J ′,R] and it is easy to verify that u′(0) = u′(1) = 0 and the lemma is proved. 2

Remark 2.5. To the best of our knowledge, the expression (2.1) is new for the Neumann problem.

Similar expressions have been obtained for periodic problems of first order and for higher order

ordinary differential equations with impulses, see Theorem 2.2 in [23] and Lemma 2.1 in [24,25].

Lemma 2.6. (i) 0 < G(t, s) ≤ G(t, t), G(t, s) ≤ G(s, s), 0 ≤ t, s ≤ 1;

(ii) G(t, s) ≥ Cψ(t)ψ(1 − t)G(t0, s), t, t0, s ∈ [0, 1], where C = 1/ψ2(1).(See [20])

3 Existence and uniqueness of positive solutions for problem (1.1)

In this section, we apply Theorem 2.1 to study the problem (1.1) and we obtain a new result on

the existence and uniqueness of positive solutions. The method used here is new to the literature

and so is the existence and uniqueness result to the second-order impulsive differential equations.

Set P̃ = {x ∈ C[J,R]|x(t) ≥ 0, t ∈ J}, the standard cone. It is clear that P̃ is a normal cone in

C[J,R] and the normality constant is 1. Our main result is summarized in the following theorem.

Theorem 3.1. Assume that

(H1) f(t, 0) ≥ 0, f(t, a) > 0, t ∈ [0, 1] and f(t, x) is increasing in x ∈ [0,∞) for each t ∈ [0, 1], where

a = 1
4(eγ + e−γ + 2);
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(H2) Ik(0) ≤ 0 and Ik(x) is decreasing in x ∈ [0,∞), k = 1, 2, · · · ,m;

(H3) for any λ ∈ (0, 1) and x ≥ 0, there exist α1(λ), α2(λ) ∈ (λ, 1] such that

f(t, λx) ≥ α1(λ)f(t, x), Ik(λx) ≤ α2(λ)Ik(x), k = 1, 2, · · · ,m.

(H4)
m
∑

k=1
G(tk, tk)Ik(b) < 0, where b = 1

2(eγ + e−γ).

Then (i) there exist u0, v0 ∈ P̃h such that

u0(t) ≤

∫ 1

0
G(t, s)f(s, u0(s))ds −

m
∑

k=1

G(t, tk)Ik(u0(tk)), t ∈ J,

v0(t) ≥

∫ 1

0
G(t, s)f(s, v0(s))ds −

m
∑

k=1

G(t, tk)Ik(v0(tk)), t ∈ J ;

(ii) the problem (1.1) has a unique positive solution x∗ in P̃h

⋂

PC1[J,R], where

h(t) = ψ(t)ψ(1 − t), t ∈ [0, 1].

Remark 3.2. Some examples of αi(λ), i = 1, 2 which satisfy the condition (H3) are:

(1) αi(λ) = λδi , i = 1, 2,∀ λ ∈ (0, 1), where δi ∈ (0, 1).

(2) αi(λ) = λ(1 + ηi(λ)) with 0 < ηi(λ) ≤ 1
λ
− 1,∀ λ ∈ (0, 1), i = 1, 2.

Remark 3.3. It is easy to check that a = min{h(t) : t ∈ [0, 1]}, b = max{h(t) : t ∈ [0, 1]}, where

a, b are given as in (H1), (H4).

Proof of Theorem 3.1 Define an operator A : C[J,R] → C[J,R] by

Au(t) =

∫ 1

0
G(t, s)f(s, u(s))ds −

m
∑

k=1

G(t, tk)Ik(u(tk)).

Then from Lemma 2.4, u ∈ PC1[J,R]
⋂

C2[J ′,R] is a solution of the problem (1.1) if and only if

u ∈ PC1[J,R] is a fixed point of the operator A. Firstly, we show that A : P̃ → P̃ is increasing,

generalized concave. For any u ∈ P̃ , from (H1), (H2), we obtain Au(t) ≥ 0, t ∈ [0, 1]. Further, also

from (H1), (H2), we can easily prove that A : P̃ → P̃ is increasing. For any λ ∈ (0, 1) and u ∈ P̃ ,

from (H1) − (H3), we have

A(λu)(t) =

∫ 1

0
G(t, s)f(s, λu(s))ds −

m
∑

k=1

G(t, tk)Ik(λu(tk))

≥

∫ 1

0
G(t, s)α1(λ)f(s, u(s))ds −

m
∑

k=1

G(t, tk)α2(λ)Ik(u(tk)).

Set α(λ) = min{α1(λ), α2(λ)}, λ ∈ (0, 1). Then α(λ) ∈ (λ, 1]. We have

A(λu)(t) ≥ α(λ)

[

∫ 1

0
G(t, s)f(s, u(s))ds −

m
∑

k=1

G(t, tk)Ik(u(tk))

]

= α(λ)Au(t).

That is, A(λu) ≥ α(λ)Au, u ∈ P̃ , λ ∈ (0, 1). So A : P̃ → P̃ is generalized concave.
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Secondly, we prove Ah ∈ P̃h. To illuminate this, set

r1 = min
t∈[0,1]

f(t, a), r2 = max
t∈[0,1]

f(t, b).

Then from (H1), we have r2 ≥ r1 > 0. Further, from (H1), (H2) and Lemma 2.6,

Ah(t) =

∫ 1

0
G(t, s)f(s, h(s))ds −

m
∑

k=1

G(t, tk)Ik(h(tk))

≥

∫ 1

0
G(t, s)f(s, h(s))ds ≥

∫ 1

0
Cψ(t)ψ(1 − t)G(t0, s)f(s, a)ds

≥ Cr1

∫ 1

0
G(t0, s)ds · h(t).

Note that
∫ 1

0
G(t0, s)ds =

1

ρ

∫ t0

0
ψ(s)ψ(1 − t0)ds+

1

ρ

∫ 1

t0

ψ(t0)ψ(1 − s)ds =
1

γ2
,

we have Ah(t) ≥ Cr1

γ2 h(t). It follows from Lemma 2.6 and (H4) that

Ah(t) =

∫ 1

0
G(t, s)f(s, h(s))ds −

m
∑

k=1

G(t, tk)Ik(h(tk))

≤

∫ 1

0
G(t, t)f(s, b)ds −

m
∑

k=1

G(tk, tk)Ik(b)

≤
r2
ρ
h(t) −

4

eγ + e−γ + 2
h(t)

m
∑

k=1

G(tk, tk)Ik(b)

=

[

r2
ρ

−
4

eγ + e−γ + 2

m
∑

k=1

G(tk, tk)Ik(b)

]

h(t).

Hence,
Cr1
γ2

h ≤ Ah ≤

[

r2
ρ

−
4

eγ + e−γ + 2

m
∑

k=1

G(tk, tk)Ik(b)

]

h.

That is, Ah ∈ P̃h. Finally, an application of Theorem 2.1 implies that (i) there are u0, v0 ∈ P̃h such

that u0 ≤ Au0, Av0 ≤ v0; (ii) operator equation u = Au has a unique solution x∗ in P̃h. That is,

u0(t) ≤

∫ 1

0
G(t, s)f(s, u0(s))ds −

m
∑

k=1

G(t, tk)Ik(u0(tk)), t ∈ J,

v0(t) ≥

∫ 1

0
G(t, s)f(s, v0(s))ds −

m
∑

k=1

G(t, tk)Ik(v0(tk)), t ∈ J ;

and the problem (1.1) has a unique solution x∗ in P̃h. Moreover, from Lemma 2.4 we know that

x∗ ∈ PC1[J,R]. Evidently, x∗ is a positive solution of the problem (1.1).2

Remark 3.4. For the case of Ik = 0, k = 1, 2, . . . ,m, the problem(1.1) reduces to the following

Neumann boundary value problem for ordinary differential equations:

{

−u′′(t) + γ2u(t) = f(t, u(t)), 0 < t < 1,

u′(0) = u′(1) = 0,
(3.1)
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We can establish the existence and uniqueness of positive solutions for the problem (3.1) by using

the same method used in this paper, which is new to the literature. So the method used in this

paper is different from previous ones in literature and the result obtained in this paper is new.

4 An example

To illustrate how our main result can be used in practice we present an example.

Example 4.1. Consider the following boundary value problem















−u′′(t) + (ln 2)2u(t) = uβ(t) + q(t), t ∈ J, t 6= 1
2 ,

∆u′|t= 1

2

= − 4

√

u(1
2),

u′(0) = u′(1) = 0,

(4.1)

where β ∈ (0, 1) and q : [0, 1] → [0,+∞) is a continuous function.

Conclusion. The impulsive problem (4.1) has a unique positive solution in P̃h

⋂

PC1[J,R], where

h(t) =
5

8
+

1

4
(21−2t + 22t−1), t ∈ [0, 1].

Proof. The problem (4.1) can be regarded as a boundary value problem of the form (1.1), where

γ = ln 2, t1 = 1
2 , f(t, x) := xβ + q(t), I1(x) := −x

1

4 . After a simple calculation, we get a = 9
8 , b = 5

4

and

f(t, a) = (
9

8
)β + q(t) > 0, G(t1, t1)I1(b) = G(

1

2
,
1

2
)I1(

5

4
) = −

e2 + 1

4(e2 − 1)
(
5

4
)

1

4 < 0.

It is not difficult to see that the conditions (H1), (H2) and (H4) hold. In addition, let α1(λ) =

λβ, α2(λ) = λ
1

4 . Then, the condition (H3) of Theorem 3.1 holds. Hence, by Theorem 3.1, the

conclusion follows, and the proof is complete.

Remark 4.1. Example 4.1 implies that there is a large number of functions that satisfy the

conditions of Theorem 3.1. In addition, the conditions of Theorem 3.1 are also easy to check.

References

[1] R. Agarwal, D. O’Regan, A multiplicity result for second order impulsive differential equations via the Leggett

Williams fixed point theorem, Appl. Math. Comput. 161 (2005) 433-439.

[2] M.Q. Feng, D.X. Xie, Multiple positive solutions of multi-point boundary value problem forsecond-order impul-

sive differential equations, J. Comput. Appl. Math. 223(2009)438-448.

[3] T. Jankowski, Existence of positive solutions to second order four-point impulsive differential problems with

deviating arguments, Comput. Math. Appl. 58 (2009) 805-817.

[4] E.K. Lee, Y.H. Lee, Multiple positive solutions of singular two point boundary value problems for second order

impulsive differential equations, Appl. Math. Comput. 158 (2004) 745-759.

[5] X.N. Lin, D.Q. Jiang, Multiple positive solutions of Dirichlet boundary value problems for second order impulsive

differential equations, J. Math.Anal.Appl. 321 (2006) 501-514.

[6] L.S. Liu, L.L. Hu, Y.H. Wu, Positive solutions of two-point boundary value problems for systems of nonlinear

second-order singular and impulsive differential equations, Nonlinear Anal. 69(2008) 3774-3789.

EJQTDE, 2010 No. 76, p. 8



[7] E. Liz, J.J. Nieto, The monotone iterative technique for periodic boundary value problems of second order

impulsive differential equations, Comment. Math. Univ. Carolin. 34 (1993) 405-411.

[8] J.J. Nieto, R. Rodriguez-Lopez, Periodic boundary value problem for non-Lipschitzian impulsive functional

differential equations, J. Math. Anal. Appl. 318 (2006) 593-610.
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