
Electronic Journal of Qualitative Theory of Differential Equations
2017, No. 54, 1–11; doi: 10.14232/ejqtde.2017.1.54 http://www.math.u-szeged.hu/ejqtde/

Subharmonic solutions with prescribed minimal
period for a class of second order impulsive systems

Liang BaiB and Xiaoyun Wang

College of Mathematics, Taiyuan University of Technology
Taiyuan, Shanxi 030024, People’s Republic of China

Received 23 September 2016, appeared 4 July 2017

Communicated by Gabriele Bonanno

Abstract. Based on variational methods and critical point theory, the existence of sub-
harmonic solutions with prescribed minimal period for a class of second-order im-
pulsive systems is derived by estimating the energy of the solution. An example is
presented to illustrate the result.

Keywords: subharmonic solution, impulsive system, minimal period, variational
method.

2010 Mathematics Subject Classification: 34B37, 58E30.

1 Introduction

This paper is devoted to the existence of subharmonic solutions with prescribed minimal
period pT for the following second-order impulsive system{

v̈(t) + Dv(t) +∇F(t, v(t)) = 0, a.e. t ∈ R, (1.1a)

∆(v̇i(tj)) := v̇i(t+j )− v̇i(t−j ) = Iij(vi(tj)), i = 1, 2, . . . , N, j ∈ Z0, (1.1b)

where p > 1 is an integer, T > 0, Z0 := Z+ ∪Z−, ∇F(t, x) is the gradient of F(t, x) with
respect to x and F(t, x) ∈ C1(R×RN , R), D is an N × N real symmetric constant matrix with
λ < 0 as its eigenvalues, v̇i(t±j ) = limt→t±j

v̇i(t), 0 < t1 < t2 < · · · < tl < T, tj(j ∈ Z0) is a

T-periodic extension of tj(j ∈ {1, 2, . . . , l}). And for each i, Iij is l-periodic with respect to j,
where Iij ∈ C(R, R).

Impulsive effects exist widely in many evolution processes in which their states are
changed abruptly at certain moments of time. There have been many approaches to study
impulsive problems, such as method of upper and lower solutions with the monotone itera-
tive technique, fixed point theory and topological degree theory. In recent years, variational
method was employed to consider the existence of solutions for impulsive problems (see e.g.
[1–5, 8, 9, 11, 13, 14]).
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When D = 0 and all Iij ≡ 0, (1.1) is reduced to the Hamiltonian system, which has been
studied extensively on subharmonic solutions (see e.g. [10, 15, 17, 18]). Recently, Luo, Xiao and
Xu [6] established the conditions for the existence of subharmonic solutions for the following
impulsive differential equation {

ü(t) + f (t, u(t)) = 0,

∆(u̇(tk)) = Ik(u(tk)),

where f (t, x) : R×R→ R and Ik ∈ C(R, R+ ∪ {0}). After that, Xie and Luo [16] investigated
subharmonic solutions for the following forced pendulum equation with impulsive effects{

ẍ(t) + A sin x(t) = f (t),

∆(ẋ(tk)) = Ik(x(tk)),

where f : R→ R and

0 ≤
pm−1

∑
k=1

∫ x(tk)

0
Ik(s)ds for each x ∈ H1

pT. (1.2)

However there are cases which are not possible to satisfy Ik ≥ 0 or (1.2). For example, impul-
sive functions Ik(s) = −s/9. Thus it is valuable to further improve conditions on impulsive
functions. One thing to be noted is that a problem with impulsive functions −s/9 is consid-
ered in this paper (see Example 4.1 in Section 4). What is more, to the best of our knowledge,
the existence of subharmonic solutions for impulsive systems has received considerably less
attention.

Inspired by the aforementioned facts, we consider the impulsive system (1.1) under differ-
ent assumptions on the impulsive function from [6] and [16]. It will be shown that v satisfies
(1.1) if and only if u = Q−1v satisfies

ü(t) + λu(t) + Q−1∇F(t, Qu(t)) = 0, a.e. t ∈ R, (1.3a)

∆(u̇i(tj)) =
N

∑
r=1

qri Irj

(
N

∑
k=1

qrkuk(tj)

)
, i = 1, 2, . . . , N, j ∈ Z0. (1.3b)

After that, subharmonic solutions of (1.3) will be obtained by estimating the energy of the
solution in terms of minimal period. Finally, an example is given to illustrate the result, and a
corollary concerning the equation (1.1a) is presented.

2 Preliminaries

Let us recall some basic concepts.

H1
pT :=

{
u : [0, pT]→ RN

∣∣∣∣ u is absolutely continuous,
u(0) = u(pT) and u̇ ∈ L2(0, pT; RN)

}
is a Hilbert space with the inner product

〈u, v〉 =
∫ pT

0
(u̇(t), v̇(t))dt +

∫ pT

0
(u(t), v(t))dt, ∀u, v ∈ H1

pT,
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where (·, ·) denotes the inner product in RN , and the corresponding norm is

‖u‖ =
(
‖u̇‖2

L2 + ‖u‖2
L2

) 1
2 ,

where ‖ · ‖L2 is the norm of L2(0, pT; RN). Assume that orthogonal matrix Q = (qrj)N satisfies
Q−1DQ = QTDQ = λI and | · | denotes the norm in RN , the orthogonality of Q implies that

|Qu(t)| = |u(t)| and
N

∑
r=1

q2
rk =

N

∑
j=1

q2
kj = 1, k = 1, 2, . . . , N. (2.1)

Lemma 2.1. v satisfies the impulsive system (1.1) if and only if u = Q−1v satisfies the impulsive
system (1.3).

Proof. Multiplying both sides of (1.1a) by Q−1 results (1.3a). In view of (1.1b) and

∆(v̇i(tj)) =
N

∑
k=1

qik

[
lim
t→t+j

u̇k(t)− lim
t→t−j

u̇k(t)

]
=

N

∑
k=1

qik∆(u̇k(tj)),

we have
N

∑
k=1

qik∆(u̇k(tj)) = Iij

(
N

∑
k=1

qikuk(tj)

)
, i = 1, 2, . . . , N, j ∈ Z0.

Solutions of the above nonhomogeneous linear equations are (1.3b).

If u(t) is a pT-periodic solution of (1.3), following the ideas of [9], we have

∫ pT

0

(
ü(t) + λu(t) + Q−1∇F(t, Qu(t)), v(t)

)
dt = 0, for v ∈ H1

pT. (2.2)

By (1.3b), the first term of the above equation is

∫ pT

0
(ü(t), v(t)) dt =

∫ t1

0
(ü(t), v(t)) dt +

pl−1

∑
j=1

∫ tj+1

tj

(ü(t), v(t)) dt +
∫ pT

pl
(ü(t), v(t)) dt

=−
pl

∑
j=1

N

∑
i=1

[(
u̇i(t+j )− u̇i(t−j )

)
vi(tj)

]
−
∫ pT

0
(u̇(t), v̇(t))dt

=−
pl

∑
j=1

N

∑
r=1

[
N

∑
i=1

qrivi(tj)

]
Irj

(
N

∑
k=1

qrkuk(tj)

)
−
∫ pT

0
(u̇(t), v̇(t))dt.

(2.3)

It follows from (2.2) and (2.3) that

∫ pT

0
(u̇(t), v̇(t))dt +

pl

∑
j=1

N

∑
r=1

{[
N

∑
i=1

qrivi(tj)

]
Irj

(
N

∑
k=1

qrkuk(tj)

)}

= λ
∫ pT

0
(u(t), v(t)) dt +

∫ pT

0

(
Q−1∇F(t, Qu(t)), v(t)

)
dt. (2.4)

Definition 2.2. A function u ∈ H1
pT is a weak pT-periodic solution of (1.3) if (2.4) holds for

any v ∈ H1
pT.
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Consider the functional Φ : H1
pT → R defined by

Φ(u) :=
1
2

∫ pT

0
|u̇(t)|2dt− 1

2
λ
∫ pT

0
|u(t)|2dt−

∫ pT

0
F(t, Qu(t))dt + φ(u),

where

φ(u) :=
pl

∑
j=1

N

∑
r=1

∫ ∑N
k=1 qrkuk(tj)

0
Irj(y)dy.

Thanks to QT = Q−1, for any u, v ∈ H1
pT, we have

〈Φ′(u), v〉 =
∫ pT

0
(u̇(t), v̇(t))dt− λ

∫ pT

0
(u(t), v(t)) dt−

∫ pT

0

(
Q−1∇F(t, Qu(t)), v(t)

)
dt

+
pl

∑
j=1

N

∑
r=1

{[
N

∑
i=1

qrivi(tj)

]
Irj

(
N

∑
k=1

qrkuk(tj)

)}
. (2.5)

So critical points of Φ correspond to weak pT-periodic solutions of (1.3) (but pT might not be
the minimal period). It follows from (2.3) and (2.5) that

〈Φ′(u), v〉 = −
∫ pT

0
(ü(t), v(t))dt− λ

∫ pT

0
(u(t), v(t)) dt

−
∫ pT

0

(
Q−1∇F(t, Qu(t)), v(t)

)
dt. (2.6)

Consider the restriction of Φ on a subspace X of H1
pT, where

X :=
{

u ∈ H1
pT |u(−t) = −u(t)

}
.

For any u ∈ X, by Wirtinger’s inequality,

‖u‖2
L2 ≤

p2T2

4π2 ‖u̇‖
2
L2 =

p2

ω2 ‖u̇‖
2
L2 and ‖u‖2 ≤ p2 + ω2

ω2 ‖u̇‖2
L2 , (2.7)

where ω = 2π/T. For convenience, we introduce some assumptions.

(H1) ∇F(t, x) has minimal period T in t, and F(−t,−x) = F(t, x).

(H2) There exist constants A ≥ A > −λ and B > 0 such that

F(t, x)−∇F(t, 0)x ≤ A
2
|x|2, for t ∈ R, x ∈ RN

and

F(t, x)−∇F(t, 0)x ≥ A
2
|x|2, for t ∈ R, |x| ≤ B.

(H3) For each i = 1, 2, . . . , N, j = 1, 2, . . . , l, there exist constants aij ≥ 0 such that

|Iij(y)| ≤ aij|y|, for every y ∈ R.
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Thanks to (2.1) and Hölder’s inequality, we have∣∣∣∣∣ N

∑
k=1

qrkuk(tj)

∣∣∣∣∣ ≤
(

N

∑
k=1

q2
rk

) 1
2
(

N

∑
k=1

(uk(tj))
2

) 1
2

= |u(tj)|,

which combined with (H3) yields to∣∣∣∣∣
∫ ∑N

k=1 qrkuk(tj)

0
Irj(y)dy

∣∣∣∣∣ ≤ arj

2

∣∣∣∣∣ N

∑
k=1

qrkuk(tj)

∣∣∣∣∣
2

≤
arj

2

∣∣u(tj)
∣∣2 . (2.8)

For any u ∈ H1
pT and each k = 1, 2, . . . , N, it follows from the mean value theorem that

1
pT

∫ pT

0
uk(s)ds = uk(τ)

for some τ ∈ (0, pT). Hence, for t ∈ [0, pT], using Hölder’s inequality,

|uk(t)| =
∣∣∣∣uk(τ) +

∫ t

τ
u̇k(s)ds

∣∣∣∣ ≤ 1
pT

∫ pT

0

∣∣∣uk(s)
∣∣∣ ds +

∫ pT

0

∣∣∣u̇k(s)
∣∣∣ ds

≤ (pT)−
1
2 ‖uk‖L2 + (pT)

1
2 ‖u̇k‖L2 ,

which combined with the discrete version of Minkowski’s inequality yields to

|u(t)| =
(

N

∑
k=1
|uk(t)|2

) 1
2

≤
(

N

∑
k=1

[
(pT)−

1
2 ‖uk‖L2 + (pT)

1
2 ‖u̇k‖L2

]2
) 1

2

≤ (pT)−
1
2 ‖u‖L2 + (pT)

1
2 ‖u̇‖L2 .

In view of this inequality and (2.8), we find

|φ(u)| ≤
pl

∑
j=1

N

∑
r=1

arj

2

∣∣u(tj)
∣∣2 ≤ pl

∑
j=1

N

∑
r=1

arj

(
(pT)−1‖u‖2

L2 + pT‖u̇‖2
L2

)
≤ $T−1‖u‖2

L2 + $p2T‖u̇‖2
L2 ,

(2.9)

where $ := ∑l
j=1 ∑N

r=1 arj.
The following fact is important in the proof of our main result.

Lemma 2.3 ([12, Theorem 1.2]). Suppose V is a reflexive Banach space with norm ‖ · ‖, and let
M ⊂ V be a weakly closed subset of V. Suppose E : M → R ∪ {+∞} is coercive and (sequentially)
weakly lower semi-continuous on M with respect to V. Then E is bounded from below on M and
attains its infimum in M.

Lemma 2.4. Suppose the assumption (H1) holds. If u is a critical point of Φ on X, then u is also a
critical point of Φ on H1

pT. And the minimal period of u is an integer multiple of T.

Proof. If u is a critical point of Φ on X, that is, 〈Φ′(u), v〉 = 0 holds for any v ∈ X and u is
odd, then Q−1∇F(t, Qu(t)) is pT-periodic and odd in t by (H1). Thus for any even w ∈ H1

pT,
we have ∫ pT

0

(
Q−1∇F(t, Qu(t)), w(t)

)
dt = 0.
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So, in view of (2.6), we have 〈Φ′(u), w〉 = 0. That gives us that 〈Φ′(u), v〉 = 0 holds for any
v ∈ H1

pT, which implies that the equation (1.3a) holds by (2.6). Assume that the minimal period
of u is pT/q for some integer q > 1, it follows from (1.3a) that ∇F(t, Qu(t)) is pT/q-periodic,
then

∇F(t, Qu(t)) = ∇F
(

t +
pT
q

, Qu
(

t +
pT
q

))
= ∇F

(
t +

pT
q

, Qu(t)
)

.

Thus p/q must be an integer by (H1), which completes the proof.

3 Main results

In this section, main results of this paper are obtained.

Theorem 3.1. If (H1), (H2) and (H3) hold, and there exists an integer p > 1 such that 2$p2T < 1,

ω2

A + λ
< p2 <

ω2s2
p

2$Tω2s2
p + A + λ + 2$/T

, (3.1)

lim sup
|x|→∞

F(t, x)
|x|2 <

(
1
2
− $p2T

)
ω2

p2 −
$

T
− λ

2
, uniformly for t ∈ R (3.2)

and ∫ T

0
|∇F(t, 0)|2dt < K

[(
1− 2$p2T

) (ωsp

p

)2

− λ− A− 2$

T

]
, (3.3)

where sp is the least prime factor of p, $ := ∑l
j=1 ∑N

r=1 arj and

K :=
πB2

ω

[
A + λ−

(
ω

p

)2
]
− 2B2

l

∑
j=1

(
N

∑
r=1

a2
rj

) 1
2

.

Then the impulsive system (1.1) has at least one weak periodic solution with minimal period pT.

Proof. We will complete the proof in three steps.

Step 1. Φ has a critical point u∗ on X with infu∈X Φ(u) = Φ(u∗).
Let {un} be a weakly convergent sequence to u0 in H1

pT, then {un} converges uniformly
to u0 on [0, pT] (see Proposition 1.2 in [7]) and there exists a constant C1 > 0 such that
‖us‖∞ ≤ C1, s = 0, 1, 2, . . . , where ‖u‖∞ := maxt∈[0,pT] |u(t)|. Then F(t, x) ∈ C1(R×RN , R)

implies that F(t, Qun(t)) converges uniformly to F(t, Qu0(t)) on [0, pT]. It follows from the
continuity of Iij and (2.1) that

|φ(un)− φ(u0)| ≤
pl

∑
j=1

N

∑
r=1

∣∣∣∣∣
∫ ∑N

k=1 qrkuk
n(tj)

∑N
k=1 qrkuk

0(tj)
Irj(y)dy

∣∣∣∣∣
≤ plNC2

N

∑
k=1
|qrk|

∣∣∣uk
n(tj)− uk

0(tj)
∣∣∣ ≤ plNC2‖un − u0‖∞ → 0,

as n→ ∞, where C2 = max{|Irj(y)| : |y| ≤ C1, r = 1, 2, . . . , N, j = 1, 2, . . . , l}. Hence

−
∫ pT

0
F(t, Qu(t))dt + φ(u)
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is weakly continuous on H1
pT. Moreover, it is clear that

1
2

∫ pT

0
|u̇(t)|2dt and − 1

2
λ
∫ pT

0
|u(t)|2dt

are lower semi-continuous and convex. Therefore Φ is weakly lower semi-continuous on H1
pT.

Let {un} ∈ X and un ⇀ u as n → ∞. By the Mazur theorem [7, p. 4], there exists a
sequence of convex combinations {vk} such that vk → u in H1

pT. It follows from X is a closed
convex space that {vk} ∈ X and u ∈ X. Thus, X is a weakly closed subset of H1

pT.
By (3.2), there exist 0 < ε0 < (0.5− $p2T)ω2/p2 and W > 0 such that

F(t, x)
|x|2 <

(
1
2
− $p2T

)
ω2

p2 −
$

T
− λ

2
− ε0, for |x| > W, t ∈ R,

which combined with (2.1) yields to∫ pT

0
F(t, Qu(t))dt =

∫
Ω1

F(t, Qu(t))dt +
∫

Ω2

F(t, Qu(t))dt

≤ MpT +

((
1
2
− $p2T

)
ω2

p2 −
$

T
− λ

2
− ε0

)
‖u‖2

L2 ,
(3.4)

where Ω1 := {t ∈ [0, pT] | |u(t)| ≤W}, Ω2 := {t ∈ [0, pT] | |u(t)| > W} and

M := sup
t∈[0,pT],|x|≤W

F(t, x).

By (2.7), (2.9) and (3.4), we have

Φ(u) ≥ 1
2
‖u̇‖2

L2 −
((

1
2
− $p2T

)
ω2

p2 −
$

T
− ε0

)
‖u‖2

L2 −MpT − $T−1‖u‖2
L2 − $p2T‖u̇‖2

L2

≥
(

1
2
− $p2T

)
‖u̇‖2

L2 −
((

1
2
− $p2T

)
ω2

p2 − ε0

)
p2

ω2 ‖u̇‖
2
L2 −MpT

≥ ε0 p2

ω2 + p2 ‖u‖
2 −MpT, for any u ∈ X.

So for any u ∈ X, Φ(u) → +∞ as ‖u‖ → ∞. Thus it follows from Lemma 2.3 that the result
of Step 1 holds.

Step 2. Under the assumptions of Theorem 3.1, we have

inf
u∈X

Φ(u) < Bsp , (3.5)

where

Bq := − p
2

[(
1− 2$p2T

) (ωq
p

)2

− λ− A− 2$

T

]−1 ∫ T

0
|∇F(t, 0)|2dt,

for integer q ≥ 1.
In fact, taking u(t) = (B sin(ωt/p), 0, . . . , 0)T, it is clear that u ∈ X. Since ∇F(t, 0) ∈

C(R, RN) is T-periodic and p > 1, by Fourier expansion, we have
∫ pT

0 ∇F(t, 0)Qu(t)dt = 0.
The continuity of Irj(y), (2.1) and (H3) imply that

|φ(u)| ≤
pl

∑
j=1

N

∑
r=1

∣∣Irj(θ)qr1B sin(ωtj/p)
∣∣ ≤ pB2

l

∑
j=1

(
N

∑
r=1

a2
rj

) 1
2

, (3.6)
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where θ lies between 0 and qr1B sin(ωtj/p). By (H2), we have∫ pT

0
F(t, Qu(t))dt =

∫ pT

0
F(t, Qu(t))−∇F(t, 0)Qu(t)dt +

∫ pT

0
∇F(t, 0)Qu(t)dt ≥ A

2
‖u‖2

L2 ,

which combined with (3.6) yields to

Φ(u) ≤ 1
2
‖u̇‖2

L2 −
1
2

λ‖u‖2
L2 −

A
2
‖u‖2

L2 + pB2
l

∑
j=1

(
N

∑
r=1

a2
rj

) 1
2

=
1
2

B2
(

ω

p

)2 pT
2
− 1

2
(λ + A)B2 pT

2
+ pB2

l

∑
j=1

(
N

∑
r=1

a2
rj

) 1
2

=
pπB2

2ω

[(
ω

p

)2

− λ− A

]
+ pB2

l

∑
j=1

(
N

∑
r=1

a2
rj

) 1
2

.

(3.7)

It follows from (3.1) that (
1− 2$p2T

) (ωsp

p

)2

− λ− A− 2$

T
> 0,

thus (3.3) implies that

pπB2

2ω

[(
ω

p

)2

− λ− A

]
+ pB2

l

∑
j=1

(
N

∑
r=1

a2
rj

) 1
2

< − p
2

[(
1− 2$p2T

) (ωsp

p

)2

− λ− A− 2$

T

]−1 ∫ T

0
|∇F(t, 0)|2dt = Bsp ,

which combined with (3.7) yields to (3.5).

Step 3. The critical point u∗ has minimal period pT.
Assume the contrary; minimal period of u∗ is pT/q for some integer q > 1. By Lemma 2.4,

q is a factor of p and q ≥ sp. By Fourier expansion,

u∗(t) =
N

∑
i=1

[
+∞

∑
k=1

bki sin
ωqk

p
t

]
ei,

where {e1, e2, . . . , eN} denotes the canonical orthogonal basis in RN . By (H2), (2.1) and
Hölder’s inequality,∫ pT

0
F(t, Qu∗(t))dt =

∫ pT

0
F(t, Qu∗(t))−∇F(t, 0)Qu∗(t)dt +

∫ pT

0
∇F(t, 0)Qu∗(t)dt

≤ A
2
‖u∗‖2

L2 + ‖∇F(t, 0)‖L2‖u∗‖L2 ,

which combined with (2.9) yields to

Φ(u∗) ≥ 1
2
‖u̇∗‖2

L2 −
1
2

λ‖u∗‖2
L2 −

A
2
‖u∗‖2

L2 − ‖∇F(t, 0)‖L2‖u∗‖L2 − $

T
‖u∗‖2

L2 − $p2T‖u̇∗‖2
L2

≥
(

1
2
− $p2T

)(
ωq
p

)2

‖u∗‖2
L2 −

1
2
(λ + A +

2$

T
)‖u∗‖2

L2 − ‖∇F(t, 0)‖L2‖u∗‖L2

=

[(
1− 2$p2T

) (ωq
p

)2

− λ− A− 2$

T

]
‖u∗‖2

L2

2
−
(

p
∫ T

0
|∇F(t, 0)|2dt

) 1
2

‖u∗‖L2 ≥ Bq,
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as we find by minimizing with respect to ‖u∗‖L2 . This contradicts with (3.5) since Bq ≥ Bsp for
q ≥ sp.

Thus it follows from Lemma 2.4 that Φ has a critical point u∗ on H1
pT and u∗ has minimal

period pT. Therefore Qu∗ is a weak periodic solution of (1.1) with minimal period pT by
Lemma 2.1.

4 Examples and corollaries

In this section, an example is given to illustrate Theorem 3.1, and a corollary of Theorem 3.1
concerning the equations (1.1a) is presented.

Example 4.1. Consider the impulsive system (1.1) with λ = −1, N = 3, l = 1, impulsive
functions Ii1(s) = −s/9 for i = 1, 2, 3 and

F(t, x) =
1
2
(25 cos(10πt) + 425)

3

∑
i=1

xi sin xi.

Since x sin x ≤ x2, 400 ≤ (25 cos(10πt) + 425) ≤ 450 and

sin x ≥ 2
π

x, for 0 ≤ x ≤ π

2
,

we have (H1), (H2) and (H3) hold with T = 0.2, A = 450, A = 800/π, B = π/2 and ai1 = 1/9
for i = 1, 2, 3. In view of

lim
|x|→∞

F(t, x)
|x|2 = 0 and |∇F(t, 0)| = 0,

it could be verified directly that all the assumptions of Theorem 3.1 hold with p = 2. Thus
Example 4.1 has at least one weak periodic solution with minimal period 0.4.

When Iij ≡ 0, assumption (H3) holds with aij = 0. The following result concerning the
equation (1.1a) could be deserved by Theorem 3.1.

Corollary 4.2. Assume that F satisfies (H1), (H2) and there exists an integer p > 1 such that

ω2

A + λ
< p2 <

ω2s2
p

A + λ
,

lim sup
|x|→∞

F(t, x)
|x|2 <

ω2

2p2 −
λ

2
, uniformly for t ∈ R

and ∫ T

0
|∇F(t, 0)|2dt <

πB2

ω

[
A + λ−

(
ω

p

)2
] [(

ωsp

p

)2

− λ− A

]
,

where sp is the least prime factor of p. Then the equation (1.1a) has at least one weak periodic solution
with minimal period pT.

Remark 4.3. When prime integer p→ ∞, the following is deserved by Corollary 4.2.
Assume that F satisfies (H1), (H2) and

lim sup
|x|→∞

F(t, x)
|x|2 ≤ −λ

2
, uniformly for t ∈ R.
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If ∫ T

0
|∇F(t, 0)|2dt <

πB2

ω

(
A + λ

)
(ω2 − λ− A),

then there exists P > 0 such that, for any prime integer p > P, the equation (1.1a) has at least
one weak periodic solution with minimal period pT.
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