Nontrivial solutions for fractional q-difference boundary value problems

Rui A. C. Ferreira*
Department of Mathematics
Lusophone University of Humanities and Technologies
1749-024 Lisbon, Portugal

November 21, 2010

Abstract

In this paper, we investigate the existence of nontrivial solutions to the nonlinear q-fractional boundary value problem $$
\begin{aligned} \left(D_{q}^{\alpha} y\right)(x) & =-f(x, y(x)), \quad 0<x<1, \\ y(0) & =0=y(1), \end{aligned}
$$ by applying a fixed point theorem in cones. Keywords: Fractional q-difference equations, boundary value problem, nontrivial solution.

2010 Mathematics Subject Classification: 39A13, 34B18, 34A08.

1 Introduction

The q-difference calculus or quantum calculus is an old subject that was first developed by Jackson [9, 10]. It is rich in history and in applications as the reader can confirm in the paper [6].

[^0]The origin of the fractional q-difference calculus can be traced back to the works by Al-Salam [3] and Agarwal [1]. More recently, perhaps due to the explosion in research within the fractional calculus setting (see the books $[13,14]$), new developments in this theory of fractional q-difference calculus were made, specifically, q-analogues of the integral and differential fractional operators properties such as q-Laplace transform, q-Taylor's formula [4, 15], just to mention some.

To the best of the author knowledge there are no results available in the literature considering the problem of existence of nontrivial solutions for fractional q-difference boundary value problems. As is well-known, the aim of finding nontrivial solutions is of main importance in various fields of science and engineering (see the book [2] and references therein). Therefore, we find it pertinent to investigate on such a demand within this q-fractional setting.

This paper is organized as follows: in Section 2 we introduce some notation and provide to the reader the definitions of the q-fractional integral and differential operators together with some basic properties. Moreover, some new general results within this theory are given. In Section 3 we consider a Dirichlet type boundary value problem. Sufficient conditions for the existence of nontrivial solutions are enunciated.

2 Preliminaries on fractional q-calculus

Let $q \in(0,1)$ and define

$$
[a]_{q}=\frac{1-q^{a}}{1-q}, \quad a \in \mathbb{R}
$$

The q-analogue of the power function $(a-b)^{n}$ with $n \in \mathbb{N}_{0}$ is

$$
(a-b)^{0}=1, \quad(a-b)^{n}=\prod_{k=0}^{n-1}\left(a-b q^{k}\right), \quad n \in \mathbb{N}, \quad a, b \in \mathbb{R}
$$

More generally, if $\alpha \in \mathbb{R}$, then

$$
(a-b)^{(\alpha)}=a^{\alpha} \prod_{n=0}^{\infty} \frac{a-b q^{n}}{a-b q^{\alpha+n}}
$$

Note that, if $b=0$ then $a^{(\alpha)}=a^{\alpha}$. The q-gamma function is defined by

$$
\Gamma_{q}(x)=\frac{(1-q)^{(x-1)}}{(1-q)^{x-1}}, \quad x \in \mathbb{R} \backslash\{0,-1,-2, \ldots\}
$$

and satisfies $\Gamma_{q}(x+1)=[x]_{q} \Gamma_{q}(x)$.
The q-derivative of a function f is here defined by

$$
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x}, \quad\left(D_{q} f\right)(0)=\lim _{x \rightarrow 0}\left(D_{q} f\right)(x)
$$

and q-derivatives of higher order by

$$
\left(D_{q}^{0} f\right)(x)=f(x) \text { and } \quad\left(D_{q}^{n} f\right)(x)=D_{q}\left(D_{q}^{n-1} f\right)(x), \quad n \in \mathbb{N} .
$$

The q-integral of a function f defined in the interval $[0, b]$ is given by

$$
\left(I_{q} f\right)(x)=\int_{0}^{x} f(t) d_{q} t=x(1-q) \sum_{n=0}^{\infty} f\left(x q^{n}\right) q^{n}, \quad x \in[0, b] .
$$

If $a \in[0, b]$ and f is defined in the interval $[0, b]$, its integral from a to b is defined by

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

Similarly as done for derivatives, it can be defined an operator I_{q}^{n}, namely,

$$
\left(I_{q}^{0} f\right)(x)=f(x) \text { and }\left(I_{q}^{n} f\right)(x)=I_{q}\left(I_{q}^{n-1} f\right)(x), \quad n \in \mathbb{N}
$$

The fundamental theorem of calculus applies to these operators I_{q} and D_{q}, i.e.,

$$
\left(D_{q} I_{q} f\right)(x)=f(x),
$$

and if f is continuous at $x=0$, then

$$
\left(I_{q} D_{q} f\right)(x)=f(x)-f(0)
$$

Basic properties of the two operators can be found in the book [11]. We point out here four formulas that will be used later, namely, the integration by parts formula

$$
\int_{0}^{x} f(t)\left(D_{q} g\right) t d_{q} t=[f(t) g(t)]_{t=0}^{t=x}-\int_{0}^{x}\left(D_{q} f\right)(t) g(q t) d_{q} t
$$

and (${ }_{i} D_{q}$ denotes the derivative with respect to variable i)

$$
\begin{align*}
{[a(t-s)]^{(\alpha)} } & =a^{\alpha}(t-s)^{(\alpha)}, \tag{1}\\
{ }_{t} D_{q}(t-s)^{(\alpha)} & =[\alpha]_{q}(t-s)^{(\alpha-1)}, \tag{2}\\
{ }_{s} D_{q}(t-s)^{(\alpha)} & =-[\alpha]_{q}(t-q s)^{(\alpha-1)} . \tag{3}
\end{align*}
$$

Remark 2.1. We note that if $\alpha>0$ and $a \leq b \leq t$, then $(t-a)^{(\alpha)} \geq(t-b)^{(\alpha)}$. To see this, assume that $a \leq b \leq t$. Then, it is intended to show that

$$
\begin{equation*}
t^{\alpha} \prod_{n=0}^{\infty} \frac{t-a q^{n}}{t-a q^{\alpha+n}} \geq t^{\alpha} \prod_{n=0}^{\infty} \frac{t-b q^{n}}{t-b q^{\alpha+n}} \tag{4}
\end{equation*}
$$

Let $n \in \mathbb{N}_{0}$. We show that

$$
\begin{equation*}
\left(t-a q^{n}\right)\left(t-b q^{\alpha+n}\right) \geq\left(t-b q^{n}\right)\left(t-a q^{\alpha+n}\right) \tag{5}
\end{equation*}
$$

Indeed, expanding both sides of the inequality (5) we obtain

$$
\begin{aligned}
& t^{2}-t b q^{\alpha+n}-t a q^{n}+a q^{n} b q^{\alpha+n} \geq t^{2}-t a q^{\alpha+n}-t b q^{n}+b q^{n} a q^{\alpha+n} \\
\Leftrightarrow & q^{n}\left(a q^{\alpha}+b\right) \geq q^{n}\left(b q^{\alpha}+a\right) \\
\Leftrightarrow & b-a \geq q^{\alpha}(b-a) \\
\Leftrightarrow & 1 \geq q^{\alpha} .
\end{aligned}
$$

Since inequality (5) implies inequality (4) we are done with the proof.
The following definition was considered first in [1]
Definition 2.2. Let $\alpha \geq 0$ and f be a function defined on $[0,1]$. The fractional q-integral of the Riemann-Liouville type is $\left(I_{q}^{0} f\right)(x)=f(x)$ and

$$
\left(I_{q}^{\alpha} f\right)(x)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{x}(x-q t)^{(\alpha-1)} f(t) d_{q} t, \quad \alpha>0, \quad x \in[0,1] .
$$

The fractional q-derivative of order $\alpha \geq 0$ is defined by $\left(D_{q}^{0} f\right)(x)=f(x)$ and $\left(D_{q}^{\alpha} f\right)(x)=\left(D_{q}^{m} I_{q}^{m-\alpha} f\right)(x)$ for $\alpha>0$, where m is the smallest integer greater or equal than α.

Let us now list some properties that are already known in the literature. Its proof can be found in $[1,15]$.
Lemma 2.3. Let $\alpha, \beta \geq 0$ and f be a function defined on $[0,1]$. Then, the next formulas hold:

1. $\left(I_{q}^{\beta} I_{q}^{\alpha} f\right)(x)=\left(I_{q}^{\alpha+\beta} f\right)(x)$,
2. $\left(D_{q}^{\alpha} I_{q}^{\alpha} f\right)(x)=f(x)$.

The next result is important in the sequel. Since we didn't find it in the literature we provide a proof here.

Theorem 2.4. Let $\alpha>0$ and p be a positive integer. Then, the following equality holds:

$$
\begin{equation*}
\left(I_{q}^{\alpha} D_{q}^{p} f\right)(x)=\left(D_{q}^{p} I_{q}^{\alpha} f\right)(x)-\sum_{k=0}^{p-1} \frac{x^{\alpha-p+k}}{\Gamma_{q}(\alpha+k-p+1)}\left(D_{q}^{k} f\right)(0) . \tag{6}
\end{equation*}
$$

Proof. Let α be any positive number. We will do a proof using induction on p.

Suppose that $p=1$. Using formula (3) we get:

$$
{ }_{t} D_{q}\left[(x-t)^{(\alpha-1)} f(t)\right]=(x-q t)^{(\alpha-1)}{ }_{t} D_{q} f(t)-[\alpha-1]_{q}(x-q t)^{(\alpha-2)} f(t) .
$$

Therefore,

$$
\begin{aligned}
\left(I_{q}^{\alpha} D_{q} f\right)(x) & =\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{x}(x-q t)^{(\alpha-1)}\left(D_{q} f\right)(t) d_{q} t \\
& =\frac{[\alpha-1]_{q}}{\Gamma_{q}(\alpha)} \int_{0}^{x}(x-q t)^{(\alpha-2)} f(t) d_{q} t+\frac{1}{\Gamma_{q}(\alpha)}\left[(x-t)^{(\alpha-1)} f(t)\right]_{t=0}^{t=x} \\
& =\left(D_{q} I_{q}^{\alpha} f\right)(x)-\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} f(0) .
\end{aligned}
$$

Suppose now that (6) holds for $p \in \mathbb{N}$. Then,

$$
\begin{aligned}
& \left(I_{q}^{\alpha} D_{q}^{p+1} f\right)(x)=\left(I_{q}^{\alpha} D_{q}^{p} D_{q} f\right)(x) \\
& =\left(D_{q}^{p} I_{q}^{\alpha} D_{q} f\right)(x)-\sum_{k=0}^{p-1} \frac{x^{\alpha-p+k}}{\Gamma_{q}(\alpha+k-p+1)}\left(D_{q}^{k+1} f\right)(0) \\
& =D_{q}^{p}\left[\left(D_{q} I_{q}^{\alpha} f\right)(x)-\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} f(0)\right]-\sum_{k=0}^{p-1} \frac{x^{\alpha-p+k}}{\Gamma_{q}(\alpha+k-p+1)}\left(D_{q}^{k+1} f\right)(0) \\
& =\left(D_{q}^{p+1} I_{q}^{\alpha} f\right)(x)-\frac{x^{\alpha-1-p}}{\Gamma_{q}(\alpha-p)} f(0)-\sum_{k=1}^{p} \frac{x^{\alpha-(p+1)+k}}{\Gamma_{q}(\alpha+k-(p+1)+1)}\left(D_{q}^{k} f\right)(0) \\
& =\left(D_{q}^{p+1} I_{q}^{\alpha} f\right)(x)-\sum_{k=0}^{p} \frac{x^{\alpha-(p+1)+k}}{\Gamma_{q}(\alpha+k-(p+1)+1)}\left(D_{q}^{k} f\right)(0) .
\end{aligned}
$$

The theorem is proved.

3 Fractional boundary value problem

We shall consider now the question of existence of nontrivial solutions to the following problem:

$$
\begin{equation*}
\left(D_{q}^{\alpha} y\right)(x)=-f(x, y(x)), \quad 0<x<1, \tag{7}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
y(0)=0, \quad y(1)=0, \tag{8}
\end{equation*}
$$

where $1<\alpha \leq 2$ and $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is a nonnegative continuous function (this is the q-analogue of the fractional differential problem considered in [5]). To that end we need the following theorem (see $[8,12]$).
Theorem 3.1. Let \mathcal{B} be a Banach space, and let $C \subset \mathcal{B}$ be a cone. Assume Ω_{1}, Ω_{2} are open disks contained in \mathcal{B} with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$ and let T : $C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow C$ be a completely continuous operator such that

$$
\|T y\| \geq\|y\|, y \in C \cap \partial \Omega_{1} \text { and }\|T y\| \leq\|y\|, y \in C \cap \partial \Omega_{2} .
$$

Then T has at least one fixed point in $C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Let us put $p=2$. In view of item 2 of Lemma 2.3 and Theorem 2.4 we see that

$$
\begin{aligned}
& \left(D_{q}^{\alpha} y\right)(x)=-f(x, y(x)) \Leftrightarrow\left(I_{q}^{\alpha} D_{q}^{2} I_{q}^{2-\alpha} y\right)(x)=-I_{q}^{\alpha} f(x, y(x)) \\
& \quad \Leftrightarrow y(x)=c_{1} x^{\alpha-1}+c_{2} x^{\alpha-2}-\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{x}(x-q t)^{(\alpha-1)} f(t, y(t)) d_{q} t
\end{aligned}
$$

for some constants $c_{1}, c_{2} \in \mathbb{R}$. Using the boundary conditions given in (8) we take $c_{1}=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{1}(1-q t)^{(\alpha-1)} f(t, y(t)) d_{q} t$ and $c_{2}=0$ to get

$$
\begin{aligned}
& y(x)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{1}(1-q t)^{(\alpha-1)} x^{\alpha-1} f(t, y(t)) d_{q} t \\
& -\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{x}(x-q t)^{(\alpha-1)} f(t, y(t)) d_{q} t \\
& =\frac{1}{\Gamma_{q}(\alpha)}\left[\int_{0}^{x}\left([x(1-q t)]^{(\alpha-1)}-(x-q t)^{(\alpha-1)}\right) f(t, y(t)) d_{q} t\right. \\
& \left.+\int_{x}^{1}[x(1-q t)]^{(\alpha-1)} f(t, y(t)) d_{q} t\right] .
\end{aligned}
$$

If we define a function G by

$$
G(x, t)=\frac{1}{\Gamma_{q}(\alpha)}\left\{\begin{array}{l}
(x(1-t))^{(\alpha-1)}-(x-t)^{(\alpha-1)}, \quad 0 \leq t \leq x \leq 1, \\
(x(1-t))^{(\alpha-1)}, \quad 0 \leq x \leq t \leq 1,
\end{array}\right.
$$

then, the following result follows.
Lemma 3.2. y is a solution of the boundary value problem (7)-(8) if, and only if, y satisfies the integral equation

$$
y(x)=\int_{0}^{1} G(x, q t) f(t, y(t)) d_{q} t
$$

Remark 3.3. If we let $\alpha=2$ in the function G, then we get a particular case of the Green function obtained in [16], namely,

$$
G(x, t)= \begin{cases}t(1-x), & 0 \leq t \leq x \leq 1 \\ x(1-t), & 0 \leq x \leq t \leq 1\end{cases}
$$

Some properties of the function G needed in the sequel are now stated and proved.

Lemma 3.4. Function G defined above satisfies the following conditions:

$$
\begin{equation*}
G(x, q t) \geq 0 \text { and } G(x, q t) \leq G(q t, q t) \text { for all } 0 \leq x, t \leq 1 \tag{9}
\end{equation*}
$$

Proof. We start by defining two functions $g_{1}(x, t)=(x(1-t))^{(\alpha-1)}-(x-$ $t)^{(\alpha-1)}, 0 \leq t \leq x \leq 1$ and $g_{2}(x, t)=(x(1-t))^{(\alpha-1)}, 0 \leq x \leq t \leq 1$. It is clear that $g_{2}(x, q t) \geq 0$. Now, in view of Remark 2.1 we get,

$$
\begin{aligned}
g_{1}(x, q t) & =x^{\alpha-1}(1-q t)^{(\alpha-1)}-x^{\alpha-1}\left(1-q \frac{t}{x}\right)^{(\alpha-1)} \\
& \geq x^{\alpha-1}(1-q t)^{(\alpha-1)}-x^{\alpha-1}(1-q t)^{(\alpha-1)}=0 .
\end{aligned}
$$

Moreover, for $t \in(0,1]$ we have that

$$
\begin{aligned}
{ }_{x} D_{q} g_{1}(x, t) & ={ }_{x} D_{q}\left[(x(1-t))^{(\alpha-1)}-(x-t)^{(\alpha-1)}\right] \\
& =[\alpha-1]_{q}(1-t)^{(\alpha-1)} x^{\alpha-2}-[\alpha-1]_{q}(x-t)^{(\alpha-2)} \\
& =[\alpha-1]_{q} x^{\alpha-2}\left[(1-t)^{(\alpha-1)}-\left(1-\frac{t}{x}\right)^{(\alpha-2)}\right] \\
& \leq[\alpha-1]_{q} x^{\alpha-2}\left[(1-t)^{(\alpha-1)}-(1-t)^{(\alpha-2)}\right] \\
& \leq 0,
\end{aligned}
$$

which implies that $g_{1}(x, t)$ is decreasing with respect to x for all $t \in(0,1]$. Therefore,

$$
\begin{equation*}
g_{1}(x, q t) \leq g_{1}(q t, q t), \quad 0<x, t \leq 1 . \tag{10}
\end{equation*}
$$

Now note that $G(0, q t)=0 \leq G(q t, q t)$ for all $t \in[0,1]$. Therefore, by (10) and the definition of g_{2} (it is obviously increasing in x) we conclude that $G(x, q t) \leq G(q t, q t)$ for all $0 \leq x, t \leq 1$. This finishes the proof.

Let $\mathcal{B}=C[0,1]$ be the Banach space endowed with norm $\|u\|=\sup _{t \in[0,1]}|u(t)|$. Define the cone $C \subset \mathcal{B}$ by

$$
C=\{u \in \mathcal{B}: u(t) \geq 0\} .
$$

Remark 3.5. It follows from the nonnegativeness and continuity of G and f that the operator $T: C \rightarrow \mathcal{B}$ defined by

$$
(T u)(x)=\int_{0}^{1} G(x, q t) f(t, u(t)) d_{q} t
$$

satisfies $T(C) \subset C$ and is completely continuous.
For our purposes, let us define two constants

$$
M=\left(\int_{0}^{1} G(q t, q t) d_{q} t\right)^{-1}, \quad N=\left(\int_{\tau_{1}}^{\tau_{2}} G(q t, q t) d_{q} t\right)^{-1}
$$

where $\tau_{1} \in\left\{0, q^{m}\right\}$ and $\tau_{2}=q^{n}$ with $m, n \in \mathbb{N}_{0}, m>n$. Our existence result is now given.

Theorem 3.6. Let $f(t, u)$ be a nonnegative continuous function on $[0,1] \times$ $[0, \infty)$. If there exists two positive constants $r_{2}>r_{1}>0$ such that

$$
\begin{align*}
& f(t, u) \leq M r_{2}, \text { for }(t, u) \in[0,1] \times\left[0, r_{2}\right] \tag{11}\\
& f(t, u) \geq N r_{1}, \text { for }(t, u) \in\left[\tau_{1}, \tau_{2}\right] \times\left[0, r_{1}\right] \tag{12}
\end{align*}
$$

then problem (7)-(8) has a solution y satisfying $r_{1} \leq\|y\| \leq r_{2}$.
Proof. Since the operator $T: C \rightarrow C$ is completely continuous we only have to show that the operator equation $y=T y$ has a solution satisfying $r_{1} \leq\|y\| \leq r_{2}$.

Let $\Omega_{1}=\left\{y \in C:\|y\|<r_{1}\right\}$. For $y \in C \cap \partial \Omega_{1}$, we have $0 \leq y(t) \leq r_{1}$ on $[0,1]$. Using (9) and (12), and the definitions of τ_{1} and τ_{2}, we obtain (see page 282 in [7]),

$$
\|T y\|=\max _{0 \leq x \leq 1} \int_{0}^{1} G(x, q t) f(t, y(t)) d_{q} t \geq N r_{1} \int_{\tau_{1}}^{\tau_{2}} G(q t, q t) d_{q} t=\|y\|
$$

Let $\Omega_{2}=\left\{y \in C:\|y\|<r_{2}\right\}$. For $y \in C \cap \partial \Omega_{2}$, we have $0 \leq y(t) \leq r_{2}$ on $[0,1]$. Using (9) and (11) we obtain,

$$
\|T y\|=\max _{0 \leq x \leq 1} \int_{0}^{1} G(x, q t) f(t, y(t)) d_{q} t \leq M r_{2} \int_{0}^{1} G(q t, q t) d_{q} t=\|y\|
$$

Now an application of Theorem 3.1 concludes the proof.

References

[1] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Cambridge Philos. Soc. 66 (1969), 365-370.
[2] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Acad. Publ., Dordrecht, 1999.
[3] W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinburgh Math. Soc. (2) 15 (1966/1967), 135-140.
[4] F. M. Atici and P. W. Eloe, Fractional q-calculus on a time scale, J. Nonlinear Math. Phys. 14 (2007), no. 3, 333-344.
[5] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495-505.
[6] Ernst T, The History of q-Calculus and a New Method, U. U. D. M. Report 2000:16, ISSN 1101-3591, Department of Mathematics, Uppsala University, 2000.
[7] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004), no. 2-3, 281-300.
[8] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, MA, 1988.
[9] Jackson F.H.: On q-functions and a certain difference operator. Trans. Roy Soc. Edin. 46, (1908), 253-281.
[10] Jackson F.H.: On q-definite integrals. Quart. J. Pure and Appl. Math. 41 (1910), 193-203.
[11] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
[12] M. A. Krasnosel'skiĭ, Positive Solutions of Operator Equations, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964.
[13] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
[15] P. M. Rajković, S. D. Marinković and M. S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1 (2007), no. 1, 311-323.
[16] M. El-Shahed and H. A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1733-1738.

[^0]: *Email: ruiacferreira@ulusofona.pt

