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Abstract

In this paper, we investigate the existence of nontrivial solutions
to the nonlinear q-fractional boundary value problem

(Dα
q y)(x) = −f(x, y(x)), 0 < x < 1,

y(0) = 0 = y(1),

by applying a fixed point theorem in cones.
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1 Introduction

The q-difference calculus or quantum calculus is an old subject that was first
developed by Jackson [9, 10]. It is rich in history and in applications as the
reader can confirm in the paper [6].
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The origin of the fractional q-difference calculus can be traced back to
the works by Al-Salam [3] and Agarwal [1]. More recently, perhaps due to
the explosion in research within the fractional calculus setting (see the books
[13, 14]), new developments in this theory of fractional q-difference calculus
were made, specifically, q-analogues of the integral and differential fractional
operators properties such as q-Laplace transform, q-Taylor’s formula [4, 15],
just to mention some.

To the best of the author knowledge there are no results available in
the literature considering the problem of existence of nontrivial solutions for
fractional q-difference boundary value problems. As is well-known, the aim of
finding nontrivial solutions is of main importance in various fields of science
and engineering (see the book [2] and references therein). Therefore, we find
it pertinent to investigate on such a demand within this q-fractional setting.

This paper is organized as follows: in Section 2 we introduce some no-
tation and provide to the reader the definitions of the q-fractional integral
and differential operators together with some basic properties. Moreover,
some new general results within this theory are given. In Section 3 we con-
sider a Dirichlet type boundary value problem. Sufficient conditions for the
existence of nontrivial solutions are enunciated.

2 Preliminaries on fractional q-calculus

Let q ∈ (0, 1) and define

[a]q =
1 − qa

1 − q
, a ∈ R.

The q-analogue of the power function (a − b)n with n ∈ N0 is

(a − b)0 = 1, (a − b)n =
n−1
∏

k=0

(a − bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a − b)(α) = aα

∞
∏

n=0

a − bqn

a − bqα+n
.

Note that, if b = 0 then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1 − q)(x−1)

(1 − q)x−1
, x ∈ R\{0,−1,−2, . . .},
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and satisfies Γq(x + 1) = [x]qΓq(x).
The q-derivative of a function f is here defined by

(Dqf)(x) =
f(x) − f(qx)

(1 − q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and q-derivatives of higher order by

(D0
qf)(x) = f(x) and (Dn

q f)(x) = Dq(D
n−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =

∫ x

0

f(t)dqt = x(1 − q)

∞
∑

n=0

f(xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is
defined by

∫ b

a

f(t)dqt =

∫ b

0

f(t)dqt −

∫ a

0

f(t)dqt.

Similarly as done for derivatives, it can be defined an operator In
q , namely,

(I0
q f)(x) = f(x) and (In

q f)(x) = Iq(I
n−1
q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq,
i.e.,

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then

(IqDqf)(x) = f(x) − f(0).

Basic properties of the two operators can be found in the book [11]. We
point out here four formulas that will be used later, namely, the integration
by parts formula

∫ x

0

f(t)(Dqg)tdqt = [f(t)g(t)]t=x
t=0 −

∫ x

0

(Dqf)(t)g(qt)dqt,

and (iDq denotes the derivative with respect to variable i)

[a(t − s)](α) = aα(t − s)(α), (1)

tDq(t − s)(α) = [α]q(t − s)(α−1), (2)

sDq(t − s)(α) = −[α]q(t − qs)(α−1). (3)
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Remark 2.1. We note that if α > 0 and a ≤ b ≤ t, then (t−a)(α) ≥ (t− b)(α).
To see this, assume that a ≤ b ≤ t. Then, it is intended to show that

tα
∞
∏

n=0

t − aqn

t − aqα+n
≥ tα

∞
∏

n=0

t − bqn

t − bqα+n
. (4)

Let n ∈ N0. We show that

(t − aqn)(t − bqα+n) ≥ (t − bqn)(t − aqα+n). (5)

Indeed, expanding both sides of the inequality (5) we obtain

t2 − tbqα+n − taqn + aqnbqα+n ≥ t2 − taqα+n − tbqn + bqnaqα+n

⇔qn(aqα + b) ≥ qn(bqα + a)

⇔b − a ≥ qα(b − a)

⇔1 ≥ qα.

Since inequality (5) implies inequality (4) we are done with the proof.

The following definition was considered first in [1]

Definition 2.2. Let α ≥ 0 and f be a function defined on [0, 1]. The
fractional q-integral of the Riemann–Liouville type is (I0

q f)(x) = f(x) and

(Iα
q f)(x) =

1

Γq(α)

∫ x

0

(x − qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

The fractional q-derivative of order α ≥ 0 is defined by (D0
qf)(x) = f(x)

and (Dα
q f)(x) = (Dm

q Im−α
q f)(x) for α > 0, where m is the smallest integer

greater or equal than α.
Let us now list some properties that are already known in the literature.

Its proof can be found in [1, 15].

Lemma 2.3. Let α, β ≥ 0 and f be a function defined on [0, 1]. Then, the

next formulas hold:

1. (Iβ
q Iα

q f)(x) = (Iα+β
q f)(x),

2. (Dα
q Iα

q f)(x) = f(x).

The next result is important in the sequel. Since we didn’t find it in the
literature we provide a proof here.
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Theorem 2.4. Let α > 0 and p be a positive integer. Then, the following

equality holds:

(Iα
q Dp

qf)(x) = (Dp
qI

α
q f)(x) −

p−1
∑

k=0

xα−p+k

Γq(α + k − p + 1)
(Dk

q f)(0). (6)

Proof. Let α be any positive number. We will do a proof using induction on
p.

Suppose that p = 1. Using formula (3) we get:

tDq[(x − t)(α−1)f(t)] = (x − qt)(α−1)
tDqf(t) − [α − 1]q(x − qt)(α−2)f(t).

Therefore,

(Iα
q Dqf)(x) =

1

Γq(α)

∫ x

0

(x − qt)(α−1)(Dqf)(t)dqt

=
[α − 1]q
Γq(α)

∫ x

0

(x − qt)(α−2)f(t)dqt +
1

Γq(α)
[(x − t)(α−1)f(t)]t=x

t=0

= (DqI
α
q f)(x) −

xα−1

Γq(α)
f(0).

Suppose now that (6) holds for p ∈ N. Then,

(Iα
q Dp+1

q f)(x) = (Iα
q Dp

qDqf)(x)

= (Dp
qI

α
q Dqf)(x) −

p−1
∑

k=0

xα−p+k

Γq(α + k − p + 1)
(Dk+1

q f)(0)

= Dp
q

[

(DqI
α
q f)(x) −

xα−1

Γq(α)
f(0)

]

−

p−1
∑

k=0

xα−p+k

Γq(α + k − p + 1)
(Dk+1

q f)(0)

= (Dp+1
q Iα

q f)(x) −
xα−1−p

Γq(α − p)
f(0) −

p
∑

k=1

xα−(p+1)+k

Γq(α + k − (p + 1) + 1)
(Dk

q f)(0)

= (Dp+1
q Iα

q f)(x) −

p
∑

k=0

xα−(p+1)+k

Γq(α + k − (p + 1) + 1)
(Dk

qf)(0).

The theorem is proved.
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3 Fractional boundary value problem

We shall consider now the question of existence of nontrivial solutions to the
following problem:

(Dα
q y)(x) = −f(x, y(x)), 0 < x < 1, (7)

subject to the boundary conditions

y(0) = 0, y(1) = 0, (8)

where 1 < α ≤ 2 and f : [0, 1]×R → R is a nonnegative continuous function
(this is the q-analogue of the fractional differential problem considered in [5]).
To that end we need the following theorem (see [8, 12]).

Theorem 3.1. Let B be a Banach space, and let C ⊂ B be a cone. Assume

Ω1, Ω2 are open disks contained in B with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let T :
C ∩ (Ω2\Ω1) → C be a completely continuous operator such that

‖Ty‖ ≥ ‖y‖, y ∈ C ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖, y ∈ C ∩ ∂Ω2.

Then T has at least one fixed point in C ∩ (Ω2\Ω1).

Let us put p = 2. In view of item 2 of Lemma 2.3 and Theorem 2.4 we
see that

(Dα
q y)(x) = −f(x, y(x)) ⇔ (Iα

q D2
qI

2−α
q y)(x) = −Iα

q f(x, y(x))

⇔ y(x) = c1x
α−1 + c2x

α−2 −
1

Γq(α)

∫ x

0

(x − qt)(α−1)f(t, y(t))dqt,

for some constants c1, c2 ∈ R. Using the boundary conditions given in (8) we

take c1 = 1
Γq(α)

∫ 1

0
(1 − qt)(α−1)f(t, y(t))dqt and c2 = 0 to get

y(x) =
1

Γq(α)

∫ 1

0

(1 − qt)(α−1)xα−1f(t, y(t))dqt

−
1

Γq(α)

∫ x

0

(x − qt)(α−1)f(t, y(t))dqt

=
1

Γq(α)

[
∫ x

0

(

[x(1 − qt)](α−1) − (x − qt)(α−1)
)

f(t, y(t))dqt

+

∫ 1

x

[x(1 − qt)](α−1)f(t, y(t))dqt

]

.
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If we define a function G by

G(x, t) =
1

Γq(α)

{

(x(1 − t))(α−1) − (x − t)(α−1), 0 ≤ t ≤ x ≤ 1,
(x(1 − t))(α−1), 0 ≤ x ≤ t ≤ 1,

then, the following result follows.

Lemma 3.2. y is a solution of the boundary value problem (7)-(8) if, and

only if, y satisfies the integral equation

y(x) =

∫ 1

0

G(x, qt)f(t, y(t))dqt.

Remark 3.3. If we let α = 2 in the function G, then we get a particular case
of the Green function obtained in [16], namely,

G(x, t) =

{

t(1 − x), 0 ≤ t ≤ x ≤ 1
x(1 − t), 0 ≤ x ≤ t ≤ 1.

Some properties of the function G needed in the sequel are now stated
and proved.

Lemma 3.4. Function G defined above satisfies the following conditions:

G(x, qt) ≥ 0 and G(x, qt) ≤ G(qt, qt) for all 0 ≤ x, t ≤ 1. (9)

Proof. We start by defining two functions g1(x, t) = (x(1 − t))(α−1) − (x −
t)(α−1), 0 ≤ t ≤ x ≤ 1 and g2(x, t) = (x(1 − t))(α−1), 0 ≤ x ≤ t ≤ 1. It is
clear that g2(x, qt) ≥ 0. Now, in view of Remark 2.1 we get,

g1(x, qt) = xα−1(1 − qt)(α−1) − xα−1(1 − q
t

x
)(α−1)

≥ xα−1(1 − qt)(α−1) − xα−1(1 − qt)(α−1) = 0.

Moreover, for t ∈ (0, 1] we have that

xDqg1(x, t) = xDq[(x(1 − t))(α−1) − (x − t)(α−1)]

= [α − 1]q(1 − t)(α−1)xα−2 − [α − 1]q(x − t)(α−2)

= [α − 1]qx
α−2

[

(1 − t)(α−1) −

(

1 −
t

x

)(α−2)
]

≤ [α − 1]qx
α−2

[

(1 − t)(α−1) − (1 − t)(α−2)
]

≤ 0,
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which implies that g1(x, t) is decreasing with respect to x for all t ∈ (0, 1].
Therefore,

g1(x, qt) ≤ g1(qt, qt), 0 < x, t ≤ 1. (10)

Now note that G(0, qt) = 0 ≤ G(qt, qt) for all t ∈ [0, 1]. Therefore, by (10)
and the definition of g2 (it is obviously increasing in x) we conclude that
G(x, qt) ≤ G(qt, qt) for all 0 ≤ x, t ≤ 1. This finishes the proof.

Let B = C[0, 1] be the Banach space endowed with norm ‖u‖ = supt∈[0,1] |u(t)|.
Define the cone C ⊂ B by

C = {u ∈ B : u(t) ≥ 0}.

Remark 3.5. It follows from the nonnegativeness and continuity of G and f

that the operator T : C → B defined by

(Tu)(x) =

∫ 1

0

G(x, qt)f(t, u(t))dqt,

satisfies T (C) ⊂ C and is completely continuous.

For our purposes, let us define two constants

M =

(
∫ 1

0

G(qt, qt)dqt

)−1

, N =

(
∫ τ2

τ1

G (qt, qt) dqt

)−1

,

where τ1 ∈ {0, qm} and τ2 = qn with m, n ∈ N0, m > n. Our existence result
is now given.

Theorem 3.6. Let f(t, u) be a nonnegative continuous function on [0, 1] ×
[0,∞). If there exists two positive constants r2 > r1 > 0 such that

f(t, u) ≤ Mr2, for (t, u) ∈ [0, 1] × [0, r2], (11)

f(t, u) ≥ Nr1, for (t, u) ∈ [τ1, τ2] × [0, r1], (12)

then problem (7)-(8) has a solution y satisfying r1 ≤ ‖y‖ ≤ r2.

Proof. Since the operator T : C → C is completely continuous we only
have to show that the operator equation y = Ty has a solution satisfying
r1 ≤ ‖y‖ ≤ r2.
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Let Ω1 = {y ∈ C : ‖y‖ < r1}. For y ∈ C ∩ ∂Ω1, we have 0 ≤ y(t) ≤ r1

on [0, 1]. Using (9) and (12), and the definitions of τ1 and τ2, we obtain (see
page 282 in [7]),

‖Ty‖ = max
0≤x≤1

∫ 1

0

G (x, qt) f(t, y(t))dqt ≥ Nr1

∫ τ2

τ1

G (qt, qt) dqt = ‖y‖.

Let Ω2 = {y ∈ C : ‖y‖ < r2}. For y ∈ C ∩ ∂Ω2, we have 0 ≤ y(t) ≤ r2 on
[0, 1]. Using (9) and (11) we obtain,

‖Ty‖ = max
0≤x≤1

∫ 1

0

G (x, qt) f(t, y(t))dqt ≤ Mr2

∫ 1

0

G (qt, qt) dqt = ‖y‖.

Now an application of Theorem 3.1 concludes the proof.
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