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Abstract. The abstract Perron-Stieltjes integral defined in the Kurzweil-Henstock

sense is used for introducing Stieltjes convolutions. The corresponding facts on inte-
gration are given in [6], [7] and [8].

The approach is used for obtaining the basic existence result for the abstract
renewal equation which was studied e. g. by Diekmann, Gyllenberg and Thieme in

[1] and [2].

For a given Banach space X let L(X) be the Banach space of all bounded linear
operators A : X → X with the uniform operator topology.

For B : L(X) × X → X given by B(A, x) = Ax ∈ X for A ∈ L(X) and x ∈ X,
we obtain the bilinear triple (L(X), X, X) because we have

‖B(A, x)‖X ≤ ‖A‖L(X)‖x‖X

for the bilinear form B. Similarly, if we define the bilinear form B∗ : L(X)×L(X) →
L(X) by B∗(A, C) = AC ∈ L(X) for A, C ∈ L(X) where AC is the composition of
the linear operators A and C we get the bilinear triple (L(X), L(X), L(X)) because

‖B∗(A, C)‖L(X) ≤ ‖AC‖L(X) ≤ ‖A‖L(X)‖C‖L(X).

Assume that the interval [0, b] ⊂ R is bounded.
Given A : [0, b] → L(X), the function A is of bounded variation on [0, b] if

var[0,b](A) = sup{

k
∑

j=1

‖A(αj) − A(αj−1)‖L(X)} < ∞,

where the supremum is taken over all finite partitions

D : 0 = α0 < α1 < · · · < αk−1 < αk = b

of the interval [0, b]. The set of all functions A : [0, b] → L(X) with var[0,b](A) < ∞
will be denoted by BV ([0, b]; L(X)).

For A : [0, b] → L(X) and a partition D of the interval [0, b] define

V b
0 (A, D) = sup{‖

k
∑

j=1

[A(αj) − A(αj−1)]xj‖X},
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where the supremum is taken over all possible choices of xj ∈ X, j = 1, . . . , k with
‖xj‖X ≤ 1.

Let us set
s var[0,b](A) = sup V b

0 (A, D)

where the supremum is taken over all finite partitions D of the interval [0, b].
An operator valued function A : [0, b] → L(X) with s var[0,b](A) < ∞ is called a

function of bounded semi-variation on [0, b] (cf. [4]).
We denote by BSV ([0, b]; L(X)) the set of all functions A : [0, b] → L(X) with

s var[0,b](A) < ∞.

Assume that η ≥ 0 is given and define

var
(η)
[0,b](A) = sup{

k
∑

j=1

e−ηαj−1‖A(αj) − A(αj−1)‖L(X)}

where the supremum is taken over all finite partitions D of the interval [0, b].
Similarly define

V b
0 (η, A, D) = sup{‖

k
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1‖X},

where the supremum is taken over all possible choices of xj ∈ X, j = 1, . . . , k with
‖xj‖X ≤ 1 and set

s var
(η)
[0,b](A) = sup V b

0 (η, A, D)

where the supremum is taken over all finite partitions D of the interval [0, b].
Since for every j = 1, . . . , k we have

e−ηb ≤ e−ηαj−1 ≤ 1

we get

(1) e−ηb var[0,b](A) ≤ var
(η)
[0,b](A) ≤ var[0,b](A)

and also
e−ηbV b

0 (A, D) ≤ V b
0 (η, A, D) ≤ V b

0 (A, D).

The last inequalities lead immediately to

(2) e−ηbs var[0,b](A) ≤ s var
(η)
[0,b](A) ≤ s var[0,b](A).

Let us mention that

var
(0)
[0,b](A) = var[0,b](A) and s var

(0)
[0,b](A) = s var[0,b](A).

It is well known that BV ([0, b]; L(X)) with the norm

‖A‖BV = ‖A(0)‖L(X) + var[0,b](A)

is a Banach space and in [8] it was shown that with the norm

‖A‖SV = ‖A(0)‖L(X) + s var[0,b](A)

the space BSV ([0, b]; L(X)) is also a Banach space.
Taking into account the inequalities (1) and (2) we get the following statement.
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1. Proposition. For every η ≥ 0 the space BV ([0, b]; L(X)) with the norm

‖A‖BV,η = ‖A(0)‖L(X) + var
(η)
[0,b](A)

is a Banach space and the space BSV ([0, b]; L(X)) with the norm

‖A‖SV,η = ‖A(0)‖L(X) + s var
(η)
[0,b](A)

is also a Banach space.

The norms ‖A‖BV,η and ‖A‖BV are equivalent on BV ([0, b]; L(X)) and the

norms ‖A‖SV,η and ‖A‖SV are equivalent on BSV ([0, b]; L(X)).

Given x : [0, b] → X, the function x is called regulated on [0, b] if it has one–sided
limits at every point of [0, b], i.e. if for every s ∈ [0, b) there is a value x(s+) ∈ X

such that
lim

t→s+
‖x(t) − x(s+)‖X = 0

and if for every s ∈ (0, b] there is a value x(s−) ∈ X such that

lim
t→s−

‖x(t) − x(s−)‖X = 0.

The set of all regulated functions x : [0, b] → X will be denoted by G([0, b]; X).
The space G([0, b]; X) endowed with the norm

‖x‖G([0,b];X) = sup
t∈[0,b]

‖x(t)‖X , x ∈ G([0, b]; X)

is known to be a Banach space (see [4, Theorem 3.6]).
It is clear that the space C([0, b]; X) of continuous functions x : [0, b] → X is a

closed subspace of G([0, b]; X), i.e.

C([0, b]; X) ⊂ G([0, b]; X).

We are using the concept of abstract Perron-Stieltjes integral based on the
Kurzweil-Henstock definition presented via integral sums (for more detail see e.g.
[5], [6], [7]).

A finite system of points

{α0, τ1, α1, τ2, . . . , αk−1, τk, αk}

such that
0 = α0 < α1 < · · · < αk−1 < αk = b

and
τj ∈ [αj−1, αj] for j = 1, . . . , k

is called a P–partition of the interval [0, b].
Any positive function δ : [0, b] → (0,∞) is called a gauge on [0, b] .
For a given gauge δ on [0, b] a P–partition {α0, τ1, α1, τ2, . . . , αk−1, τk, αk} of

[0, b] is called δ–fine if

[αj−1, αj] ⊂ (τj − δ(τj), τj + δ(τj)) for j = 1, . . . , k.
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Definition. Assume that functions A, C : [0, b] → L(X) and x : [0, b] → X are
given.

We say that the Stieltjes integral
∫ b

0
d[A(s)]x(s) exists if there is an element

J ∈ X such that for every ε > 0 there is a gauge δ on [0, b] such that for

S(dA, x, D) =

k
∑

j=1

[A(αj) − A(αj−1)]x(τj)

we have
‖S(dA, x, D)− J‖X < ε

provided D is a δ–fine P–partition of [0, b]. We denote J =
∫ b

0
d[A(s)]x(s).

Analogously we say that the Stieltjes integral
∫ b

0
d[A(s)]C(s) exists if there is an

element J ∈ L(X) such that for every ε > 0 there is a gauge δ on [0, b] such that
for

S(dA, C, D) =

k
∑

j=1

[A(αj) − A(αj−1)]C(τj)

we have
‖S(dA, C, D) − J‖L(X) < ε

provided D is a δ–fine P–partition of [0, b].

Similarly we can define the Stieltjes integral
∫ b

0
A(s)d[C(s)] using Stieltjes inte-

gral sums of the form

S(A, dC, D) =
k

∑

j=1

A(τj)
[

C(αj) − C(αj−1)
]

.

Assume that U, V : [0,∞) → L(X) and x : [0,∞) → X are given and define the
convolutions

(U ∗ x)(t) =

∫ t

0

d[U(s)]x(t− s)

and

(U ∗ V )(t) =

∫ t

0

d[U(s)]V (t − s)

for t ∈ [0,∞).
Let us denote by BSVloc([0,∞), L(X)) the set of all U : [0,∞) → L(X) for

which U ∈ BSV ([0, b], L(X)) for every b > 0.
In [8] it was shown that if U, V ∈ G([0,∞), L(X))∩ (B)BVloc([0,∞), L(X)) and

x ∈ G([0,∞), X) then the convolutions (U ∗ x)(t) and (U ∗ V )(t) are well defined
for every t ∈ [0,∞) when the abstract Perron-Stieltjes integral is used.

It was also shown in [8] that

(3) ‖(U ∗ V )(t)‖L(X) ≤ ‖U‖SV .‖V ‖SV

holds for every t ≥ 0.
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2. Lemma. Assume that

U ∈ G([0,∞), L(X))∩ BSVloc([0,∞), L(X)), f ∈ G([0,∞), X)

and that η ≥ 0 is given.

Then the integral
∫ b

0
d[U(s)]e−ηsf(s) ∈ X exists for every b > 0 and

(4) ‖

∫ b

0

d[U(s)]e−ηsf(s)‖X ≤ s var
(η)
[0,b](U) · sup

s∈[0,b]

‖f(s)‖X

holds.

Proof. The existence of the integral
∫ b

0
d[U(s)]e−ηsf(s) is clear because the function

e−ηsf(s) is regulated on [0,∞) (c.f. [6, Proposition 15]).
Assume that b > 0 is fixed. By the existence of the integral, for any ε > 0 there

is a gauge δ on [0, b] such that for every δ- fine P - partition

D = {0 = α0, τ1, α1, τ2, . . . , αk−1, τk, αk = b}

of [0, b] the inequality

‖

∫ b

0

d[U(s)]e−ηsf(s) −

k
∑

j=1

[U(αj) − U(αj−1)]e
−ητjf(τj)‖X < ε

holds. Hence

(5) ‖

∫ b

0

d[U(s)]e−ηsf(s)‖X < ε + ‖

k
∑

j=1

[U(αj) − U(αj−1)]e
−ητj f(τj)‖X .

Let us choose a fixed δ- fine P - partition D of [0, b] for which αj−1 < τj for every
j = 1, . . . , k. Then

‖
k

∑

j=1

[U(αj) − U(αj−1)]e
−ητj f(τj)‖X =

= ‖

k
∑

j=1

[U(αj) − U(αj−1)]e
−ηαj−1e−η(τj−αj−1)f(τj)‖X =

= ‖
k

∑

j=1

[U(αj) − U(αj−1)]e
−ηαj−1

e−η(τj−αj−1)f(τj)

‖f(τj‖X

‖f(τj)‖X‖X

and we have

‖
e−η(τj−αj−1)f(τj)

‖f(τj)‖X

‖X ≤ 1

for j = 1, . . . , k.
Hence

‖

k
∑

j=1

[U(αj) − U(αj−1)]e
−ηαj−1

e−η(τj−αj−1)f(τj)

‖f(τj)‖X

‖f(τj‖X‖X ≤

≤ sup
j=1,...,k

‖f(τj‖X · ‖

k
∑

j=1

[U(αj) − U(αj−1)]e
−ηαj−1

e−η(τj−αj−1)f(τj)

‖f(τj)‖X

‖X ≤

≤ sup
s∈[0,b]

‖f(s)‖X · s var
(η)
[0,b](U)

and this together with (5) gives the result.
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3. Proposition. Assume that U, V ∈ G([0,∞), L(X))∩BSVloc([0,∞), L(X)) and

that U(0) = V (0) = 0.
Then the convolution

(U ∗ V )(t) =

∫ t

0

d[U(s)]V (t − s) ∈ L(X)

is well defined for every t ∈ [0,∞), and for every b > 0, η ≥ 0 the inequality

(6) s var
(η)
[0,b](U ∗ V ) ≤ s var

(η)
[0,b](U).s var

(η)
[0,b](V )

holds.

Proof.

Define

Ṽ (σ) = V (σ) for σ ≥ 0

and

Ṽ (σ) = 0 for σ < 0.

Assume that b ≥ 0 and let 0 = α0 < α1 < · · · < αk = b be an arbitrary partition
of [0, b].

Using the definition of Ṽ we have for every α ∈ [0, b] the equality

∫ α

0

d[U(s)]V (α − s) =

∫ b

0

d[U(s)]Ṽ (α − s)

and therefore we obtain for any choice of xj ∈ X, ‖xj‖X ≤ 1, j = 1, . . . , k the
equalities

‖

k
∑

j=1

[(U ∗ V )(αj) − (U ∗ V )(αj−1)]xje
−ηαj−1‖X =

= ‖

k
∑

j=1

[

∫ αj

0

d[U(s)]V (αj − s) −

∫ αj−1

0

d[U(s)]V (αj−1 − s)]xje
−ηαj−1‖X =

= ‖
k

∑

j=1

∫ b

0

d[U(s)][Ṽ (αj − s) − Ṽ (αj−1 − s)]xje
−ηαj−1‖X =

(7) = ‖

∫ b

0

d[U(s)]e−ηs

k
∑

j=1

[Ṽ (αj − s) − Ṽ (αj−1 − s)]xje
−η(αj−1−s)‖X .

The function

s 7→

k
∑

j=1

[Ṽ (αj − s) − Ṽ (αj−1 − s)]xje
−η(αj−1−s) ∈ X
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is evidently regulated on [0, b] because V ∈ G([0, b], L(X)) and therefore by Lemma
2 we obtain

‖

∫ b

0

d[U(s)]e−ηs

k
∑

j=1

[Ṽ (αj − s) − Ṽ (αj−1 − s)]xje
−η(αj−1−s)‖X ≤

≤ s var
(η)
[0,b](U) · sup

s∈[0,b]

‖

k
∑

j=1

[Ṽ (αj − s) − Ṽ (αj−1 − s)]xje
−η(αj−1−s)‖X .

On the other hand, for every s ∈ [0, b] we have

‖
k

∑

j=1

[Ṽ (αj − s) − Ṽ (αj−1 − s)]xje
−η(αj−1−s)‖X ≤ s var

(η)
[0,b](V )

and this gives

‖
k

∑

j=1

[(U ∗ V )(αj) − (U ∗ V )(αj−1)]xje
−ηαj−1‖X ≤

≤ s var
(η)
[0,b](U) · s var

(η)
[0,b](V )

and by the definition also

s var
(η)
[0,b](U ∗ V ) ≤ s var

(η)
[0,b](U) · s var

(η)
[0,b](V ).

This inequality yields by (2) also that

s var[0,b](U ∗ V ) < ∞,

i.e. that

(8) U ∗ V ∈ BSVloc([0,∞), L(X))

because b ≥ 0 can be taken arbitrarily.

Analogously it can be proved that the following statement holds.

4. Proposition. Assume that U, V ∈ BVloc([0,∞), L(X)) and that U(0) = V (0) =
0.

Then the convolution

(U ∗ V )(t) =

∫ t

0

d[U(s)]V (t − s) ∈ L(X)

is well defined for every t ∈ [0,∞) and for every b > 0, η ≥ 0 the inequality

(9) var
(η)
[0,b](U ∗ V ) ≤ var

(η)
[0,b](U) · var

(η)
[0,b](V )

holds.

In [8] the following result has been proved.
EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 26, p. 7



5. Proposition. For every b > 0 the set of all U : [0, b] → L(X) with U ∈
C([0, b], L(X)) ∩ BSV ([0, b], L(X)) and U(0) = 0 is a Banach algebra with the

Stieltjes convolution U ∗ V as multiplication and s var[0,b](U) as the norm.

See [8 ,Theorem 15].

6. Remark. Unfortunately a statement of the form:

For every b > 0 the set of all U : [0, b] → L(X) with U ∈ BV ([0, b], L(X)) and

U(0) = 0 is a Banach algebra with the Stieltjes convolution

(U ∗ V )(t) =

∫ t

0

d[U(s)]V (t − s)

as multiplication and var[0,b](U) as the norm.

does not hold because in this case the multiplication given by the convolution is
not associative.

It was also shown [8 ,Proposition 12 and 13] that the following two statements
hold.

7. Proposition. If U, V ∈ BVloc([0,∞), L(X)) and U(0) = V (0) = 0 then U ∗V ∈
BVloc([0,∞), L(X)).

8. Proposition. If U, V ∈ C([0,∞), L(X)) ∩ BSVloc([0,∞), L(X)) and U(0) =
V (0) = 0 then U ∗ V ∈ C([0,∞), L(X))∩ BSVloc([0,∞), L(X)).

9. Lemma. Assume that A ∈ BSV ([0, b], L(X)) for some b > 0. Then for every

η ≥ 0 and c ∈ (0, b] we have

(10) s var
(η)
[0,b](A) ≤ s var

(η)
[0,c](A) + e−ηcs var

(η)
[c,b](A).

Proof. Assume that D is a partition of [0, b] given by the points

0 = α0 < α1 < · · · < αk = b

and that xj ∈ X with ‖xj‖X ≤ 1 for j = 1, . . . , k. Then there is an index l =
1, . . . , k such that c ∈ (αl−1, αl] and

k
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1 =

=

l−1
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1 + [A(αl) − A(αl−1)]xle

−ηαl−1+

+
k

∑

j=l+1

[A(αj) − A(αj−1)]xje
−ηαj−1 .

Taking into account that

[A(αl) − A(αl−1)]xle
−ηαl−1 =
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= [A(αl) − A(c)]xle
−ηαl−1 + [A(c) − A(αl−1)]xle

−ηαl−1

we obtain

‖

k
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1‖X =

= ‖

l−1
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1 + [A(c) − A(αl−1)]xle

−ηαl−1+

+[A(αl) − A(c)]xle
−ηαl−1 +

k
∑

j=l+1

[A(αj) − A(αj−1)]xje
−ηαj−1‖X ≤

≤ ‖

l−1
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1 + [A(c) − A(αl−1)]xle

−ηαl−1‖X+

+‖[A(αl) − A(c)]xle
−ηαl−1 +

k
∑

j=l+1

[A(αj) − A(αj−1)]xje
−ηαj−1‖X .

For the first term on the right hand side of this inequality we have evidently

‖

l−1
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1 + [A(c) − A(αl−1)]xle

−ηαl−1‖X ≤

≤ s var
(η)
[0,c](A)

and for the second

‖[A(αl) − A(c)]xle
−ηαl−1 +

k
∑

j=l+1

[A(αj) − A(αj−1)]xje
−ηαj−1‖X =

= ‖[A(αl) − A(c)]xle
−ηαl−1 + e−ηc

k
∑

j=l+1

[A(αj) − A(αj−1)]xje
−η(αj−1−c)‖X ≤

≤ e−ηcV b
c (η, A, D+) ≤ e−ηc var

(η)
[c,b](A)

(D+ is the partition of [c, b] given by the points c ≤ αl < · · · < αk = b). Hence

‖

k
∑

j=1

[A(αj) − A(αj−1)]xje
−ηαj−1‖X ≤

≤ s var
(η)
[0,c](A) + e−ηc var

(η)
[c,b](A)

and the lemma is proved.

Similarly it can be shown that the following statement is valid.
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10. Lemma. Assume that A ∈ BV ([0, b], L(X)) for some b > 0. Then for every

η ≥ 0 and c ∈ (0, b] we have

(11) var
(η)
[0,b](A) ≤ var

(η)
[0,c](A) + e−ηc var

(η)
[c,b](A).

11. Proposition. If A ∈ C([0, b], L(X)) ∩ BSV ([0, b], L(X)), A(0) = 0 and if

there is a c ∈ (0, b] such that

(12) s var[0,c](A) < 1,

then there exists a unique R ∈ C([0, b], L(X)) ∩ BSV ([0, b], L(X)) with R(0) = 0
such that

(13) R(t) −

∫ t

0

d[A(s)]R(t− s) = A(t), t ∈ [0, b]

and

(14) R(t) −

∫ t

0

d[R(s)]A(t− s) = A(t), t ∈ [0, b].

Proof. By Lemma 9, (2) and (12) we have

s var
(η)
[0,b](A) ≤ s var

(η)
[0,c](A) + e−ηcs var

(η)
[c,b](A) ≤

≤ s var[0,c](A) + e−ηcs var[c,b](A)

and this yields that taking η > 0 sufficiently large we get

(15) s var
(η)
[0,b](A) < 1.

Let us now define A0(t) = A(t) and An+1(t) = (A ∗ An)(t), t ∈ [0, b] and put

(16) R(t) =
∞
∑

n=0

An(t).

By (6) from Proposition 3 we get the inequalities

s var
(η)
[0,b](An) ≤ (s var

(η)
[0,b](A))n, n ∈ N.

Since (15) holds, this implies the convergence of the series (16) in BSV ([0, b], L(X))
and by Proposition 8 also the continuity of its sum R(t), i. e. R ∈ C([0, b], L(X))∩
BSV ([0, b], L(X)) and clearly also R(0) = 0.

By the definitions we have

((
N

∑

n=0

An) ∗ A)(t) = (A ∗ (
N

∑

n=0

An))(t) =
N+1
∑

n=1

An(t) =
N+1
∑

n=0

An(t) − A(t)

for every N ∈ N and passing to the limit for N → ∞ we obtain (13) and (14).
Concerning the uniqueness let us assume that

Q ∈ C([0, b], L(X))∩ BSV ([0, b], L(X))

also satisfies (13) and (14). Then

Q − A ∗ Q = A and R − R ∗ A = A.

Using the associativity of convolution products we get

R = A + R ∗ A = A + R ∗ (Q − A ∗ Q) = A + R ∗ Q − R ∗ A ∗ Q =

= A + (R − R ∗ A) ∗ Q = A + A ∗ Q = Q

and the unicity is proved.
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12. Corollary. Assume that A : [0,∞) → L(X), A(0) = 0. If

A ∈ C([0,∞), L(X))∩ BSVloc([0,∞), L(X))

and if there is a c ∈ (0, b] such that

s var[0,c](A) < 1

then there exists a unique R : [0,∞) → L(X),

R ∈ C([0,∞), L(X))∩ BSVloc([0,∞), L(X))

with R(0) = 0 such that for every b > 0 (13) and (14) hold.

R ∈ C([0,∞), L(X)) ∩ BSVloc([0,∞), L(X)) given in Corollary 12 is called the
resolvent of A ∈ C([0,∞), L(X))∩ BSVloc([0,∞), L(X)).

13. Theorem. Assume that A : [0,∞) → L(X), A(0) = 0, A ∈ C([0,∞), L(X))∩
BSVloc([0,∞), L(X)) and that there is a c ∈ (0, b] such that

s var[0,c](A) < 1.

Then for every F ∈ G([0,∞), L(X)) and f ∈ G([0,∞), X) there exist unique solu-

tions X : [0,∞) → L(X) and x : [0,∞) → X for the abstract renewal equations

(17) X(t) = F (t) +

∫ t

0

d[A(s)]X(t− s)

and

(18) x(t) = f(t) +

∫ t

0

d[A(s)]x(t− s),

respectively, and the relations

(19) X(t) = F (t) +

∫ t

0

d[R(s)]F (t− s),

(20) x(t) = f(t) +

∫ t

0

d[R(s)]f(t− s)

hold for t > 0 where R is the resolvent of A.

Proof. The expression on the right hand side of (19) is well defined and it reads
X(t) = F (t) + (R ∗ F )(t).

Hence using (13) we obtain

A∗X(t) = A∗F (t)+(A∗(R∗F ))(t) = ((A+A∗R)∗F )(t) = (R∗F )(t) = X(t)−F (t)

and this yields that by (19) a solution of (17) is given.
The analogous result for (18) can be shown similarly.
For renewal equations see also the excellent book [3].

The author expresses his thanks to the referee for pointing out that the statement
given in Remark 6 is not valid.
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