THE ABSTRACT RENEWAL EQUATION

Štefan Schwabik

Praha

Abstract

The abstract Perron-Stieltjes integral defined in the Kurzweil-Henstock sense is used for introducing Stieltjes convolutions. The corresponding facts on integration are given in [6], [7] and [8].

The approach is used for obtaining the basic existence result for the abstract renewal equation which was studied e. g. by Diekmann, Gyllenberg and Thieme in [1] and [2].

For a given Banach space X let $L(X)$ be the Banach space of all bounded linear operators $A: X \rightarrow X$ with the uniform operator topology.

For $B: L(X) \times X \rightarrow X$ given by $B(A, x)=A x \in X$ for $A \in L(X)$ and $x \in X$, we obtain the bilinear triple $(L(X), X, X)$ because we have

$$
\|B(A, x)\|_{X} \leq\|A\|_{L(X)}\|x\|_{X}
$$

for the bilinear form B. Similarly, if we define the bilinear form $B^{*}: L(X) \times L(X) \rightarrow$ $L(X)$ by $B^{*}(A, C)=A C \in L(X)$ for $A, C \in L(X)$ where $A C$ is the composition of the linear operators A and C we get the bilinear triple ($L(X), L(X), L(X)$) because

$$
\left\|B^{*}(A, C)\right\|_{L(X)} \leq\|A C\|_{L(X)} \leq\|A\|_{L(X)}\|C\|_{L(X)}
$$

Assume that the interval $[0, b] \subset \mathbb{R}$ is bounded.
Given $A:[0, b] \rightarrow L(X)$, the function A is of bounded variation on $[0, b]$ if

$$
\operatorname{var}_{[0, b]}(A)=\sup \left\{\sum_{j=1}^{k}\left\|A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right\|_{L(X)}\right\}<\infty
$$

where the supremum is taken over all finite partitions

$$
D: 0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{k-1}<\alpha_{k}=b
$$

of the interval $[0, b]$. The set of all functions $A:[0, b] \rightarrow L(X)$ with $\operatorname{var}_{[0, b]}(A)<\infty$ will be denoted by $B V([0, b] ; L(X))$.

For $A:[0, b] \rightarrow L(X)$ and a partition D of the interval $[0, b]$ define

$$
V_{0}^{b}(A, D)=\sup \left\{\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\right\|_{X}\right\}
$$

[^0]EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 26, p. 1
where the supremum is taken over all possible choices of $x_{j} \in X, j=1, \ldots, k$ with $\left\|x_{j}\right\|_{X} \leq 1$.

Let us set

$$
s \operatorname{var}_{[0, b]}(A)=\sup V_{0}^{b}(A, D)
$$

where the supremum is taken over all finite partitions D of the interval $[0, b]$.
An operator valued function $A:[0, b] \rightarrow L(X)$ with $s \operatorname{var}_{[0, b]}(A)<\infty$ is called a function of bounded semi-variation on $[0, b]$ (cf. [4]).

We denote by $\operatorname{BSV}([0, b] ; L(X))$ the set of all functions $A:[0, b] \rightarrow L(X)$ with

$$
s \operatorname{var}_{[0, b]}(A)<\infty .
$$

Assume that $\eta \geq 0$ is given and define

$$
\operatorname{var}_{[0, b]}^{(\eta)}(A)=\sup \left\{\sum_{j=1}^{k} e^{-\eta \alpha_{j-1}}\left\|A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right\|_{L(X)}\right\}
$$

where the supremum is taken over all finite partitions D of the interval $[0, b]$.
Similarly define

$$
V_{0}^{b}(\eta, A, D)=\sup \left\{\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X}\right\}
$$

where the supremum is taken over all possible choices of $x_{j} \in X, j=1, \ldots, k$ with $\left\|x_{j}\right\|_{X} \leq 1$ and set

$$
s \operatorname{var}_{[0, b]}^{(\eta)}(A)=\sup V_{0}^{b}(\eta, A, D)
$$

where the supremum is taken over all finite partitions D of the interval $[0, b]$.
Since for every $j=1, \ldots, k$ we have

$$
e^{-\eta b} \leq e^{-\eta \alpha_{j-1}} \leq 1
$$

we get

$$
\begin{equation*}
e^{-\eta b} \operatorname{var}_{[0, b]}(A) \leq \operatorname{var}_{[0, b]}^{(\eta)}(A) \leq \operatorname{var}_{[0, b]}(A) \tag{1}
\end{equation*}
$$

and also

$$
e^{-\eta b} V_{0}^{b}(A, D) \leq V_{0}^{b}(\eta, A, D) \leq V_{0}^{b}(A, D)
$$

The last inequalities lead immediately to

$$
\begin{equation*}
e^{-\eta b} s \operatorname{var}_{[0, b]}(A) \leq s \operatorname{var}_{[0, b]}^{(\eta)}(A) \leq s \operatorname{var}_{[0, b]}(A) \tag{2}
\end{equation*}
$$

Let us mention that

$$
\operatorname{var}_{[0, b]}^{(0)}(A)=\operatorname{var}_{[0, b]}(A) \text { and } s \operatorname{var}_{[0, b]}^{(0)}(A)=s \operatorname{var}_{[0, b]}(A) .
$$

It is well known that $B V([0, b] ; L(X))$ with the norm

$$
\|A\|_{B V}=\|A(0)\|_{L(X)}+\operatorname{var}_{[0, b]}(A)
$$

is a Banach space and in [8] it was shown that with the norm

$$
\|A\|_{S V}=\|A(0)\|_{L(X)}+s \operatorname{var}_{[0, b]}(A)
$$

the space $B S V([0, b] ; L(X))$ is also a Banach space.
Taking into account the inequalities (1) and (2) we get the following statement. EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 26, p. 2

1. Proposition. For every $\eta \geq 0$ the space $B V([0, b] ; L(X))$ with the norm

$$
\|A\|_{B V, \eta}=\|A(0)\|_{L(X)}+\operatorname{var}_{[0, b]}^{(\eta)}(A)
$$

is a Banach space and the space $\operatorname{BSV}([0, b] ; L(X))$ with the norm

$$
\|A\|_{S V, \eta}=\|A(0)\|_{L(X)}+s \operatorname{var}_{[0, b]}^{(\eta)}(A)
$$

is also a Banach space.
The norms $\|A\|_{B V, \eta}$ and $\|A\|_{B V}$ are equivalent on $B V([0, b] ; L(X))$ and the norms $\|A\|_{S V, \eta}$ and $\|A\|_{S V}$ are equivalent on $B S V([0, b] ; L(X))$.

Given $x:[0, b] \rightarrow X$, the function x is called regulated on $[0, b]$ if it has one-sided limits at every point of $[0, b]$, i.e. if for every $s \in[0, b)$ there is a value $x(s+) \in X$ such that

$$
\lim _{t \rightarrow s+}\|x(t)-x(s+)\|_{X}=0
$$

and if for every $s \in(0, b]$ there is a value $x(s-) \in X$ such that

$$
\lim _{t \rightarrow s-}\|x(t)-x(s-)\|_{X}=0
$$

The set of all regulated functions $x:[0, b] \rightarrow X$ will be denoted by $G([0, b] ; X)$.
The space $G([0, b] ; X)$ endowed with the norm

$$
\|x\|_{G([0, b] ; X)}=\sup _{t \in[0, b]}\|x(t)\|_{X}, x \in G([0, b] ; X)
$$

is known to be a Banach space (see [4, Theorem 3.6]).
It is clear that the space $C([0, b] ; X)$ of continuous functions $x:[0, b] \rightarrow X$ is a closed subspace of $G([0, b] ; X)$, i.e.

$$
C([0, b] ; X) \subset G([0, b] ; X) .
$$

We are using the concept of abstract Perron-Stieltjes integral based on the Kurzweil-Henstock definition presented via integral sums (for more detail see e.g. [5], [6], [7]).

A finite system of points

$$
\left\{\alpha_{0}, \tau_{1}, \alpha_{1}, \tau_{2}, \ldots, \alpha_{k-1}, \tau_{k}, \alpha_{k}\right\}
$$

such that

$$
0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{k-1}<\alpha_{k}=b
$$

and

$$
\tau_{j} \in\left[\alpha_{j-1}, \alpha_{j}\right] \text { for } j=1, \ldots, k
$$

is called a P-partition of the interval $[0, b]$.
Any positive function $\delta:[0, b] \rightarrow(0, \infty)$ is called a gauge on $[0, b]$.
For a given gauge δ on $[0, b]$ a P-partition $\left\{\alpha_{0}, \tau_{1}, \alpha_{1}, \tau_{2}, \ldots, \alpha_{k-1}, \tau_{k}, \alpha_{k}\right\}$ of $[0, b]$ is called δ-fine if

$$
\left[\alpha_{j-1}, \alpha_{j}\right] \subset\left(\tau_{j}-\delta\left(\tau_{j}\right), \tau_{j}+\delta\left(\tau_{j}\right)\right) \text { for } j=1, \ldots, k
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 26, p. 3

Definition. Assume that functions $A, C:[0, b] \rightarrow L(X)$ and $x:[0, b] \rightarrow X$ are given.

We say that the Stieltjes integral $\int_{0}^{b} d[A(s)] x(s)$ exists if there is an element $J \in X$ such that for every $\varepsilon>0$ there is a gauge δ on $[0, b]$ such that for

$$
S(\mathrm{~d} A, x, D)=\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x\left(\tau_{j}\right)
$$

we have

$$
\|S(\mathrm{~d} A, x, D)-J\|_{X}<\varepsilon
$$

provided D is a δ-fine P-partition of $[0, b]$. We denote $J=\int_{0}^{b} d[A(s)] x(s)$.
Analogously we say that the Stieltjes integral $\int_{0}^{b} d[A(s)] C(s)$ exists if there is an element $J \in L(X)$ such that for every $\varepsilon>0$ there is a gauge δ on $[0, b]$ such that for

$$
S(\mathrm{~d} A, C, D)=\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C\left(\tau_{j}\right)
$$

we have

$$
\|S(\mathrm{~d} A, C, D)-J\|_{L(X)}<\varepsilon
$$

provided D is a δ-fine P-partition of $[0, b]$.
Similarly we can define the Stieltjes integral $\int_{0}^{b} A(s) \mathrm{d}[C(s)]$ using Stieltjes integral sums of the form

$$
S(A, \mathrm{~d} C, D)=\sum_{j=1}^{k} A\left(\tau_{j}\right)\left[C\left(\alpha_{j}\right)-C\left(\alpha_{j-1}\right)\right]
$$

Assume that $U, V:[0, \infty) \rightarrow L(X)$ and $x:[0, \infty) \rightarrow X$ are given and define the convolutions

$$
(U * x)(t)=\int_{0}^{t} \mathrm{~d}[U(s)] x(t-s)
$$

and

$$
(U * V)(t)=\int_{0}^{t} \mathrm{~d}[U(s)] V(t-s)
$$

for $t \in[0, \infty)$.
Let us denote by $B S V_{l o c}([0, \infty), L(X))$ the set of all $U:[0, \infty) \rightarrow L(X)$ for which $U \in \operatorname{BSV}([0, b], L(X))$ for every $b>0$.

In [8] it was shown that if $U, V \in G([0, \infty), L(X)) \cap(\mathcal{B}) B V_{\text {loc }}([0, \infty), L(X))$ and $x \in G([0, \infty), X)$ then the convolutions $(U * x)(t)$ and $(U * V)(t)$ are well defined for every $t \in[0, \infty)$ when the abstract Perron-Stieltjes integral is used.

It was also shown in [8] that

$$
\begin{equation*}
\|(U * V)(t)\|_{L(X)} \leq\|U\|_{S V} \cdot\|V\|_{S V} \tag{3}
\end{equation*}
$$

holds for every $t \geq 0$.

2. Lemma. Assume that

$$
U \in G([0, \infty), L(X)) \cap B S V_{l o c}([0, \infty), L(X)), f \in G([0, \infty), X)
$$

and that $\eta \geq 0$ is given.
Then the integral $\int_{0}^{b} \mathrm{~d}[U(s)] e^{-\eta s} f(s) \in X$ exists for every $b>0$ and

$$
\begin{equation*}
\left\|\int_{0}^{b} \mathrm{~d}[U(s)] e^{-\eta s} f(s)\right\|_{X} \leq s \operatorname{var}_{[0, b]}^{(\eta)}(U) \cdot \sup _{s \in[0, b]}\|f(s)\|_{X} \tag{4}
\end{equation*}
$$

holds.
Proof. The existence of the integral $\int_{0}^{b} \mathrm{~d}[U(s)] e^{-\eta s} f(s)$ is clear because the function $e^{-\eta s} f(s)$ is regulated on $[0, \infty)$ (c.f. [6, Proposition 15]).

Assume that $b>0$ is fixed. By the existence of the integral, for any $\varepsilon>0$ there is a gauge δ on $[0, b]$ such that for every δ - fine P - partition

$$
D=\left\{0=\alpha_{0}, \tau_{1}, \alpha_{1}, \tau_{2}, \ldots, \alpha_{k-1}, \tau_{k}, \alpha_{k}=b\right\}
$$

of $[0, b]$ the inequality

$$
\left\|\int_{0}^{b} \mathrm{~d}[U(s)] e^{-\eta s} f(s)-\sum_{j=1}^{k}\left[U\left(\alpha_{j}\right)-U\left(\alpha_{j-1}\right)\right] e^{-\eta \tau_{j}} f\left(\tau_{j}\right)\right\|_{X}<\varepsilon
$$

holds. Hence

$$
\begin{equation*}
\left\|\int_{0}^{b} \mathrm{~d}[U(s)] e^{-\eta s} f(s)\right\|_{X}<\varepsilon+\left\|\sum_{j=1}^{k}\left[U\left(\alpha_{j}\right)-U\left(\alpha_{j-1}\right)\right] e^{-\eta \tau_{j}} f\left(\tau_{j}\right)\right\|_{X} \tag{5}
\end{equation*}
$$

Let us choose a fixed δ - fine P - partition D of $[0, b]$ for which $\alpha_{j-1}<\tau_{j}$ for every $j=1, \ldots, k$. Then

$$
\begin{gathered}
\left\|\sum_{j=1}^{k}\left[U\left(\alpha_{j}\right)-U\left(\alpha_{j-1}\right)\right] e^{-\eta \tau_{j}} f\left(\tau_{j}\right)\right\|_{X}= \\
=\left\|\sum_{j=1}^{k}\left[U\left(\alpha_{j}\right)-U\left(\alpha_{j-1}\right)\right] e^{-\eta \alpha_{j-1}} e^{-\eta\left(\tau_{j}-\alpha_{j-1}\right)} f\left(\tau_{j}\right)\right\|_{X}= \\
=\left\|\sum_{j=1}^{k}\left[U\left(\alpha_{j}\right)-U\left(\alpha_{j-1}\right)\right] e^{-\eta \alpha_{j-1}} \frac{e^{-\eta\left(\tau_{j}-\alpha_{j-1}\right)} f\left(\tau_{j}\right)}{\| f\left(\tau_{j} \|_{X}\right.}\right\| f\left(\tau_{j}\right)\left\|_{X}\right\|_{X}
\end{gathered}
$$

and we have

$$
\left\|\frac{e^{-\eta\left(\tau_{j}-\alpha_{j-1}\right)} f\left(\tau_{j}\right)}{\left\|f\left(\tau_{j}\right)\right\|_{X}}\right\|_{X} \leq 1
$$

for $j=1, \ldots, k$.
Hence

$$
\begin{gathered}
\left\|\sum_{j=1}^{k}\left[U\left(\alpha_{j}\right)-U\left(\alpha_{j-1}\right)\right] e^{-\eta \alpha_{j-1}} \frac{e^{-\eta\left(\tau_{j}-\alpha_{j-1}\right)} f\left(\tau_{j}\right)}{\left\|f\left(\tau_{j}\right)\right\|_{X}}\right\| f\left(\tau_{j}\left\|_{X}\right\|_{X} \leq\right. \\
\leq \sup _{j=1, \ldots, k} \| f\left(\tau_{j}\left\|_{X} \cdot\right\| \sum_{j=1}^{k}\left[U\left(\alpha_{j}\right)-U\left(\alpha_{j-1}\right)\right] e^{-\eta \alpha_{j-1}} \frac{e^{-\eta\left(\tau_{j}-\alpha_{j-1}\right)} f\left(\tau_{j}\right)}{\left\|f\left(\tau_{j}\right)\right\|_{X}} \|_{X} \leq\right. \\
\leq \sup _{s \in[0, b]}\|f(s)\|_{X} \cdot s \operatorname{var}_{[0, b]}^{(\eta)}(U)
\end{gathered}
$$

and this together with (5) gives the result.
3. Proposition. Assume that $U, V \in G([0, \infty), L(X)) \cap B S V_{l o c}([0, \infty), L(X))$ and that $U(0)=V(0)=0$.

Then the convolution

$$
(U * V)(t)=\int_{0}^{t} \mathrm{~d}[U(s)] V(t-s) \in L(X)
$$

is well defined for every $t \in[0, \infty)$, and for every $b>0, \eta \geq 0$ the inequality

$$
\begin{equation*}
s \operatorname{var}_{[0, b]}^{(\eta)}(U * V) \leq s \operatorname{var}_{[0, b]}^{(\eta)}(U) \cdot s \operatorname{var}_{[0, b]}^{(\eta)}(V) \tag{6}
\end{equation*}
$$

holds.
Proof.
Define

$$
\tilde{V}(\sigma)=V(\sigma) \text { for } \sigma \geq 0
$$

and

$$
\tilde{V}(\sigma)=0 \text { for } \sigma<0
$$

Assume that $b \geq 0$ and let $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{k}=b$ be an arbitrary partition of $[0, b]$.

Using the definition of \tilde{V} we have for every $\alpha \in[0, b]$ the equality

$$
\int_{0}^{\alpha} \mathrm{d}[U(s)] V(\alpha-s)=\int_{0}^{b} \mathrm{~d}[U(s)] \tilde{V}(\alpha-s)
$$

and therefore we obtain for any choice of $x_{j} \in X,\left\|x_{j}\right\|_{X} \leq 1, j=1, \ldots, k$ the equalities

$$
\begin{gather*}
\left\|\sum_{j=1}^{k}\left[(U * V)\left(\alpha_{j}\right)-(U * V)\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X}= \\
=\left\|\sum_{j=1}^{k}\left[\int_{0}^{\alpha_{j}} \mathrm{~d}[U(s)] V\left(\alpha_{j}-s\right)-\int_{0}^{\alpha_{j-1}} \mathrm{~d}[U(s)] V\left(\alpha_{j-1}-s\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X}= \\
=\left\|\sum_{j=1}^{k} \int_{0}^{b} \mathrm{~d}[U(s)]\left[\tilde{V}\left(\alpha_{j}-s\right)-\tilde{V}\left(\alpha_{j-1}-s\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X}= \\
=\left\|\int_{0}^{b} \mathrm{~d}[U(s)] e^{-\eta s} \sum_{j=1}^{k}\left[\tilde{V}\left(\alpha_{j}-s\right)-\tilde{V}\left(\alpha_{j-1}-s\right)\right] x_{j} e^{-\eta\left(\alpha_{j-1}-s\right)}\right\|_{X} . \tag{7}
\end{gather*}
$$

The function

$$
s \mapsto \sum_{j=1}^{k}\left[\tilde{V}\left(\alpha_{j}-s\right)-\tilde{V}\left(\alpha_{j-1}-s\right)\right] x_{j} e^{-\eta\left(\alpha_{j-1}-s\right)} \in X
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 26, p. 6
is evidently regulated on $[0, b]$ because $V \in G([0, b], L(X))$ and therefore by Lemma 2 we obtain

$$
\begin{aligned}
& \left\|\int_{0}^{b} \mathrm{~d}[U(s)] e^{-\eta s} \sum_{j=1}^{k}\left[\tilde{V}\left(\alpha_{j}-s\right)-\tilde{V}\left(\alpha_{j-1}-s\right)\right] x_{j} e^{-\eta\left(\alpha_{j-1}-s\right)}\right\|_{X} \leq \\
\leq & s \operatorname{var}_{[0, b]}^{(\eta)}(U) \cdot \sup _{s \in[0, b]}\left\|\sum_{j=1}^{k}\left[\tilde{V}\left(\alpha_{j}-s\right)-\tilde{V}\left(\alpha_{j-1}-s\right)\right] x_{j} e^{-\eta\left(\alpha_{j-1}-s\right)}\right\|_{X} .
\end{aligned}
$$

On the other hand, for every $s \in[0, b]$ we have

$$
\left\|\sum_{j=1}^{k}\left[\tilde{V}\left(\alpha_{j}-s\right)-\tilde{V}\left(\alpha_{j-1}-s\right)\right] x_{j} e^{-\eta\left(\alpha_{j-1}-s\right)}\right\|_{X} \leq s \operatorname{var}_{[0, b]}^{(\eta)}(V)
$$

and this gives

$$
\begin{gathered}
\left\|\sum_{j=1}^{k}\left[(U * V)\left(\alpha_{j}\right)-(U * V)\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X} \leq \\
\leq s \operatorname{var}_{[0, b]}^{(\eta)}(U) \cdot s \operatorname{var}_{[0, b]}^{(\eta)}(V)
\end{gathered}
$$

and by the definition also

$$
s \operatorname{var}_{[0, b]}^{(\eta)}(U * V) \leq s \operatorname{var}_{[0, b]}^{(\eta)}(U) \cdot s \operatorname{var}_{[0, b]}^{(\eta)}(V) .
$$

This inequality yields by (2) also that

$$
s \operatorname{var}_{[0, b]}(U * V)<\infty,
$$

i.e. that

$$
\begin{equation*}
U * V \in B S V_{l o c}([0, \infty), L(X)) \tag{8}
\end{equation*}
$$

because $b \geq 0$ can be taken arbitrarily.
Analogously it can be proved that the following statement holds.
4. Proposition. Assume that $U, V \in B V_{l o c}([0, \infty), L(X))$ and that $U(0)=V(0)=\square$ 0.

Then the convolution

$$
(U * V)(t)=\int_{0}^{t} \mathrm{~d}[U(s)] V(t-s) \in L(X)
$$

is well defined for every $t \in[0, \infty)$ and for every $b>0, \eta \geq 0$ the inequality

$$
\begin{equation*}
\operatorname{var}_{[0, b]}^{(\eta)}(U * V) \leq \operatorname{var}_{[0, b]}^{(\eta)}(U) \cdot \operatorname{var}_{[0, b]}^{(\eta)}(V) \tag{9}
\end{equation*}
$$

holds.
In [8] the following result has been proved.
EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 26, p. 7
5. Proposition. For every $b>0$ the set of all $U:[0, b] \rightarrow L(X)$ with $U \in$ $C([0, b], L(X)) \cap \operatorname{BSV}([0, b], L(X))$ and $U(0)=0$ is a Banach algebra with the Stieltjes convolution $U * V$ as multiplication and $s \operatorname{var}_{[0, b]}(U)$ as the norm.

See [8,Theorem 15].
6. Remark. Unfortunately a statement of the form:

For every $b>0$ the set of all $U:[0, b] \rightarrow L(X)$ with $U \in B V([0, b], L(X))$ and $U(0)=0$ is a Banach algebra with the Stieltjes convolution

$$
(U * V)(t)=\int_{0}^{t} \mathrm{~d}[U(s)] V(t-s)
$$

as multiplication and $\operatorname{var}_{[0, b]}(U)$ as the norm.
does not hold because in this case the multiplication given by the convolution is not associative.

It was also shown [8,Proposition 12 and 13] that the following two statements hold.
7. Proposition. If $U, V \in B V_{l o c}([0, \infty), L(X))$ and $U(0)=V(0)=0$ then $U * V \in$ $B V_{l o c}([0, \infty), L(X))$.
8. Proposition. If $U, V \in C([0, \infty), L(X)) \cap B S V_{l o c}([0, \infty), L(X))$ and $U(0)=$ $V(0)=0$ then $U * V \in C([0, \infty), L(X)) \cap B S V_{\text {loc }}([0, \infty), L(X))$.
9. Lemma. Assume that $A \in B S V([0, b], L(X))$ for some $b>0$. Then for every $\eta \geq 0$ and $c \in(0, b]$ we have

$$
\begin{equation*}
s \operatorname{var}_{[0, b]}^{(\eta)}(A) \leq s \operatorname{var}_{[0, c]}^{(\eta)}(A)+e^{-\eta c} s \operatorname{var}_{[c, b]}^{(\eta)}(A) . \tag{10}
\end{equation*}
$$

Proof. Assume that D is a partition of $[0, b]$ given by the points

$$
0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{k}=b
$$

and that $x_{j} \in X$ with $\left\|x_{j}\right\|_{X} \leq 1$ for $j=1, \ldots, k$. Then there is an index $l=$ $1, \ldots, k$ such that $c \in\left(\alpha_{l-1}, \alpha_{l}\right]$ and

$$
\begin{gathered}
\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}= \\
=\sum_{j=1}^{l-1}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}+\left[A\left(\alpha_{l}\right)-A\left(\alpha_{l-1}\right)\right] x_{l} e^{-\eta \alpha_{l-1}}+ \\
+\sum_{j=l+1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}} .
\end{gathered}
$$

Taking into account that

$$
=\left[A\left(\alpha_{l}\right)-A(c)\right] x_{l} e^{-\eta \alpha_{l-1}}+\left[A(c)-A\left(\alpha_{l-1}\right)\right] x_{l} e^{-\eta \alpha_{l-1}}
$$

we obtain

$$
\begin{gathered}
\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X}= \\
=\| \sum_{j=1}^{l-1}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}+\left[A(c)-A\left(\alpha_{l-1}\right)\right] x_{l} e^{-\eta \alpha_{l-1}}+ \\
+\left[A\left(\alpha_{l}\right)-A(c)\right] x_{l} e^{-\eta \alpha_{l-1}}+\sum_{j=l+1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}} \|_{X} \leq \\
\leq\left\|\sum_{j=1}^{l-1}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}+\left[A(c)-A\left(\alpha_{l-1}\right)\right] x_{l} e^{-\eta \alpha_{l-1}}\right\|_{X}+ \\
+\left\|\left[A\left(\alpha_{l}\right)-A(c)\right] x_{l} e^{-\eta \alpha_{l-1}}+\sum_{j=l+1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X}
\end{gathered}
$$

For the first term on the right hand side of this inequality we have evidently

$$
\begin{gathered}
\left\|\sum_{j=1}^{l-1}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}+\left[A(c)-A\left(\alpha_{l-1}\right)\right] x_{l} e^{-\eta \alpha_{l-1}}\right\|_{X} \leq \\
\leq s \operatorname{var}_{[0, c]}^{(\eta)}(A)
\end{gathered}
$$

and for the second

$$
\begin{gathered}
\left\|\left[A\left(\alpha_{l}\right)-A(c)\right] x_{l} e^{-\eta \alpha_{l-1}}+\sum_{j=l+1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X}= \\
=\left\|\left[A\left(\alpha_{l}\right)-A(c)\right] x_{l} e^{-\eta \alpha_{l-1}}+e^{-\eta c} \sum_{j=l+1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta\left(\alpha_{j-1}-c\right)}\right\|_{X} \leq \\
\leq e^{-\eta c} V_{c}^{b}\left(\eta, A, D_{+}\right) \leq e^{-\eta c} \operatorname{var}_{[c, b]}^{(\eta)}(A)
\end{gathered}
$$

(D_{+}is the partition of $[c, b]$ given by the points $c \leq \alpha_{l}<\cdots<\alpha_{k}=b$). Hence

$$
\begin{aligned}
& \left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} e^{-\eta \alpha_{j-1}}\right\|_{X} \leq \\
& \quad \leq s \operatorname{var}_{[0, c]}^{(\eta)}(A)+e^{-\eta c} \operatorname{var}_{[c, b]}^{(\eta)}(A)
\end{aligned}
$$

and the lemma is proved.
Similarly it can be shown that the following statement is valid.
EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 26, p. 9
10. Lemma. Assume that $A \in B V([0, b], L(X))$ for some $b>0$. Then for every $\eta \geq 0$ and $c \in(0, b]$ we have

$$
\begin{equation*}
\operatorname{var}_{[0, b]}^{(\eta)}(A) \leq \operatorname{var}_{[0, c]}^{(\eta)}(A)+e^{-\eta c} \operatorname{var}_{[c, b]}^{(\eta)}(A) . \tag{11}
\end{equation*}
$$

11. Proposition. If $A \in C([0, b], L(X)) \cap B S V([0, b], L(X)), A(0)=0$ and if there is a $c \in(0, b]$ such that

$$
\begin{equation*}
s \operatorname{var}_{[0, c]}(A)<1, \tag{12}
\end{equation*}
$$

then there exists a unique $R \in C([0, b], L(X)) \cap B S V([0, b], L(X))$ with $R(0)=0$ such that

$$
\begin{equation*}
R(t)-\int_{0}^{t} \mathrm{~d}[A(s)] R(t-s)=A(t), t \in[0, b] \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
R(t)-\int_{0}^{t} \mathrm{~d}[R(s)] A(t-s)=A(t), t \in[0, b] \tag{14}
\end{equation*}
$$

Proof. By Lemma 9, (2) and (12) we have

$$
\begin{gathered}
s \operatorname{var}_{[0, b]}^{(\eta)}(A) \leq s \operatorname{var}_{[0, c c]}^{(\eta)}(A)+e^{-\eta c} s \operatorname{var}_{[c, b]}^{(\eta)}(A) \leq \\
\leq s \operatorname{var}_{[0, c]}(A)+e^{-\eta c} s \operatorname{var}_{[c, b]}(A)
\end{gathered}
$$

and this yields that taking $\eta>0$ sufficiently large we get

$$
\begin{equation*}
s \operatorname{var}_{[0, b]}^{(\eta)}(A)<1 \tag{15}
\end{equation*}
$$

Let us now define $A_{0}(t)=A(t)$ and $A_{n+1}(t)=\left(A * A_{n}\right)(t), t \in[0, b]$ and put

$$
\begin{equation*}
R(t)=\sum_{n=0}^{\infty} A_{n}(t) \tag{16}
\end{equation*}
$$

By (6) from Proposition 3 we get the inequalities

$$
s \operatorname{var}_{[0, b]}^{(\eta)}\left(A_{n}\right) \leq\left(s \operatorname{var}_{[0, b]}^{(\eta)}(A)\right)^{n}, n \in \mathbb{N} .
$$

Since (15) holds, this implies the convergence of the series (16) in $\operatorname{BSV}([0, b], L(X))$ and by Proposition 8 also the continuity of its sum $R(t)$, i. e. $R \in C([0, b], L(X)) \cap$ $B S V([0, b], L(X))$ and clearly also $R(0)=0$.

By the definitions we have

$$
\left(\left(\sum_{n=0}^{N} A_{n}\right) * A\right)(t)=\left(A *\left(\sum_{n=0}^{N} A_{n}\right)\right)(t)=\sum_{n=1}^{N+1} A_{n}(t)=\sum_{n=0}^{N+1} A_{n}(t)-A(t)
$$

for every $N \in \mathbb{N}$ and passing to the limit for $N \rightarrow \infty$ we obtain (13) and (14).
Concerning the uniqueness let us assume that

$$
Q \in C([0, b], L(X)) \cap B S V([0, b], L(X))
$$

also satisfies (13) and (14). Then

$$
Q-A * Q=A \text { and } R-R * A=A .
$$

Using the associativity of convolution products we get

$$
\begin{gathered}
R=A+R * A=A+R *(Q-A * Q)=A+R * Q-R * A * Q= \\
=A+(R-R * A) * Q=A+A * Q=Q
\end{gathered}
$$

and the unicity is proved.
12. Corollary. Assume that $A:[0, \infty) \rightarrow L(X), A(0)=0$. If

$$
A \in C([0, \infty), L(X)) \cap B S V_{l o c}([0, \infty), L(X))
$$

and if there is a $c \in(0, b]$ such that

$$
s \operatorname{var}_{[0, c]}(A)<1
$$

then there exists a unique $R:[0, \infty) \rightarrow L(X)$,

$$
R \in C([0, \infty), L(X)) \cap B S V_{l o c}([0, \infty), L(X))
$$

with $R(0)=0$ such that for every $b>0$ (13) and (14) hold.
$R \in C([0, \infty), L(X)) \cap B S V_{\text {loc }}([0, \infty), L(X))$ given in Corollary 12 is called the resolvent of $A \in C([0, \infty), L(X)) \cap B S V_{\text {loc }}([0, \infty), L(X))$.
13. Theorem. Assume that $A:[0, \infty) \rightarrow L(X), A(0)=0, A \in C([0, \infty), L(X)) \cap$ $B S V_{l o c}([0, \infty), L(X))$ and that there is a $c \in(0, b]$ such that

$$
s \operatorname{var}_{[0, c]}(A)<1
$$

Then for every $F \in G([0, \infty), L(X))$ and $f \in G([0, \infty), X)$ there exist unique solutions $X:[0, \infty) \rightarrow L(X)$ and $x:[0, \infty) \rightarrow X$ for the abstract renewal equations

$$
\begin{equation*}
X(t)=F(t)+\int_{0}^{t} \mathrm{~d}[A(s)] X(t-s) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t)=f(t)+\int_{0}^{t} \mathrm{~d}[A(s)] x(t-s) \tag{18}
\end{equation*}
$$

respectively, and the relations

$$
\begin{equation*}
X(t)=F(t)+\int_{0}^{t} \mathrm{~d}[R(s)] F(t-s) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
x(t)=f(t)+\int_{0}^{t} \mathrm{~d}[R(s)] f(t-s) \tag{20}
\end{equation*}
$$

hold for $t>0$ where R is the resolvent of A.
Proof. The expression on the right hand side of (19) is well defined and it reads $X(t)=F(t)+(R * F)(t)$.

Hence using (13) we obtain
$A * X(t)=A * F(t)+(A *(R * F))(t)=((A+A * R) * F)(t)=(R * F)(t)=X(t)-F(t)$
and this yields that by (19) a solution of (17) is given.
The analogous result for (18) can be shown similarly.
For renewal equations see also the excellent book [3].
The author expresses his thanks to the referee for pointing out that the statement given in Remark 6 is not valid.

References

[1] O. Diekmann, M. Gyllenberg, H. R. Thieme, Perturbing semigroups by solving Stieltjes renewal equations, Differential Integral Equations 6 (1993), 155-181.
[2] O. Diekmann, M. Gyllenberg, H. R. Thieme, Perturbing evolutionary systems by step responses on cumulative outputs, Differential Integral Equations 8 (1995), 1205-1244.
[3] G. Grippenberg, S.-O. Londen, O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990.
[4] Ch. S. H"nig, Volterra - Stieltjes Integral Equations, North - Holland Publ. Comp., Amsterdam, 1975.
[5] J. Kurzweil, Nichtabsolut konvergente Integrale, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980.
[6] S̆. Schwabik, Abstract Perron - Stieltjes integral, Mathematica Bohemica 121 (1996), 425447.
[7] Š. Schwabik, A note on integration by parts for abstract Perron - Stieltjes integrals, Mathematica Bohemica (to appear).
[8] Š. Schwabik, Operator-valued functions of bounded semivariation and convolutions, Mathematica Bohemica (to appear).

Z itna 25, 11567 Praha 1, C zech Republic
E-mail address: schwabik@math.cas.cz

[^0]: The paper is in final form and no version of it will be submitted for publication elsewhere.
 This work was supported by the grant 201/97/0218 of the Grant Agency of the Czech Republic.

