Note on multiplicative perturbation of local C-regularized cosine functions with nondensely defined generators

Fang Li ${ }^{1 *}$ and James H. Liu ${ }^{2}$
${ }^{1}$ School of Mathematics, Yunnan Normal University
Kunming 650092, People's Republic of China
fangli860@gmail.com
${ }^{2}$ Department of Mathematics and Statistics, James Madison University Harrisonburg, VA 22807, USA
liujh@jmu.edu

Abstract

In this note, we obtain a new multiplicative perturbation theorem for local C regularized cosine function with a nondensely defined generator A. An application to an integrodifferential equation is given.

Key words : Multiplicative perturbation, local C-regularized cosine functions, second order differential equation

1 Introduction and preliminaries

Let X be a Banach space, A an operator in X. It is well known that the cosine operator function is the main propagator of the following Cauchy problem for a second order differential equation in X :

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t), \quad t \in(-\infty, \infty) \\
u(0)=u_{0}, u^{\prime}(0)=u_{1},
\end{array}\right.
$$

[^0]which controls the behaviors of the solutions of the differential equations in many cases (cf., e.g., $2,4-10,13,15,16,19-21]$); if A is the generator of a C-regularized cosine function $\{\mathrm{C}(t)\}_{t \in \mathbf{R}}$, then $u(t)=C^{-1} \mathrm{C}(t) u_{0}+C^{-1} \int_{0}^{t} \mathrm{C}(s) u_{1} d s$ is the unique solution of the above Cauchy problem for every pair $\left(u_{0}, u_{1}\right)$ of initial values in $C(D(A))($ see $[5,16,20])$. So it is valuable to study deeply the properties of the cosine operator functions.

As a meaningful generalization of the classical cosine operator functions, the C-regularized cosine functions have been investigated extensively (cf., e.g., 2, 4, 5, 9, 10, 13, 15, 16, 20, 21]), where C serves as a regularizing operator which is injective.

Stimulated by these works as well as the works on integrated semigroups and C regularized semigroups (3 , 11, 14, 17, 18]), we study further the multiplicative perturbation of local C-regularized cosine functions with nondensely defined generators, in the case where (1) the range of the regularizing operator C is not dense in a Banach space X; (2) the operator C may not commute with the perturbation operator.

Throughout this paper, all operators are linear; $\mathcal{L}(X, Y)$ denotes the space of all continuous linear operators from X to a space Y, and $\mathcal{L}(X, X)$ will be abbreviated to $\mathcal{L}(X)$; $\mathcal{L}_{s}(X)$ is the space of all continuous linear operators from X to X with the strong operator topology; $\mathbf{C}\left([0, t], \mathcal{L}_{s}(X)\right)$ denotes all continuous $\mathcal{L}(X)$-valued functions, equipped with the norm $\|F\|_{\infty}=\sup _{r \in[0, t]}\|F(r)\|$. Moreover, we write $D(A), R(A), \rho(A)$, respectively, for the domain, the range and the resolvent set of an operator A. We denote by \widetilde{A} the part of A in $\overline{D(A)}$, that is,

$$
\widetilde{A} \subset A, D(\widetilde{A})=\{x \in D(A) \mid A x \in \overline{D(A)}\}
$$

We abbreviate C-regularized cosine function to C-cosine function.
Definition 1.1. Assume $\tau>0$. A one-parameter family $\{\mathrm{C}(t) ;|t| \leq \tau\} \subset \mathcal{L}(X)$ is called a local C-cosine function on X if
(i) $\mathrm{C}(0)=C$ and $\mathrm{C}(t+s) C+\mathrm{C}(t-s) C=2 \mathrm{C}(t) \mathrm{C}(s) \quad(\forall|s|,|t|,|s+t| \leq \tau)$,
(ii) $\mathrm{C}(\cdot) x:[-\tau, \tau] \longrightarrow X$ is continuous for every $x \in X$.

The associated sine operator function $\mathrm{S}(\cdot)$ is defined by $\mathrm{S}(t):=\int_{0}^{t} \mathrm{C}(s) d s(|t| \leq \tau)$. The operator A defined by

$$
\begin{aligned}
D(A) & =\left\{x \in X ; \lim _{t \rightarrow 0^{+}} \frac{2}{t^{2}}(\mathrm{C}(t) x-C x) \text { exists and is in } R(C)\right\}, \\
A x & =C^{-1} \lim _{t \rightarrow 0^{+}} \frac{2}{t^{2}}(\mathrm{C}(t) x-C x), \quad \forall x \in D(A),
\end{aligned}
$$

is called the generator of $\{\mathrm{C}(t) ;|t| \leq \tau\}$. It is also called that A generates $\{\mathrm{C}(t) ;|t| \leq \tau\}$.
Lemma 1.2. (22]) Let A generate a local C-cosine function $\{\mathrm{C}(t) ;|t| \leq \tau\}$ on X.Then
(i) For $x \in D(A), t \in[-\tau, \tau], \mathrm{C}(t) x, \mathrm{~S}(t) x \in D(A), A \mathrm{C}(t) x=\mathrm{C}(t) A x, A \mathrm{~S}(t) x=\mathrm{S}(t) A x$;
(ii) For $x \in X, t \in[0, \tau], \int_{0}^{t} \mathrm{~S}(s) x d s \in D(A)$ and $A \int_{0}^{t} \mathrm{~S}(s) x d s=\mathrm{C}(t) x-C x$;
(iii) For $x \in D(A), t \in[0, \tau], \quad \int_{0}^{t} \mathrm{~S}(s) A x d s=A \int_{0}^{t} \mathrm{~S}(s) x d s=\mathrm{C}(t) x-C x$.

2 Results and proofs

Definition 2.1. Let $\{\mathrm{C}(t) ;|t| \leq \tau\}$ be a local C-cosine function on X. If a closed linear operator A in X satisfies
(1) $\mathrm{C}(t) A \subset A \mathrm{C}(t),|t| \leq \tau$,
(2) $\mathrm{C}(t) x=C x+A \int_{0}^{t} \int_{0}^{s} \mathrm{C}(\sigma) x d \sigma d s,|t| \leq \tau, x \in X$,
then we say that A subgenerates a local C-cosine function on X, or A is a subgenerator of a local C-cosine function on X.

Remark 2.2. The generator \mathcal{G} of a local C-cosine function $\{\mathrm{C}(t) ;|t| \leq \tau\}$ is a subgenerator of $\{\mathrm{C}(t) ;|t| \leq \tau\}$. But for each subgenerator A, one has $A \subset \mathcal{G}$ and $\mathcal{G}=C^{-1} A C$. Moreover, if $\rho(A) \neq \emptyset$, then $C^{-1} A C=A$.

In fact, for $x \in D(A)$, we have

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} \frac{2(\mathrm{C}(t) x-C x)}{t^{2}} & =2 \lim _{t \rightarrow 0^{+}} \frac{A \int_{0}^{t} \int_{0}^{s} \mathrm{C}(\sigma) x d \sigma d s}{t^{2}}=2 \lim _{t \rightarrow 0^{+}} \frac{\int_{0}^{t} \int_{0}^{s} \mathrm{C}(\sigma) A x d \sigma d s}{t^{2}} \\
& =C A x \in R(C),
\end{aligned}
$$

that is $x \in D(\mathcal{G})$ and $A x=\mathcal{G} x$, i.e., $A \subset \mathcal{G}$.
For $x \in D\left(C^{-1} A C\right)$, then $C x \in D(A)$ and $A C x \in R(C)$, since $A \subset \mathcal{G}$ we have $\mathcal{G} C x=A C x \in R(C)$, then $C^{-1} A C x=C^{-1} \mathcal{G} C x=\mathcal{G} x$, i.e., $C^{-1} A C \subset \mathcal{G}$. On the other hand, for $x \in D(\mathcal{G})$, noting

$$
\lim _{n \rightarrow \infty} 2 n^{2} \int_{0}^{\frac{1}{n}} \int_{0}^{s} \mathrm{C}(\sigma) x d \sigma d s=\lim _{n \rightarrow \infty} \frac{2 \int_{0}^{\frac{1}{n}} \int_{0}^{s} \mathrm{C}(\sigma) x d \sigma d s}{\frac{1}{n^{2}}}=C x
$$

and

$$
\lim _{n \rightarrow \infty} A\left(2 n^{2} \int_{0}^{\frac{1}{n}} \int_{0}^{s} \mathrm{C}(\sigma) x d \sigma d s\right)=\lim _{n \rightarrow \infty} 2 n^{2}\left(\mathrm{C}\left(\frac{1}{n}\right) x-C x\right)=C \mathcal{G} x
$$

the closedness of A ensures $C x \in D(A)$ and $A C x=C \mathcal{G} x$, therefore, we have $\mathcal{G} \subset C^{-1} A C$.
¿From Proposition 1.4 in 12], we can obtain $C^{-1} A C=A$ if $\rho(A) \neq \emptyset$.
Theorem 2.3. Let nondensely defined operator A generate a local C-cosine function $\{\mathrm{C}(t) ;|t| \leq \tau\}$ on $X, \mathrm{~S}(t)=\int_{0}^{t} \mathrm{C}(s) d s$, and $B \in \mathcal{L}(\overline{D(A)})$. Then
(1) there exists an operator family $\{\mathrm{E}(t) ;|t| \leq \tau\} \subset \mathcal{L}(X)$ such that

$$
\mathrm{E}(t) x=C x+A(I+B) \int_{0}^{t} \int_{0}^{s} \mathrm{E}(\sigma) x d \sigma d s,|t| \leq \tau, x \in \overline{D(A)}
$$

provided that

$$
\begin{equation*}
\left\|A \int_{0}^{t} \mathrm{~S}(t-s) C^{-1} B \Phi(s) d s\right\| \leq M \int_{0}^{t} \sup _{0 \leq s \leq \sigma}\|\Phi(s)\| d \sigma, t \in[0, \tau] \tag{H1}
\end{equation*}
$$

where $\Phi \in \mathbf{C}([0, \tau], X)$, and $M>0$ is a constant.
(2) $(I+B) \widetilde{A}$ generates a local C_{1}-cosine function on $\overline{D(A)}$ provided that
(H1’)

$$
\left\|\int_{0}^{t} \Phi(s) C^{-1} B A \mathrm{~S}(t-s) x d s\right\| \leq M\|x\| \int_{0}^{t} \sup _{0 \leq s \leq \sigma}\|\Phi(s)\| d \sigma, t \in[0, \tau],
$$

where $x \in D(A), \Phi \in \mathbf{C}\left([0, \tau], \mathcal{L}_{s}(X)\right)$, and $M>0$ is a constant,
(H2) there exists an injective operator $C_{1} \in \mathcal{L}(\overline{D(A)})$ such that $R(B) \subset R\left(C_{1}\right) \subset$ $C(\overline{D(A)}), C_{1}(I+B) \widetilde{A} \subset(I+B) \widetilde{A} C_{1}$, and $C^{-1} C_{1}(D(\widetilde{A}))$ is a dense subspace in $D(A)$,
(H3) $\rho((I+B) \widetilde{A}) \neq \emptyset$.
(3) $\widetilde{A}(I+B)$ subgenerates a C_{1}-cosine function on $\overline{D(A)}$ provided that $C_{1} B=B C_{1}$, and (H1'), (H2), and (H3) hold.

Proof. First, we prove the conclusion (2).
Define the operator functions $\left\{\overline{\mathrm{C}}_{n}(t)\right\}_{t \in[0, \tau]}$ as follows:

$$
\left\{\begin{array}{l}
\overline{\mathrm{C}}_{0}(t) x=\mathrm{C}(t) x \\
\overline{\mathrm{C}}_{n}(t) x=\int_{0}^{t} \overline{\mathrm{C}}_{n-1}(s) C^{-1} B A \mathrm{~S}(t-s) x d s, \quad x \in D(A), t \in[0, \tau], n=1,2, \cdots
\end{array}\right.
$$

By induction, we obtain:
(i) $\overline{\mathrm{C}}_{n}(t) \in \mathbf{C}\left([0, \tau], \mathcal{L}_{s}(\overline{D(A)})\right)$;
(ii) $\left\|\overline{\mathrm{C}}_{n}(t)\right\| \leq \frac{M^{n} t^{n}}{n!} \sup _{s \in[0, \tau]}\|\mathrm{C}(s)\|, \quad t \in[0, \tau], \forall n \geq 0$.

It follows that the series $\sum_{n=0}^{\infty} \frac{M^{n} t^{n}}{n!}$ converges uniformly on $[0, \tau]$ and consequently,

$$
\overline{\mathrm{C}}(t) x:=\sum_{n=0}^{\infty} \overline{\mathrm{C}}_{n}(t) x \in \mathbf{C}([0, \tau], \overline{D(A)}), \forall x \in \overline{D(A)},
$$

and satisfies

$$
\begin{equation*}
\overline{\mathrm{C}}(t) x=\mathrm{C}(t) x+\int_{0}^{t} \overline{\mathrm{C}}(s) C^{-1} B A \mathrm{~S}(t-s) x d s, \quad x \in D(A), t \in[0, \tau] \tag{2.1}
\end{equation*}
$$

Using (H1') and Gronwall's inequality, we can see the uniqueness of solution of (2.1).
Put

$$
\widehat{\mathrm{C}}(t):=\overline{\mathrm{C}}(t) C^{-1} C_{1}, t \in[0, \tau] .
$$

It follows from (2.1) and $C^{-1} C_{1} \in \mathcal{L}(\overline{D(A)})$ that for $x \in \overline{D(A)}$,

$$
\widehat{\mathrm{C}}(t) x \in \mathbf{C}([0, \tau], \overline{D(A)}),
$$

and satisfies

$$
\begin{equation*}
\widehat{\mathrm{C}}(t) x=\mathrm{C}(t) C^{-1} C_{1} x+\int_{0}^{t} \widehat{\mathrm{C}}(s) C_{1}^{-1} B A \mathrm{~S}(t-s) C^{-1} C_{1} x d s, \quad x \in D(A), t \in[0, \tau] \tag{2.2}
\end{equation*}
$$

Note that $D(\widetilde{A}) \subset D\left(C_{1}^{-1} B \widetilde{A} C_{1}\right)$ and $C^{-1} C_{1}$ maps $D(\widetilde{A})$ into $D(\widetilde{A})$. So, for $x \in D(\widetilde{A})$, by (2.2), we have

$$
\begin{align*}
& \int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) C_{1}^{-1} B \widetilde{A} C_{1} x d \sigma d s \\
= & \int_{0}^{t} \int_{0}^{s} \mathrm{C}(\sigma) C^{-1} B \widetilde{A} C_{1} x d \sigma d s \\
& +\int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) C_{1}^{-1} B\left[\mathrm{C}(s-\sigma) C^{-1} B \widetilde{A} C_{1} x-B \widetilde{A} C_{1} x\right] d \sigma d s . \tag{2.3}
\end{align*}
$$

Therefore, for $x \in D(\widetilde{A})$, we have

$$
\begin{align*}
& \int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) \widetilde{A} x d \sigma d s \\
&= \int_{0}^{t} \int_{0}^{s} \mathrm{C}(\sigma) C^{-1}(I+B) \widetilde{A} C_{1} x d \sigma d s \\
&+\int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) C_{1}^{-1} B\left[\mathrm{C}(s-\sigma) C^{-1}(I+B) \widetilde{A} C_{1} x-(I+B) \widetilde{A} C_{1} x\right] d \sigma d s \\
&= \mathrm{C}(t) C^{-1} C_{1} x-C_{1} x+\int_{0}^{t} \int_{0}^{s} \mathrm{C}(\sigma) C^{-1} B \widetilde{A} C_{1} x d \sigma d s \\
&+\int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) C_{1}^{-1} B \mathrm{C}(s-\sigma) C^{-1} \widetilde{A} C_{1} x d \sigma d s-\int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) C_{1}^{-1} B \widetilde{A} C_{1} x d \sigma d s \\
&+\int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) C_{1}^{-1} B\left[\mathrm{C}(s-\sigma) C^{-1} B \widetilde{A} C_{1} x-B \widetilde{A} C_{1} x\right] d \sigma d s \\
& \stackrel{(2.3)}{=} \widehat{\mathrm{C}}(t) x-C_{1} x . \tag{2.4}
\end{align*}
$$

Now we consider the integral equation

$$
\begin{equation*}
v(t) x=C_{1} x+\int_{0}^{t} \int_{0}^{s} v(\sigma)(I+B) \widetilde{A} x d \sigma d s, \quad x \in D(\widetilde{A}), t \in[0, \tau], \tag{2.5}
\end{equation*}
$$

where $v(t) \in \mathbf{C}\left([0, \tau], \mathcal{L}_{s}(\overline{D(A)})\right)$. Let $\widetilde{v}(t)$ satisfy the equation (2.5). Then from (2.5), we obtain, for $x \in D(\widetilde{A})$,

$$
\begin{aligned}
& \int_{0}^{t} \widetilde{v}(s) \mathrm{S}(t-s) C^{-1} C_{1} x d s-C_{1} \int_{0}^{t} \mathrm{~S}(s) C^{-1} C_{1} x d s \\
= & \int_{0}^{t} \int_{0}^{s} \widetilde{v}(\sigma)(I+B) \widetilde{A} \int_{0}^{s-\sigma} \mathrm{S}(r) C^{-1} C_{1} x d r d \sigma d s \\
= & \int_{0}^{t} \widetilde{v}(s) \mathrm{S}(t-s) C^{-1} C_{1} x d s-\int_{0}^{t} \int_{0}^{s} \widetilde{v}(\sigma) C_{1} x d \sigma d s \\
& +\int_{0}^{t} \int_{0}^{s} \widetilde{v}(\sigma) B \widetilde{A} \int_{0}^{s-\sigma} \mathrm{S}(r) C^{-1} C_{1} x d r d \sigma d s .
\end{aligned}
$$

Hence,

$$
\int_{0}^{t} \int_{0}^{s} \widetilde{v}(\sigma) C_{1} x d \sigma d s=C_{1} \int_{0}^{t} \mathrm{~S}(s) C^{-1} C_{1} x d s+\int_{0}^{t} \int_{0}^{s} \widetilde{v}(\sigma) B \widetilde{A} \int_{0}^{s-\sigma} \mathrm{S}(r) C^{-1} C_{1} x d r d \sigma d s
$$

that is,

$$
(\widetilde{v}(t) C) C^{-1} C_{1} x=C_{1} \mathrm{C}(t) C^{-1} C_{1} x+\int_{0}^{t}(\widetilde{v}(s) C) C^{-1} B \widetilde{A} \mathrm{~S}(t-s) C^{-1} C_{1} x d s
$$

Note that $C^{-1} C_{1}(D(\widetilde{A})) \subset D(\widetilde{A})$ is dense in $\overline{D(A)}$, and the solution $\bar{w}(t)$ of the equation

$$
w(t) y=C_{1} \mathrm{C}(t) y+\int_{0}^{t} w(s) C^{-1} B \widetilde{A} \mathrm{~S}(t-s) y d s, \quad y \in C^{-1} C_{1}(D(\widetilde{A})), t \in[0, \tau]
$$

in $\mathbf{C}\left([0, \tau], \mathcal{L}_{s}(\overline{D(A)})\right)$ is unique, we can see the solution of (2.5) is also unique.
By the uniqueness of solution of (2.5), we can obtain that

$$
\widehat{\mathrm{C}}(-t) x=\widehat{\mathrm{C}}(t) x, \widehat{\mathrm{C}}(t) C_{1} x=C_{1} \widehat{\mathrm{C}}(t) x, \text { for each } x \in \overline{D(A)}, t \in[0, \tau]
$$

Moreover, for $t, h, t \pm h \in[0, \tau]$, we have

$$
\begin{aligned}
& \widehat{\mathrm{C}}(t+h) C_{1} x+\widehat{\mathrm{C}}(t-h) C_{1} x \\
= & \int_{0}^{t+h} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) A C_{1} x d \sigma d s+\int_{0}^{t-h} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) A C_{1} x d \sigma d s+2 C_{1}^{2} x \\
= & \int_{0}^{h} \int_{0}^{s} \widehat{\mathrm{C}}(t+\sigma)(I+B) A C_{1} x d \sigma d s+\int_{0}^{t} \int_{0}^{t-s} \widehat{\mathrm{C}}(\sigma)(I+B) A C_{1} x d \sigma d s \\
& +\int_{0}^{h} \int_{0}^{t} \widehat{\mathrm{C}}(t-\sigma)(I+B) A C_{1} x d \sigma d s+\int_{0}^{h} \int_{0}^{s} \widehat{\mathrm{C}}(t-\sigma)(I+B) A C_{1} x d \sigma d s \\
& +\int_{0}^{t} \int_{0}^{t-s} \widehat{\mathrm{C}}(\sigma)(I+B) A C_{1} x d \sigma d s-\int_{0}^{h} \int_{0}^{t} \widehat{\mathrm{C}}(t-\sigma)(I+B) A C_{1} x d \sigma d s \\
& +2 C_{1}^{2} x \\
= & \int_{0}^{h} \int_{0}^{s}\left[\widehat{\mathrm{C}}(t+\sigma) C_{1}+\widehat{\mathrm{C}}(t-\sigma) C_{1}\right](I+B) A x d \sigma d s+2 \int_{0}^{t}(t-s) \widehat{\mathrm{C}}(s)(I+B) A C_{1} x d s \\
& +2 C_{1}^{2} x,
\end{aligned}
$$

and for all $x \in D(\widetilde{A}), t, h \in[0, \tau]$, we have

$$
\begin{aligned}
2 \widehat{\mathrm{C}}(t) \widehat{\mathrm{C}}(h) x= & 2 \widehat{\mathrm{C}}(t)\left[\int_{0}^{h} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) \widetilde{A} x d \sigma d s+C_{1} x\right] \\
= & \int_{0}^{h} \int_{0}^{s} 2 \widehat{\mathrm{C}}(t) \widehat{\mathrm{C}}(\sigma)(I+B) A x d \sigma d s+2 \int_{0}^{t}(t-s) \widehat{\mathrm{C}}(s)(I+B) \widetilde{A} C_{1} x d s \\
& +2 C_{1}^{2} x
\end{aligned}
$$

Therefore, for $x \in D(\widetilde{A}), t \in[0, \tau]$,

$$
\begin{aligned}
& {\left[\widehat{\mathrm{C}}(t+h) C_{1} x+\widehat{\mathrm{C}}(t-h) C_{1} x\right]-2 \widehat{\mathrm{C}}(t) \widehat{\mathrm{C}}(h) x } \\
= & \int_{0}^{t} \int_{0}^{s}\left\{\left[\widehat{\mathrm{C}}(\sigma+h) C_{1}+\widehat{\mathrm{C}}(\sigma-h) C_{1}\right]-2 \widehat{\mathrm{C}}(\sigma) \widehat{\mathrm{C}}(h)\right\}(I+B) \widetilde{A} x d \sigma d s .
\end{aligned}
$$

It follows from the uniqueness of solution of (2.5) and the denseness of \widetilde{A} in $\overline{D(A)}$ that

$$
2 \widehat{\mathrm{C}}(t) \widehat{\mathrm{C}}(h)=\widehat{\mathrm{C}}(t+h) C_{1}+\widehat{\mathrm{C}}(t-h) C_{1}
$$

on $\overline{D(A)}$, for $t, h, t \pm h \in[0, \tau]$. Therefore, $\{\widehat{\mathrm{C}}(t)\}_{t \in[-\tau, \tau]}$ is a local C_{1}-cosine operator function on $\overline{D(A)}$.

Next, we show that the subgenerator of $\{\widehat{\mathrm{C}}(t)\}_{t \in[-\tau, \tau]}$ is operator $(I+B) \widetilde{A}$.
By the equality (2.4), (H3), the uniqueness of solution of (2.5), we obtain on $\overline{D(A)}$

$$
(\lambda-(I+B) \widetilde{A})^{-1} \widehat{\mathrm{C}}(t)=\widehat{\mathrm{C}}(t)(\lambda-(I+B) \widetilde{A})^{-1}, t \in[0, \tau], \lambda \in \rho((I+B) \widetilde{A})
$$

therefore,

$$
\begin{equation*}
(I+B) \widetilde{A} \widehat{\mathrm{C}}(t) x=\widehat{\mathrm{C}}(t)(I+B) \widetilde{A} x, x \in D(\widetilde{A}), t \in[0, \tau] \tag{2.6}
\end{equation*}
$$

that is,

$$
\widehat{\mathrm{C}}(t)(I+B) \widetilde{A} \subset(I+B) \widetilde{A} \widehat{\mathrm{C}}(t), t \in[0, \tau] .
$$

Moreover, since $\rho((I+B) \widetilde{A}) \neq \emptyset,(I+B) \widetilde{A}$ is a closed operator. It follows from (2.4) and the closedness of $(I+B) \widetilde{A}$ that $\int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) x d \sigma d s \in D(\widetilde{A})$ and

$$
\begin{equation*}
\widehat{\mathrm{C}}(t) x=C_{1} x+(I+B) \widetilde{A} \int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma) x d \sigma d s \tag{2.7}
\end{equation*}
$$

for each $x \in \overline{D(A)}, t \in[0, \tau]$. Therefore, $(I+B) \widetilde{A}$ is a subgenerator of $\{\widehat{\mathrm{C}}(t)\}_{t \in[-\tau, \tau]}$. By (H3) and remark 2.2, we can see that $(I+B) \widetilde{A}$ is the generator of $\{\widehat{\mathrm{C}}(t)\}_{t \in[-\tau, \tau]}$. This completes the proof of statement (2).

By a combination of similar arguments as above and those given in the proof of [11, Theorem 2.1], we can obtain the conclusion (1).

Next, we prove the conclusion (3).
In view of statement (1) just proved, we can see that $(I+B) \widetilde{A}$ subgenerates $\{\widehat{\mathrm{C}}(t)\}_{t \in[-\tau, \tau]}$ on $\overline{D(A)}$. Set

$$
Q(t) x=C_{1} x+\widetilde{A} \int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) x d \sigma d s,|t| \leq \tau, x \in \overline{D(A)}
$$

Obviously, by (2.7) and the fact that the graph norms of \widetilde{A} and $(I+B) \widetilde{A}$ are equivalent, we can see that $\{Q(t)\}_{t \in[-\tau, \tau]}$ is a strongly continuous operator family of bounded linear operators on $\overline{D(A)}$. Moreover, by (2.6) and (2.7), for $|t| \leq \tau, x \in \overline{D(A)}$, we obtain

$$
\begin{aligned}
Q(t) \widetilde{A}(I+B) x & =C_{1} \widetilde{A}(I+B) x+\widetilde{A} \int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) \widetilde{A}(I+B) x d \sigma d s \\
& =\widetilde{A}(I+B) C_{1} x+\widetilde{A}(I+B) \widetilde{A} \int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) x d \sigma d s \\
& =\widetilde{A}(I+B) Q(t) x
\end{aligned}
$$

and

$$
\begin{aligned}
(I+B) \int_{0}^{t} \int_{0}^{s} Q(\sigma) x d \sigma d s & =\int_{0}^{t} \int_{0}^{s}(I+B) C_{1} x+\int_{0}^{t} \int_{0}^{s}\left[\widehat{\mathrm{C}}(\sigma)(I+B) x-C_{1}(I+B) x\right] d \sigma d s \\
& =\int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) x d \sigma d s
\end{aligned}
$$

It follows that for any $|t| \leq \tau, x \in \overline{D(A)},(I+B) \int_{0}^{t} \int_{0}^{s} Q(\sigma) x d \sigma d s \in D(\widetilde{A})$ and

$$
\widetilde{A}(I+B) \int_{0}^{t} \int_{0}^{s} Q(\sigma) x d \sigma d s=\widetilde{A} \int_{0}^{t} \int_{0}^{s} \widehat{\mathrm{C}}(\sigma)(I+B) x d \sigma d s=Q(x) x-C_{1} x .
$$

According to Definition 2.1, we see that $\widetilde{A}(I+B)$ subgenerates a local C_{1}-cosine function $\{Q(t)\}_{t \in[-\tau, \tau]}$ on $\overline{D(A)}$.

Example 2.4. Let Ω be a domain in R^{n} and write

$$
\begin{aligned}
C_{0}(\Omega):=\{f \in C(\Omega): & \text { for each } \varepsilon>0 \text { there is a compact } \Omega_{\varepsilon} \subset \Omega \\
& \text { such that } \left.|f(s)|<\varepsilon \text { for all } s \in \Omega \backslash \Omega_{\varepsilon}\right\} .
\end{aligned}
$$

Given $q \in C(\Omega)$ with $q(\eta) \geq 0, b \in C_{0}(\Omega)$ with

$$
\begin{equation*}
b e^{\tau q}, \quad q b e^{\tau q} \in C_{0}(\Omega) \tag{2.8}
\end{equation*}
$$

and $K \in L^{1}(\Omega)$, we consider the following Cauchy problem

$$
\left\{\begin{align*}
\frac{\partial^{2} u(t, \eta)}{\partial t^{2}} & =q(\eta)\left(u(t, \eta)+b(\eta) \int_{\Omega} K(\sigma) u(t, \sigma) d \sigma\right) \tag{2.9}\\
u(0, \eta) & =f_{1}(\eta), \quad u^{\prime}(0, \eta)=f_{2}(\eta), \quad \eta \in \Omega, 0 \leq t \leq \tau
\end{align*}\right.
$$

where $f_{1}, f_{2} \in C_{0}(\Omega)$.
Set $A f=: q f$ with $D(A)=:\left\{f \in C_{0}(\Omega) ; q f \in C_{0}(\Omega)\right\}$.
When q is bounded, A generates a classical cosine function $\mathrm{C}(t)$ on $C_{0}(\Omega)$ (i.e., I-cosine function on $[0, \infty)$), with

$$
\|\mathrm{C}(t)\| \leq e^{\left(\sup _{\eta \in \Omega} q(\eta)\right) t}, \quad t \geq 0
$$

(for the exponential growth bound of a cosine function (which is closely related to a strongly continuous semigroup in some cases), as well as its relation with the spectral bound of the generator, we refer to, e.g., 1, 16]). Nevertheless, when q is unbounded, A
does not generate a global C-cosine function $\mathrm{C}(t)$ on $C_{0}(\Omega)$ for any C. On the other hand, A generates a local C-cosine function $\mathrm{C}(t)$ on $C_{0}(\Omega)$:

$$
\mathbf{C}(t) f=\left\{\frac{1}{2}\left[e^{t \sqrt{q}}+e^{-t \sqrt{q}}\right] e^{-\tau \sqrt{q}} f\right\}_{t \in[-\tau, \tau]}
$$

with $C f=e^{-\tau \sqrt{q}} f$. Set

$$
(B f)(\eta)=b(\eta) \int_{\Omega} K(\sigma) f(\sigma) d \sigma, \quad f \in C_{0}(\Omega)
$$

¿From (2.8), we see the hypothesis (H1) in Theorem 2.3 holds. This means, by Theorem 2.3 (1) and [20, Theorem 2.4], that the Cauchy problem (2.9) has a unique solution in $C^{2}\left([0, \tau] ; C_{0}(\Omega)\right)$ for every couple of initial values in a large subset of $C_{0}(\Omega)$.

Acknowledgement The authors are grateful to the referees for their valuable suggestions.

References

[1] C.J.K. Batty, J. Liang and T.J. Xiao, On the spectral and growth bound of semigroups associated with hyperbolic equations, Adv. Math. 191 (2005), 1-10.
[2] R. de Laubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Math. 1570, Springer-Verlag, Berlin, 1994.
[3] R. Grimmer and James H. Liu, Integrated semigroups and integrodifferential equations, Semigroup Forum 48 (1994), 79-95.
[4] F.L. Huang and T.W. Huang, Local C-cosine family theory, China. Ann. of Math. 16 (B) (1995), 213-232.
[5] C.C. Kuo and S.Y. Shaw, C-cosine functions and the abstract Cauchy problem I, J. Math. Anal. Appl. 210 (1997), 632-646.
[6] F. Li and James H. Liu, A perturbation theorem for local C-regularized cosine functions, Journal of Physics: Conference Series 96 (2008), 012096.
[7] F. Li and James H. Liu, Recent results for some higher order abstract differential equation, Advances in Mathematics and Its Applications, 59-75, University of Science and Technology of China Press, Hefei, 2009.
[8] J. Liang, R. Nagel and T.J. Xiao, Approximation theorems for the propagators of higher order abstract Cauchy problems, Trans. Amer. Math. Soc. 360 (2008), 17231739.
[9] J. Liang and T.J. Xiao, A characterization of norm continuity of propagators for second order abstract differential equations, Comput. Math. Appl. 36 (1998), 87-94.
[10] J. Liang and T.J. Xiao, Higher order degenerate Cauchy problems in locally convex spaces, Math. Comput. Modelling. 41 (2005), 837-847.
[11] J. Liang, T.J. Xiao and F. Li, Multiplicative perturbations of local C-regularized semigroups, Semigroup Forum 72 (2006), no. 3, 375-386.
[12] N. Tanaka and I. Miyadera, C-Semigroups and the abstract Cauchy problem, J. Math. Anal. Appl. 170(1992), 196-206.
[13] T.J. Xiao and J. Liang, Second order linear differential equations with almost periodic solutions, Acta Math. Sinica (N.S.) 7 (1991), 354-359.
[14] T.J. Xiao and J. Liang, Laplace transforms and integrated, regularized semigroups in locally convex spaces, J. Funct. Anal. 148 (1997), no. 2, 448-479.
[15] T.J. Xiao and J. Liang, Differential operators and C-wellposedness of complete second order abstract Cauchy problems, Pacific J. Math. 186 (1998), no. 1, 167-200.
[16] T.J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lecture Notes in Math. 1701, Springer, Berlin/New York, 1998.
[17] T.J. Xiao and J. Liang, Approximations of Laplace transforms and integrated semigroups, J. Funct. Anal. 172 (2000), no. 1, 202-220.
[18] T.J. Xiao and J. Liang, Multiplicative perturbations of C-regularized semigroups, Computers Math. Appl. 41(2001), 1215-1221.
[19] T.J. Xiao and J. Liang, Perturbations of existence families for abstract Cauchy problems, Proc. Amer. Math. Soc. 130 (2002), 2275-2285.
[20] T.J. Xiao and J. Liang, Higher order abstract Cauchy problems: their existence and uniqueness families, J. London Math. Soc. 67 (2003), 149-164.
[21] T.J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions, Math. Ann. 327 (2003), no. 2, 351-363.
(Received January 26, 2010)

[^0]: ${ }^{*}$ The first author was supported by the NSF of Yunnan Province (2009ZC054M).

