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Abstract

In this paper, a class of third-order three-point boundary value problem on time scales is

considered. Using monotone iterative technique and cone expansion and compression fixed point

theorem of norm type, we do not only obtain the existence and uniqueness of positive solutions

of the problem, but also establish the iterative schemes for approximating the solutions.
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1. Introduction

In this paper, we are interested in the existence and uniqueness of positive solutions and

establish the corresponding iterative schemes for the following third-order three-point boundary

value problem (BVP) on time scales

{

(px∆∆)∇(t) + f(t, x(t)) = 0, t ∈ [t1, t3]T,

x(ρ(t1)) = 0 = x∆(ρ(t1)), x∆(σ(t3)) = αx∆(t2),
(1.1)

where p is a right-dense continuous, real-valued function with 0 < p(t) ≤ 1 on T; f : T ×
[0,+∞) −→ [0,+∞) is continuous; the boundary points from T satisfy t1 < t2 < t3, with

t2/α ∈ T such that the constants d and α satisfy

d :=

∫ σ(t3)

ρ(t1)

∆τ

p(τ)
− α

∫ t2

ρ(t1)

∆τ

p(τ)
> 0 and 1 < α <

∫ σ(t3)
ρ(t1)

∆τ
p(τ)

∫ t2
ρ(t1)

∆τ
p(τ)

. (1.2)

The theory of time scales was introduced and developed by Hilger [1] to unify continuous

and discrete analysis. Time scales theory presents us with the tools necessary to understand

and explain the mathematical structure underpinning the theories of discrete and continuous

dynamic systems and allows us to connect them. On the other hand, the theory is widely applied

to heat transfer, biology, epidemic models and stock market, for details, see [1-4] and references

therein. Certain economically important phenomena contain processes that feature elements of

∗The author was supported financially by the Science Foundation of North University of China.
1Corresponding author. E-mail addresses: silviahsu2005@yahoo.com.cn (H.Xu).

EJQTDE, 2010 No. 56, p. 1



both the continuous and the discrete. For example, a consumer wants to maximize his lifetime

utility subject to certain constraints. During each period in his life a consumer has to make a

decision concerning how much to consume and how much to spend. If the consumer consumes

more today, he has to consume less tomorrow because of limited resource. In other words, he has

to give up the utility he can derive from tomorrow consumption. So the solution is a function

that describes optimal behavior for an individual, which shows how much one should consume

each period to insure that he can maximum lifetime utility. So the lifetime utility is a function

typically depending on consumption. One has to maximize the function in each period of lifetime,

which can be regarded as a discrete model. We also consider the problem of maximization as a

sum of instantaneous utilities, which can be described in a continuous model. While the time

scales model can provide an unification from both discrete and continuous approaches subject

to some constraints. Some definitions and conclusions on time scales can be found in [5-7].

In recent years, higher-order two-point boundary value problems on time scales have been

studied extensively, see Boey and Wong [8], Sun [9], and Cetin and Topal [10-12]. At the same

time, even-order multi-point boundary value problems on time scales have also attracted much

attention, see Anderson and Avery [13], Anderson and Karaca [14], and Yaslan [15]. Third-

order differential and difference equations, though less common in applications than even-order

problems, nevertheless do appear, for example in the study of quantum fluids and gravity driven

flows. Here we approach a third-order three-point problem on general time scales which has

been considered in [16-18]. Note that boundary value problems on time scales that utilize both

delta and nabla derivatives, such as the one here, were first introduced by Atici and Guseinov

[5].

We would like to mention some results of Anderson and Hoffacker [16], Anderson and Smyrlis

[17], and Sang and Wei [18], which motivated us to consider BVP (1.1). In [16], Anderson and

Hoffacker were concerned with the existence and form of solutions to the following nonlinear

third-order three-point boundary value problem on time scales:
{

(px∆∆)∇(t) + a(t)f(x(t)) = 0, t ∈ [t1, t3]T,

x(ρ(t1)) = 0 = x∆(ρ(t1)), x∆(σ(t3)) = αx∆(t2).
(1.3)

Using the corresponding Green’s function, they proved the existence of at least one positive

solution using the Guo-Krasnosel’skii fixed point theorem. Moreover, a third-order multi-point

eigenvalue problem was formulated, and eigenvalue intervals for the existence of a positive solu-

tion were found.

In [17], Anderson and Smyrlis applied Leray-Schauder nonlinear alternative to study the

following third-order three-point boundary value problem on time scales:
{

(px∆∆)∇(t) + f(t, x(t), x∆(t)) = 0, t ∈ [t1, t3]T,

x(ρ(t1)) = 0 = x∆(ρ(t1)), x∆(σ(t3)) = αx∆(t2),
(1.4)

where p is a right-dense continuous, real-valued function with 0 < p(t) ≤ 1 on T. They obtained

some sufficient conditions for the existence of at least one nontrivial solution of (1.4).

In [18], Sang and Wei considered the solutions and positive solutions of problem (1.1), the

authors assumed that the nonlinear term f is bounded below, this implies that f is not necessarily

nonnegative.
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We note that Anderson and Karaca [14] were concerned with the dynamic three-point bound-

ary value problem
{

(−1)ny∆2n

(t) = f(t, yσ(t)), t ∈ [a, b]T,

αi+1y
∆2i

(η) + βi+1y
∆2i+1

(a) = y∆2i

(a), γi+1y
∆2i

(η) = y∆2i

(σ(b)), 0 ≤ i ≤ n − 1.
(1.5)

The monotone method was discussed to ensure the existence of solutions of BVP (1.5). The

authors proved the existence theorem for solutions of BVP (1.5) which lie between the lower

and upper solutions when they are given in the well order i.e., the lower solution is under the

upper solution. Furthermore, Cetin and Topal [11] considered the nonlinear Lidstone boundary

value problem
{

(−1)ny∆2n

(t) = f(t, yσ(t), y∆∆(t), · · · , y∆2(n−1)
(t)), t ∈ [0, 1]T,

y∆2i

(0) = y∆2i

(σ(1)) = 0, 0 ≤ i ≤ n − 1.
(1.6)

The authors developed the monotone method which yields the solution of BVP (1.6), they gave

the existence and uniqueness theorem for solution of BVP (1.6) when they are given in the well

order. They claimed that ′′This method is generally used to obtain the existence of solutions

within specified bounds determined by the upper and lower solutions′′.

It is also noted that the researchers mentioned above [16-18] only studied the existence and

uniqueness of positive solutions. As a result, they failed to further provide the computational

methods of positive solutions. Therefore, it is natural to consider the uniqueness and iteration

of positive solutions to BVP (1.1).

In this paper, by considering the ′′heights′′ of the nonlinear term f on some bounded sets

and applying monotone iterative techniques on a Banach space, we do not only obtain the

existence and uniqueness of positive solutions for BVP (1.1), but also give the iterative schemes

for approximating the solutions. In essence, we combine the method of lower and upper solutions

with the cone expansion and compression fixed point theorem of norm type. The ideas of this

paper come from Yao [19-21]. In order to obtain the uniqueness of positive solutions for BVP

(1.1), we adopt some ideas established in [22].

2. Several lemmas

Let T be a time scale which has the subspace topology inherited from the standard topology

on R. For each interval I of R, we define IT = I ∩ T.

Underlying our technique will be the Green’s function for the homogeneous third-order three-

point boundary value problem
{

−(px∆∆)∇(t) = 0, t ∈ [t1, t3]T,

x(ρ(t1)) = 0 = x∆(ρ(t1)), x∆(σ(t3)) = αx∆(t2),
(2.1)

The Green’s function for (2.1) is well defined, nonnegative, and bounded above on [ρ(t1), σ
2(t3)]T×

[t1, σ(t3)]T, as related in the following lemmas.

Lemma 2.1. (See [16, 17].) For y ∈ Cld[ρ(t1), σ(t3)]T, the boundary value problem
{

(px∆∆)∇(t) + y(t) = 0, t ∈ [t1, t3]T,

x(ρ(t1)) = 0 = x∆(ρ(t1)), x∆(σ(t3)) = αx∆(t2)
(2.2)
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has a unique solution x(t) =

∫ σ(t3)

ρ(t1)
G(t, s)y(s)∇s, where the Green’s function corresponding to

the problem (2.1) is given by

G(t, s) =







































































1

d

(

∫ σ(t3)

s

∆τ

p(τ)
− α

∫ t2

s

∆τ

p(τ)

)

∫ t

ρ(t1)

∫ ξ

ρ(t1)

∆τ

p(τ)
∆ξ −

∫ t

s

∫ ξ

s

∆τ

p(τ)
∆ξ : s ≤ min{t2, t}

1

d

(

∫ σ(t3)

s

∆τ

p(τ)
− α

∫ t2

s

∆τ

p(τ)

)

∫ t

ρ(t1)

∫ ξ

ρ(t1)

∆τ

p(τ)
∆ξ : t ≤ s ≤ t2

1

d

(

∫ σ(t3)

s

∆τ

p(τ)

)

∫ t

ρ(t1)

∫ ξ

ρ(t1)

∆τ

p(τ)
∆ξ −

∫ t

s

∫ ξ

s

∆τ

p(τ)
∆ξ : t2 ≤ s ≤ t

1

d

(

∫ σ(t3)

s

∆τ

p(τ)

)

∫ t

ρ(t1)

∫ ξ

ρ(t1)

∆τ

p(τ)
∆ξ : max{t2, t} ≤ s

(2.3)

for all (t, s) ∈ [ρ(t1), σ
2(t3)]T × [t1, σ(t3)]T.

Lemma 2.2. (See [16].) Assume (1.2). The Green’s function (2.3) corresponding to the problem

(2.1) satisfies

0 ≤ G(t, s) ≤ g(s),

where g is given by

g(s) :=
1

d
(α + 1)(σ2(t3) − ρ(t1))

(

∫ s

ρ(t1)

∆τ

p(τ)

)(

∫ σ(t3)

s

∆τ

p(τ)

)

(2.4)

for all (t, s) ∈ [ρ(t1), σ
2(t3)]T × [t1, σ(t3)]T.

Lemma 2.3. (See [16].) Assume (1.2). The Green’s function (2.3) corresponding to the problem

(2.1) satisfies

G(t, s) ≥ γg(s), γ :=

min{α − 1, α}
∫ t2/α

ρ(t1)

∫ u

ρ(t1)

∆τ

p(τ)
∆u

(α + 1)(σ2(t3) − ρ(t1))

∫ σ(t3)

ρ(t1)

∆τ

p(τ)

∈ (0, 1) (2.5)

for all (t, s) ∈ [t2/α, t2]T × [t1, σ(t3)]T, where g(s) is given in (2.4).

Let B denote the real Banach space C[ρ(t1), σ
2(t3)]T with the supremum norm

‖x‖ = sup
t∈[ρ(t1),σ2(t3)]T

|x(t)|.

It is easy to see that BVP (1.1) has a solution x = x(t) if and only if x is a fixed point of the

following operator:

Fx(t) =

∫ σ(t3)

ρ(t1)
G(t, s)f(s, x(s))∇s, t ∈ [ρ(t1), σ

2(t3)]T.

Set

P = {x ∈ B : x is nonnegative, and min
t∈[t2/α,t2]T

x(t) ≥ γ‖x‖},
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where γ is the same as in Lemma 2.3. By the proof of Section 3 in [16], we can obtain that

F (P ) ⊂ P and F : P −→ P is completely continuous.

3. Successive iteration and unique positive solution for (1.1)

For notational convenience, we denote

M =

[

sup
t∈[ρ(t1),σ2(t3)]T

∫ σ(t3)

ρ(t1)
G(t, s)∇s

]−1

, N =

[

sup
t∈[ρ(t1),σ2(t3)]T

∫ t2

t2/α
G(t, s)∇s

]−1

.

Constants M, N are not easy to compute explicitly. For convenience, we can replace M by M ′,

N by N ′, where

M ′ =

[

∫ σ(t3)

ρ(t1)
g(s)∇s

]−1

, N ′ =

[

γ

∫ t2

t2/α
g(s)∇s

]−1

.

Obviously, 0 < M ′ < M < N < N ′.

Theorem 3.1. Assume there exist two positive numbers a, b with b < a such that

(H1) max{f(t, a) : t ∈ T} ≤ aM , min{f(t, γb) : t ∈ [t2/α, t2]T} ≥ bN ;

(H2) f(t, x1) ≤ f(t, x2) for any t ∈ T, 0 ≤ x1 ≤ x2 ≤ a;

(H3) for any x ∈ [0, a] and r ∈ (0, 1), there exists η = η(x, r) > 0 such that

f(t, rx) ≥ [1 + η(x, r)]rf(t, x), t ∈ T.

Then BVP (1.1) has a unique positive solution x∗ such that b ≤ ‖x∗‖ ≤ a and lim
n→∞

Fnx̃ = x∗,

i.e., Fnũ converges uniformly to x∗ in [ρ(t1), σ
2(t3)]T, where x̃(t) ≡ a, t ∈ [ρ(t1), σ

2(t3)]T.

Remark 3.1. The iterative scheme in Theorem 3.1 is x1 = Fx̃, xn+1 = Fxn, n = 1, 2, · · ·. It

starts off with constant function x̃(t) ≡ a, t ∈ [ρ(t1), σ
2(t3)]T.

Proof of Theorem 3.1. Set P [b, a] = {u ∈ P : b ≤ ‖u‖ ≤ a}. If u ∈ P [b, a], then

max
t∈[ρ(t1),σ2(t3)]T

x(t) ≤ a, min
t∈[t2/α,t2]T

x(t) ≥ γ‖x‖ ≥ γb.

According to Assumptions (H1) and (H2), we have

f(t, x(t)) ≤ f(t, a) ≤ aM, t ∈ [ρ(t1), σ(t3)]T;

f(t, x(t)) ≥ f(t, γb) ≥ bN, t ∈ [t2/α, t2]T.

It follows that

‖Fx‖ = sup
t∈[ρ(t1),σ2(t3)]T

∣

∣

∣

∣

∣

∫ σ(t3)

ρ(t1)
G(t, s)f(s, x(s))∇s

∣

∣

∣

∣

∣

≤ aM sup
t∈[ρ(t1),σ2(t3)]T

∫ σ(t3)

ρ(t1)
G(t, s)∇s = a;

‖Fx‖ ≥ sup
t∈[ρ(t1),σ2(t3)]T

∫ t2

t2/α
G(t, s)f(s, x(s))∇s

≥ bN sup
t∈[ρ(t1),σ2(t3)]T

∫ t2

t2/α
G(t, s)∇s = b.
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Thus, we assert that F : P [b, a] −→ P [b, a].

Let x̃(t) ≡ a, t ∈ [ρ(t1), σ
2(t3)]T, then x̃ ∈ P [b, a]. Let x1 = Fx̃, thus x1 ∈ P [b, a]. Set

xn+1 = Fxn, n = 1, 2, · · ·. Since F (P [b, a]) ⊂ P [b, a], we have xn ∈ F (P [b, a]) ⊂ P [b, a], n =

1, 2, · · ·, which together with the complete continuity of F implies that {xn}∞n=1 has a convergent

subsequence {xnk
}∞k=1 and there exists x∗ ∈ P [b, a], such that xnk

−→ x∗.

Now, it follows from x1 ∈ P [b, a] that

x1(t) ≤ ‖x1‖ ≤ a = x̃(t), t ∈ [ρ(t1), σ
2(t3)]T.

By Assumption (H2), we have

x2(t) = Fx1(t)

=

∫ σ(t3)

ρ(t1)
G(t, s)f(s, x1(s))∇s

≤
∫ σ(t3)

ρ(t1)
G(t, s)f(s, x̃(s))∇s

= Fx̃(t) = x1(t).

By mathematical induction, we obtain

xn+1(t) ≤ xn(t), t ∈ [ρ(t1), σ
2(t3)]T, n = 1, 2, · · · .

Hence, Fnx̃ = xn −→ x∗. It is easy to know from the continuity of F and xn+1 = Fxn that

Fx∗ = x∗.

In the following, we show that x∗ is the unique fixed point of F . In fact, suppose x is a fixed

point of F . We can know that there exists λ > 0 such that x ≥ λx∗.

Let

c1 = sup{c > 0|x ≥ cx∗}.

Evidently, 0 < c1 < +∞, x ≥ c1x
∗. Furthermore, we can prove that c1 ≥ 1. If 0 < c1 < 1, from

(H3), there exists η0 = η0(x
∗, c1) > 0, such that

f(s, c1x
∗) ≥ (1 + η0)c1f(s, x∗).

It follows that
x = Fx ≥ F (c1x

∗)

=

∫ σ(t3)

ρ(t1)
G(t, s)f(s, c1x

∗(s))∇s

≥
∫ σ(t3)

ρ(t1)
G(t, s)(1 + η0)c1f(s, x∗(s))∇s

≥ [1 + inf
s∈[ρ(t1),σ(t3)]T

η0(x
∗(s), c1)]c1x

∗.

Since [1 + inf
s∈[ρ(t1),σ(t3)]T

η0(x
∗(s), c1)]c1 > c1, this contradicts with the definition of c1. Hence,

c1 ≥ 1, and then we obtain that x ≥ c1x
∗ ≥ x∗. Similarly, we can prove that x∗ ≥ x, thus

x = x∗. Therefore, F has a unique fixed point x∗. Therefore, we can conclude that x∗ is a

unique positive solution of BVP (1.1).
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Corollary 3.1. Assume the following conditions are satisfied

(H ′
1) lim

l→0
min

t∈[t2/α,t2]T
f(t, l)/l > γ−1N, lim

l→+∞
max

t∈[ρ(t1),σ2(t3)]T
f(t, l)/l < M ;

(H ′
2) f(t, x1) ≤ f(t, x2) for any t ∈ T, x1 ≤ x2, x1, x2 ∈ [0,+∞);

(H ′
3) for any x ∈ [0, a] and r ∈ (0, 1), there exists η = η(x, r) > 0 such that

f(t, rx) ≥ [1 + η(x, r)]rf(t, x), t ∈ T.

Then BVP (1.1) has a unique positive solution x∗ ∈ P and there exists a positive number a such

that lim
n→∞

Fnx̃ = x∗, i.e.,

lim
n→∞

sup
t∈[ρ(t1),σ2(t3)]T

|Fnx̃(t) − x∗(t)| = 0,

where x̃(t) ≡ a, t ∈ [ρ(t1), σ
2(t3)]T.

Theorem 3.2. Assume the following conditions are satisfied

(C1) there exists a > 0 such that f(t, ·) : [0, a] −→ (0,+∞) is nondecreasing for any t ∈ T and

max{f(t, a) : t ∈ T} ≤ aM ;

(C2) f(t, 0) > 0, for any t ∈ T.

Then BVP (1.1) has one positive solution x∗ such that 0 < ‖x∗‖ ≤ a and lim
n→∞

Fn0 = x∗, i.e.,

Fn0 converges uniformly to x∗ in [ρ(t1), σ
2(t3)]T. Furthermore, if there exists 0 < κ < 1 such

that

|f(t, l2) − f(t, l1)| ≤ κM |l2 − l1|, t ∈ T, 0 ≤ l1, l2 ≤ a.

Then ‖Fn+10 − x∗‖ ≤ κn

1−κ‖F0‖.

Proof. Set P [0, a] = {x ∈ P : ‖x‖ ≤ a}. Similarly to the proof of Theorem 3.1, we can know that

F : P [0, a] −→ P [0, a]. Let x̃1 = F0, then x̃1 ∈ P [0, a]. Denote x̃n+1(t) = Fx̃n, n = 1, 2, · · ·.
Copying the corresponding proof of Theorem 3.1, we can show that

x̃n+1(t) ≥ x̃n(t), t ∈ [ρ(t1), σ
2(t3)]T, n = 1, 2, · · · .

Since F is completely continuous, we can obtain that there exists x∗ ∈ P [0, a] such that

x̃n −→ x∗. The continuity of F and x̃n+1(t) = Fx̃n lead to Fx∗ = x∗. We note that f(t, 0) >

0, ∀ t ∈ T, it implies that the zero function is not the solution of problem (1.1). Therefore, x∗

is a positive solution of problem (1.1).

Now, since

|f(t, l2) − f(t, l1)| ≤ κM |l2 − l1|, t ∈ T, 0 ≤ l1, l2 ≤ a.

If x1, x2 ∈ P [0, a] and x2(t) ≥ x1(t), t ∈ [ρ(t1), σ
2(t3)]T, then

‖Fx2 − Fx1‖ = sup
t∈[ρ(t1),σ2(t3)]T

∣

∣

∣

∣

∣

∫ σ(t3)

ρ(t1)
G(t, s)[f(s, x2(s)) − f(s, x1(s))]∇s

∣

∣

∣

∣

∣

≤ κM sup
t∈[ρ(t1),σ2(t3)]T

∫ σ(t3)

ρ(t1)
G(t, s)|x2(s) − x1(s)|∇s

≤ κM‖x2 − x1‖M−1

= κ‖x2 − x1‖.
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Hence, we can deduce that

‖x̃n+2 − x̃n+1‖ = ‖Fx̃n+1 − Fx̃n‖ ≤ κn‖F0 − 0‖ = κn‖F0‖,

‖x̃n+k+2 − x̃n+1‖ ≤ (κn+k + κn+k−1 + · · · + κn)‖F0‖ <
κn

1 − κ
‖F0‖.

It implies that

‖Fn+10 − x∗‖ ≤ κn

1 − κ
‖F0‖.

The proof is completed.

4. Existence of n positive solutions

Theorem 4.1. Assume there exist 2n positive numbers a1, · · · , an, b1, · · · , bn with b1 < a1 < b2 <

a2 < · · · < bn < an such that

(E1) max{f(t, ai) : t ∈ T} ≤ aiM , min{f(t, γbi) : t ∈ [t2/α, t2]T} ≥ biN, i = 1, 2, · · · , n;

(E2) f(t, x1) ≤ f(t, x2) for any t ∈ T, 0 ≤ x1 ≤ x2 ≤ an.

Then BVP (1.1) has n positive solutions x∗
i , i = 1, 2, · · · , n such that bi ≤ ‖x∗

i ‖ ≤ ai and

lim
n→∞

Fnx̃i = x∗
i , i.e.,

lim
n→∞

sup
t∈[ρ(t1),σ2(t3)]T

|Fnx̃i(t) − x∗
i (t)| = 0,

where x̃i(t) ≡ ai, t ∈ [ρ(t1), σ
2(t3)]T, i = 1, 2, · · · , n.

Corollary 4.1. Assume that (H ′
1)-(H

′
2) hold, and the following condition is satisfied

(E′) there exist 2(n − 1) positive numbers a1 < b2 < a2 < · · · < bn−1 < an−1 < bn such that

max{f(t, ai) : t ∈ T} < aiM, i = 1, · · · , n − 1,

min{f(t, γbi) : t ∈ [t2/α, t2]T} > biN, i = 2, · · · , n.

Then BVP (1.1) has n positive solutions x∗
i , i = 1, 2, · · · , n, and there exists a positive number

an with an > bn such that lim
n→∞

Fnx̃i = x∗
i , where x̃i(t) ≡ ai, t ∈ [ρ(t1), σ

2(t3)]T, i = 1, 2, · · · , n.

5. Examples

Example 5.1. Let T = [0, 1
7 ] ∪ [14 , 1]. Considering the following BVP:

{

(x∆∇)∇(t) + f(t, x) = 0, t ∈ [0, 1]T,

x(ρ(0)) = 0 = x∆(ρ(0)), x∆(σ(1)) = 2x∆(1/4),
(5.1)

where f(t, x) = 2717
21591x2 + 1. It is easy to check that f(t, 0) = 1 > 0, for any t ∈ [0, 1]T.

By direct calculation, we have

d :=

∫ 1

0
∆τ − 2

∫ 1
4

0
∆τ =

1

2
, 1 < 2 = α <

∫ 1

0
∆τ

∫ 1
4

0
∆τ

= 4,

and
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M ′ =

[
∫ 1

0
g(s)∇s

]−1

=

[

6

∫ 1

0
s(1 − s)∇s

]−1

=

[

6

∫ 1
7

0
s(1 − s)ds + 6

∫ 1
4

ρ( 1
4
)
s(1 − s)∇s + 6

∫ 1

1
4

s(1 − s)ds

]−1

=

[

19

73
+ 6

(

1

4
− 1

7

)

1

4

(

1 − 1

4

)

+
54

43

]−1

= 1372
1399 .

Choose a = 3, it is easy to check that f(t, ·) : [0, 3] −→ [0,+∞) is nondecreasing for fixed

t ∈ [0, 1]T and

max
t∈[0,1]T

f(t, 3) =
2717 × 9

21591
+ 1 ≤ 3 · 1372

1399
.

Let x̃0(t) ≡ 0, for n = 0, 1, 2, · · ·, we have

x̃n+1(t) = 2

[

∫ 1
4

0

(

1

2
+ s

)(

2717

21591
x̃n(s) + 1

)

∇s +

∫ 1

1
4

(1 − s)

(

2717

21591
x̃n(s) + 1

)

∇s

]

∫ t

0
u∆u

−
∫ t

0

(
∫ t

s
(u − s)∆u

)(

2717

21591
x̃n(s) + 1

)

∇s.

By Theorem 3.2, BVP (5.1) has one positive solution x∗ such that 0 < ‖x∗‖ ≤ 3 and Fn0 −→ x∗.

On the other hand, for any 0 ≤ x1, x2 ≤ 3, we have

|f(x1) − f(x2)| = 2717
21591 |x2

1 − x2
2|

≤ 16302
21591 |x1 − x2| = 1372

1399 · 1399
1372

16302
21591 |x1 − x2|

= 22806498
29622852M ′|x1 − x2|.

Then

‖Fn+10 − x∗‖ ≤ (22806498
29622852 )n

1 − 22806498
29622852

‖F0‖.

The first and second terms of this scheme are as follows.

x̃0(t) = 0.

For t ∈ [0, 1/7],

x̃1(t) = t2

[

∫ 1
7

0

(

1

2
+ s

)

ds +

∫ 1
4

1
7

(

1

2
+ s

)

∇s +

∫ 1

1
4

(1 − s)ds

]

− 1
2

∫ t

0
(t − s)2ds

= 695
1568 t2 − t3

6 .

For t ∈ [1/4, 1], since

∫ t

s
(u − s)∆u =

∫ 1
7

s
(u − s)ds +

∫ 1
4

1
7

(u − s)∆s +

∫ t

1
4

(u − s)du

= −9
2×42×72 + (s−t)2

2 .
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Thus

∫ t

0

(
∫ t

s
(u − s)∆u

)

∇s =

∫ 1
7

0

[ −9

2 × 42 × 72
+

(s − t)2

2

]

ds +

∫ 1
4

1
7

[ −9

2 × 42 × 72
+

(s − t)2

2

]

∇s

+

∫ t

1
4

[ −9

2 × 42 × 72
+

(s − t)2

2

]

ds

= 27
21952 − 9t

784 + t3

6 .

Therefore, we have

x̃1(t) = 695
784

(

∫ 1
7

0
udu +

∫ 1
4

1
7

u∆u +

∫ t

1
4

udu

)

−
∫ t

0

(
∫ t

s
(u − s)∆u

)

∇s

= 695
784

(

−9
2×42×72 + t2

2

)

− 27
21952 + 9t

784 − t3

6

= − t3

6 + 695t2

1568 + 9t
784 − 23301

3687936 .

Example 5.2. Let T = {0, 1
4 , 1

3} ∪ [12 , 1]. Considering the following BVP on T

{

(x∆∇)∇(t) + 3
√

x(t) = 0, t ∈ [14 , 1]T,

x(ρ(1
4 )) = 0 = x∆(ρ(1

4 )), x∆(σ(1)) = 3
2x∆(1

2).
(5.2)

Some calculations lead to d = 1
4 , 1 < α = 3

2 < 2, γ = 1
240 .

By Example 5.1 in [18], we can know that

M =

[

sup
t∈[ρ( 1

4
),σ2(1)]T

∫ σ(1)

ρ( 1
4
)

G(t, s)∇s

]−1

=
3456

1877
,

N =

[

sup
t∈[ρ( 1

4
),σ2(1)]T

∫ 1
2

1
3

G(t, s)∇s

]−1

=
48

7
.

Choose a = 64, b =
√

39
1911 , it is easy to see that the nonlinear term f possesses the following

properties

(a) f : [0,+∞) −→ [0,+∞) is continuous;

(b) f(x1) ≤ f(x2) for any 0 ≤ x1 ≤ x2 ≤ 64;

(c) for any r ∈ (0, 1), there exists η0 > 0, such that

3
√

rx ≥ (1 + η0)r
3
√

x, x ∈ [0, 64];

(d) max{f(64)} = 3
√

64 ≤ 64 × 3456
1877 = aM , min{f( 1

240

√
39

1911 )} =
3

√

1
240

√
39

1911 ≥
√

39
1911 × 48

7 = bN .

By Theorem 3.1, BVP (5.2) has a unique positive solution x∗ such that
√

39
1911 ≤ ‖x∗‖ ≤ 64 and

lim
n→∞

Fnx̃ = x∗, where x̃(t) ≡ 64, t ∈ [0, 1]T.

Let x0(t) ≡ 64, t ∈ [0, 1]T. For n = 0, 1, 2, · · ·, we have

x̃n+1(t) = 2

[

∫ 1
4

0

(

1

2
+ s

)

3
√

xn(s)∇s +

∫ 1

1
4

(1 − s) 3
√

xn(s)∇s

]

∫ t

0
u∆u

−
∫ t

0

(
∫ t

s
(u − s)∆u

)

3
√

xn(s)∇s.
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Remark 5.1. We note that f(0) = 0 in Example 5.2, however, the condition (C2) in Theorem

3.2 asserts that f(0) > 0, we cannot solve Example 5.2 by use of Theorem 3.2. Thus, Theorem

3.1 and Theorem 3.2 do not contain each other. Furthermore, by Theorem 3.2 in [16], Theorem

3.2 and Theorem 3.4 in [17], and Theorem 3.1 in [18], the existence and uniqueness of positive

solutions for BVP (5.1) and (5.2) can be obtained, however, we cannot give a way to find the

solutions which will be useful from an application viewpoint. Therefore, our theorems improve

and extend the main results of [16-18].
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