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Abstract. In this article, we investigate the boundary-value problem{
x′′(t) + h(t) f (x(t)) = 0, t ∈ [0, 1],
x(0) = βx′(0), x(1) = x(η),

where β ≥ 0, η ∈ (0, 1), f ∈ C([0, ∞), [0, ∞)) is nondecreasing, and importantly h
changes sign on [0, 1]. By the Guo–Krasnosel’skiı̆ fixed-point theorem in a cone, the
existence of positive solutions is obtained via a special cone in terms of superlinear or
sublinear behavior of f .
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1 Introduction

For the first time Liu [7] considered the existence of positive solutions to the following second-
order three-point boundary value problems{

x′′(t) + λh(t) f (x(t)) = 0, t ∈ [0, 1],

x(0) = 0, x(1) = δx(η),
(1.1)

where λ is a positive parameter, η ∈ (0, 1), f ∈ C([0, ∞), [0, ∞)) is nondecreasing, δ ∈ (0, 1)
and h(t) is continuous and especially changes sign on [0, 1] which is different from the non-
negative assumption in most of these studies.

Karaca [4] studied the problems with more general boundary conditions{
x′′(t) + h(t) f (x(t)) = 0, t ∈ [0, 1],

αx(0) = βx′(0), x(1) = δx(η),
(1.2)
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where α ≥ 0, β ≥ 0, α + β > 0 with 0 < δ < 1, f , h as in (1.1).
The authors of [4, 7] showed the existence of at least one positive solution by applying the

fixed-point theorem in a cone. Similar methods for a different problem are in [9]. Let E be
a Banach space, the nonempty subset P is called a cone in E if it is a closed convex set and
satisfies the properties that λx ∈ P for any λ > 0, x ∈ P and that ±x ∈ P implies x = 0 (the
zero element in E) (see [3]).

In [4] the author denoted

C+
0 [0, 1] =

{
x ∈ C[0, 1] : min

t∈[0,1]
x(t) ≥ 0, and αx(0) = βx′(0), x(1) = δx(η)

}
and defined

P =
{

x ∈ C+
0 [0, 1] : x(t) is concave on [0, η] and convex on [η, 1]

}
.

In fact, P is not a cone since it is not a closed set in C[0, 1]. For example, for n > 3 let

xn(t) =


t + 1, 0 ≤ t ≤ 1

n ,
1
n + 1, 1

n < t ≤ 1
3 ,

6
( 1

2 +
1
n

) ( 1
2 − t

)
+ 1

2 , 1
3 < t ≤ 1

2 ,
3
4 −

t
2 , 1

2 < t ≤ 1,

x0(t) =


1, 0 ≤ t ≤ 1

3 ,

3
( 1

2 − t
)
+ 1

2 , 1
3 < t ≤ 1

2 ,
3
4 −

t
2 , 1

2 < t ≤ 1.

Obviously, xn ∈ P for α = β = 1, δ = 1/2 and xn → x0 in C[0, 1] since {xn(t)} uniformly
converges to x0(t) on [0, 1]. But x0 6∈ P because x0(0) = 1 6= 0 = x′0(0). However the
conclusions in [4] are actually true only if αx(0) = βx′(0) is removed in C+

0 [0, 1] which is not
needed in the proof of [4, Lemma 2.2] by using of the concavity.

A question is whether one can have boundary condition x(1) = δx(η) with δ <

(β + 1)/(β + η) in problem (1.2) with α = 1, which is the necessary condition when f ≥ 0.
We only consider one (less complicated) special case δ = 1. If α = 0, the corresponding linear
problem for g ∈ C[0, 1] will be{

x′′(t) + g(t) = 0, t ∈ [0, 1],

x′(0) = 0, x(1) = x(η),
(1.3)

which is a resonance problem. So it is acceptable that α > 0 and may be supposed to be
α = 1. For that reason, we investigate the existence of positive solutions to the three-point
boundary-value problem {

x′′(t) + h(t) f (x(t)) = 0, t ∈ [0, 1],

x(0) = βx′(0), x(1) = x(η),
(1.4)

where β ≥ 0, η ∈ (0, 1), f ∈ C([0, ∞), [0, ∞)), h(t) is continuous and is sign changing on
[0, 1]. The existence of positive solutions is obtained via a special cone (see (2.5)) in terms
of superlinear or sublinear behavior of f by the Guo–Krasnosel’skiı̆ fixed-point theorem in a
cone. The ideas here are similar to the papers [4, 7] and [9], but note that the signs on h are
opposite to those in [4, 7]. Other relevant research can be seen in [1, 2, 5, 8, 10].
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2 Preliminaries

We will use the following assumptions.

(H1) h : [0, 1] → R is continuous and such that h(t) ≤ 0, t ∈ [0, η]; h(t) ≥ 0, t ∈ [η, 1].
Moreover, h(t) does not vanish identically on any subinterval of [0, 1].

(H2) f ∈ C([0, ∞), [0, ∞)) is continuous and nondecreasing.

(H3) There exists a constant τ ∈
( 1+η

2 , 1
)

such that Aρh(τ − ρt) + h(t) ≥ 0 for t ∈ [0, η] and
ρ = τ−η

η , where

A =


β(1−τ)(1−η)

2+β−η , β 6= 0,
(1−τ)η2

1+η , β = 0.
(2.1)

Remark 2.1. The following example indicates that (H3) is reasonable. If we take η = 1/5,
τ = 4/5 ∈ (3/5, 1), ρ = 3 and

h(t) =

{
t− 1/5, t ∈ [0, 1/5],

(125/2)(t− 1/5), t ∈ (1/5, 1],

then

A =

{
2/125, β = 1/5,

1/150, β = 0.

It is easy to see for t ∈ [0, 1/5] that Aρh(τ − ρt) + h(t) = 8(1/5− t) ≥ 0 when β = 1/5 and
Aρh(τ − ρt) + h(t) = (11/4)(1/5− t) ≥ 0 when β = 0.

Lemma 2.2. For g ∈ C[0, 1], {
x′′(t) + g(t) = 0, t ∈ [0, 1],

x(0) = βx′(0), x(1) = x(η)
(2.2)

has the unique solution

x(t) =
∫ 1

0
G1(t, s)g(s)ds +

β

1− η

∫ 1

0
G2(η, s)g(s)ds +

t
1− η

∫ 1

0
G1(η, s)g(s)ds,

where

G1(t, s) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1,

(1− s)t, 0 ≤ t < s ≤ 1,
G2(η, s) =

{
1− η, 0 ≤ s ≤ η,

1− s, η < s ≤ 1.

Proof. By Taylor expansion we have

x(t) = a0 + a1t +
∫ t

0
(t− s)x′′(s)ds = a0 + a1t−

∫ t

0
(t− s)g(s)ds (2.3)

and

x(0) = a0, x(1) = a0 + a1 −
∫ 1

0
(1− s)g(s)ds,

x(η) = a0 + a1η −
∫ η

0
(η − s)g(s)ds, x′(0) = a1.
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The boundary conditions imply that a0 = βa1 and

a0 + a1 −
∫ 1

0
(1− s)g(s)ds = a0 + a1η −

∫ η

0
(η − s)g(s)ds,

thus

a1 =
1

1− η

∫ 1

0
(1− s)g(s)ds− 1

1− η

∫ η

0
(η − s)g(s)ds,

a0 =
β

1− η

∫ 1

0
(1− s)g(s)ds− β

1− η

∫ η

0
(η − s)g(s)ds.

It follows from (2.3) that

x(t) =
β + t
1− η

∫ 1

0
(1− s)g(s)ds− β + t

1− η

∫ η

0
(η − s)g(s)ds−

∫ t

0
(t− s)g(s)ds

=

(
t +

β + ηt
1− η

) ∫ 1

0
(1− s)g(s)ds + (β + st)

∫ η

0
g(s)ds− β + ηt

1− η

∫ η

0
(1− s)g(s)ds

+
∫ t

0
(1− t)sg(s)ds−

∫ t

0
(1− s)tg(s)ds

=
∫ 1

t
(1− s)tg(s)ds +

∫ 1

η

β + ηt
1− η

(1− s)g(s)ds

+
∫ η

0
(β + st)g(s)ds +

∫ t

0
(1− t)sg(s)ds

=
∫ 1

0
G1(t, s)g(s)ds +

β

1− η

(∫ η

0
(1− η)g(s)ds +

∫ 1

η
(1− s)g(s)ds

)
+

t
1− η

(∫ η

0
(1− η)sg(s)ds +

∫ 1

η
(1− s)ηg(s)ds

)
=
∫ 1

0
G1(t, s)g(s)ds +

β

1− η

∫ 1

0
G2(η, s)g(s)ds +

t
1− η

∫ 1

0
G1(η, s)g(s)ds,

and hence the proof is complete.

For t, s ∈ [0, 1] let

G(t, s) = G1(t, s) +
β

1− η
G2(η, s) +

t
1− η

G1(η, s). (2.4)

Lemma 2.3. If s1 ∈ [0, η] and s2 ∈ [η, τ], then

G1(η, s2) ≥ AG1(η, s1), G(t, s2) ≥ AG(t, s1), ∀t ∈ [0, 1],

where τ and A are as in (H3).

Proof. In the case whether β = 0 or β 6= 0,

G1(η, s2)

G1(η, s1)
=

(1− s2)η

(1− η)s1)
≥ (1− τ)η

(1− η)η)
=

1− τ

1− η
≥ A.
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When β 6= 0,

G(t, s2)

G(t, s1)
=

G1(t, s2) +
β

1−η G2(η, s2) +
t

1−η G1(η, s2)

G1(t, s1) +
β

1−η G2(η, s1) +
t

1−η G1(η, s1)

≥
β

1−η G2(η, s2)

G1(t, s1) +
β

1−η G2(η, s1) +
t

1−η G1(η, s1)

≥
β

1−η (1− s2)(1− η)

(1− s1) +
β

1−η (1− s1) +
1

1−η (1− s1)

=
β(1− s2)(

1 + β+1
1−η

)
(1− s1)

≥ β(1− τ)

1 + β+1
1−η

=
β(1− τ)(1− η)

2 + β− η
;

when β = 0,

G(t, s2)

G(t, s1)
=

G1(t, s2) +
t

1−η G1(η, s2)

G1(t, s1) +
t

1−η G1(η, s1)
≥

t
1−η G1(η, s2)

G1(t, s1) +
t

1−η G1(η, s1)

≥
t

1−η G1(η, s2)

(1− s1)t + t
1−η G1(η, s1)

=

1
1−η G1(η, s2)

(1− s1) +
1

1−η G1(η, s1)

≥
1

1−η s2η(1− η)(1− s2)

1 + 1
1−η s1(1− η)

≥ (1− τ)η2

1 + η
.

Thus the proof is finished.

In C[0, 1] with the norm ‖x‖ = maxt∈[01] |x(t)| for x ∈ C[0, 1], denote

X =

{
x ∈ C[0, 1] : min

t∈[0,1]
x(t) ≥ 0, and x(0) ≤ x(η), x(1) = x(η)

}
,

P = {x ∈ X : x(t) is convex on [0, η] and is concave on [η, 1]}. (2.5)

Obviously, P is a cone in C[0, 1].

Lemma 2.4. If x ∈ P, then x(t) ≤ x(η) = mint∈[η,1] x(t) for t ∈ [0, η].

Lemma 2.5. If x ∈ P, then

x(t) ≥ 1− τ

2(1− η)
‖x‖ for t ∈

[
τ,

1 + τ

2

]
,

where τ is as in (H3).

Proof. By Lemma 2.4 we have ‖x‖ = maxt∈[η,1] x(t) and denote

µ = sup{ξ ∈ [η, 1] : x(ξ) = ‖x‖}.

Notice that x(t) is concave on [η, 1]. For t ∈ [η, µ),

x(µ)− x(η)
µ− η

≥ x(µ)− x(t)
µ− t
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and

x(t) ≥ (t− η)x(µ) + (µ− t)x(η)
µ− η

≥ t− η

µ− η
‖x‖ ≥ t− η

1− η
‖x‖;

for t ∈ (µ, 1],
x(t)− x(µ)

t− µ
≥ x(1)− x(µ)

1− µ

and

x(t) ≥ (t− µ)x(1) + (1− t)x(µ)
1− µ

≥ 1− t
1− η

‖x‖ =
(

1− t− η

1− η

)
‖x‖.

Therefore,

x(t) ≥ min
{

t− η

1− η
, 1− t− η

1− η

}
‖x‖, ∀t ∈ [η, 1]

and hence

x(t) ≥ min
{

τ − η

1− η
,

1− τ

2(1− η)

}
‖x‖ = 1− τ

2(1− η)
‖x‖, ∀t ∈

[
τ,

1 + τ

2

]
since [τ, 1+τ

2 ] ⊂ [η, 1].

Lemma 2.6. Suppose that (H1)–(H3) are satisfied. If x ∈ P, then∫ τ

0
G(t, s)h(s) f (x(s))ds ≥ 0 (∀t ∈ [0, 1]) and

∫ τ

0
G1(η, s)h(s) f (x(s))ds ≥ 0,

where τ is as in (H3).

Proof. For s ∈ [η, τ] let s = τ − ρz, here ρ = (τ − η)/η, then z ∈ [0, η]. By Lemma 2.3,
Lemma 2.4, (H1) and (H3), we have∫ τ

η
G(t, s)h(s) f (x(s))ds = ρ

∫ η

0
G(t, τ − ρz)h(τ − ρz) f (x(τ − ρz))dz

≥ Aρ
∫ η

0
G(t, z)h(τ − ρz) f (x(τ − ρz))dz

≥ Aρ
∫ η

0
G(t, z)h(τ − ρz) f (x(z))dz

≥ −
∫ η

0
G(t, z)h(z) f (x(z))dz = −

∫ η

0
G(t, s)h(s) f (x(s))ds

and hence ∫ τ

0
G(t, s)h(s) f (x(s))ds ≥ 0.

By the same way, the other inequality holds.

3 Main results

For x ∈ P define the operator T as the following:

(Tx)(t) =
∫ 1

0
G(t, s)h(s) f (x(s))ds, (3.1)

where G(t, s) is in (2.4).
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Lemma 3.1. If (H1)–(H3) are satisfied, then T : P → P is completely continuous, where P is the cone
defined by (2.5) in C[0, 1].

Proof. If x ∈ P, it is clear that (Tx)(t) is continuous on [0, 1] and for t ∈ [0, 1],

(Tx)(t) =
∫ τ

0
G(t, s)h(s) f (x(s))ds +

∫ 1

τ
G(t, s)h(s) f (x(s))ds ≥ 0

by Lemma 2.6. Moreover, direct calculations by virtue of (2.4), (3.1) and Lemma 2.6 yield

(Tx)(η) =
1

1− η

∫ 1

0
G1(η, s)h(s) f (x(s))ds +

β

1− η

∫ 1

0
G2(η, s)g(s) f (x(s))ds = (Tx)(1),

(Tx)(η)− (Tx)(0) =
1

1− η

∫ 1

0
G1(η, s)h(s) f (x(s))ds

=
1

1− η

( ∫ τ

0
G1(η, s)h(s) f (x(s))ds +

∫ 1

τ
G1(η, s)g(s) f (x(s))ds

)
≥ 0.

Meanwhile (Tx)′′(t) = −h(t) f (x(t)) ≥ 0 for t ∈ [0, η] and (Tx)′′(t) ≤ 0 for t ∈ [η, 1], i.e.,
(Tx)(t) is convex on [0, η] and is concave on [η, 1] respectively. These mean that T : P → P.
At last, we know that T is completely continuous from the Arzelà–Ascoli theorem.

It follows from Lemma 2.2 that there exists a positive solution to (1.4) if and only if T has
a fixed point in P. In order to prove the existence of positive solution we need the following
Guo-Krasnosel’skiı̆ fixed point theorem in the cone [3, 6].

Lemma 3.2. Let E be a Banach space and P be a cone in E. Suppose that Ω1 and Ω2 are bounded open
sets in E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. If T : P ∩ (Ω2\Ω1) → P is a completely continuous operator
and satisfies either

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω2; or

(ii) ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2,

then T has a fixed point in P ∩ (Ω2\Ω1).

Theorem 3.3. Suppose that (H1)–(H3) are satisfied. If

lim
u→0+

f (u)/u = 0, (3.2)

lim
u→∞

f (u)/u = ∞, (3.3)

then (1.4) has at least one positive solution.

Proof. Let P and T be respectively as (2.5) and (3.1).
By (3.2) there exists r1 > 0 such that f (u) ≤ ε1u for u ∈ [0, r1], where ε1 > 0 satisfies

ε1 max
t∈[0,1]

∫ 1

η
G(t, s)h(s)ds ≤ 1. (3.4)
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Denote Ω1 = {x ∈ C[0, 1] : ‖x‖ < r1} and hence from (H1) and (3.4) we have that
∀x ∈ P ∩ ∂Ω1,

(Tx)(t) =
∫ η

0
G(t, s)h(s) f (x(s)) +

∫ 1

η
G(t, s)h(s) f (x(s))ds

≤
∫ 1

η
G(t, s)h(s) f (x(s))ds ≤ ε1

∫ 1

η
G(t, s)h(s)x(s)ds

≤ ε1‖x‖
∫ 1

η
G(t, s)h(s)ds ≤ r1, t ∈ [0, 1],

that is, ‖Tx‖ ≤ ‖x‖.
By (3.3) there exists R̃1 > 0 such that f (u) ≥ Λ1u for u ≥ R̃1, where Λ1 > 0 satisfies

Λ1
1− τ

2(1− η)
max
t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s)ds ≥ 1. (3.5)

Denote Ω2 = {x ∈ C[0, 1] : ‖x‖ < R1}, where

R1 = max
{

2r1, R̃1
2(1− η)

1− τ

}
, (3.6)

and hence by Lemma 2.5 and (3.6) we have that ∀x ∈ P ∩ ∂Ω2,

x(t) ≥ 1− τ

2(1− η)
‖x‖ = 1− τ

2(1− η)
R1 ≥ R̃1 for t ∈

[
τ,

1 + τ

2

]
. (3.7)

Consequently, it follows from Lemma 2.6, (3.7) and (3.5) that ∀x ∈ P ∩ ∂Ω2,

‖Tx‖ = max
t∈[0,1]

(∫ τ

0
G(t, s)h(s) f (x(s)) +

∫ 1

τ
G(t, s)h(s) f (x(s))ds

)
≥ max

t∈[0,1]

∫ 1

τ
G(t, s)h(s) f (x(s))ds ≥ max

t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s) f (x(s))ds

≥ max
t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s)Λ1x(s)ds

≥ Λ1
1− τ

2(1− η)
‖x‖ max

t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s)ds ≥ ‖x‖.

By Lemma 3.1 and Lemma 3.2 T has at least one fixed point in P ∩ (Ω2\Ω1) which is the
positive solution to (1.4).

Theorem 3.4. Suppose that (H1)–(H3) are satisfied. If

lim
u→0+

f (u)/u = ∞, (3.8)

lim
u→∞

f (u)/u = 0, (3.9)

then (1.4) has at least one positive solution.

Proof. Let P and T be respectively as (2.5) and (3.1).
By (3.8) there exists r2 > 0 such that f (u) ≥ Λ2u for u ∈ [0, r2], where Λ2 > 0 satisfies

Λ2
1− τ

2(1− η)
max
t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s)ds ≥ 1. (3.10)
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Denote Ω1 = {x ∈ C[0, 1] : ‖x‖ < r2} and hence from Lemma 2.6 and Lemma 2.5 we have
that ∀x ∈ P ∩ ∂Ω1,

‖Tx‖ = max
t∈[0,1]

(∫ τ

0
G(t, s)h(s) f (x(s)) +

∫ 1

τ
G(t, s)h(s) f (x(s))ds

)
≥ max

t∈[0,1]

∫ 1

τ
G(t, s)h(s) f (x(s))ds ≥ max

t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s) f (x(s))ds

≥ max
t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s)Λ2x(s)ds

≥ Λ2
1− τ

2(1− η)
‖x‖ max

t∈[0,1]

∫ (1+τ)/2

τ
G(t, s)h(s)ds ≥ ‖x‖.

By (3.9) there exists R̃2 > 0 such that f (u) ≤ ε2u for u ≥ R̃2, where ε2 > 0 satisfies

ε2 max
t∈[0,1]

∫ 1

η
G(t, s)h(s)ds ≤ 1. (3.11)

If f is bounded, then there exists a constant M > 0 such that f (u) ≤ M for u ≥ 0 and
denote Ω2 = {x ∈ C[0, 1] : ‖x‖ < R2} in this case, where

R2 = max
{

2r2, M max
t∈[0,1]

∫ 1

η
G(t, s)h(s)ds

}
, (3.12)

and hence from (H1) and (3.12) we have that ∀x ∈ P ∩ ∂Ω2,

(Tx)(t) =
∫ η

0
G(t, s)h(s) f (x(s)) +

∫ 1

η
G(t, s)h(s) f (x(s))ds

≤
∫ 1

η
G(t, s)h(s) f (x(s))ds ≤ M max

t∈[0,1]

∫ 1

η
G(t, s)h(s)ds ≤ R2, t ∈ [0, 1],

that is, ‖Tx‖ ≤ ‖x‖.
For the case when f is unbounded, take R2 = max{2r2, R̃2} and thus f (u) ≤ f (R2) for

u ∈ [0, R2] by the monotonicity of f . Therefore from (H1) and (3.11) we have that ∀x ∈ P∩ ∂Ω2,

(Tx)(t) =
∫ η

0
G(t, s)h(s) f (x(s)) +

∫ 1

η
G(t, s)h(s) f (x(s))ds

≤
∫ 1

η
G(t, s)h(s) f (x(s))ds ≤ f (R2) max

t∈[0,1]

∫ 1

η
G(t, s)h(s)ds

≤ ε2R2 max
t∈[0,1]

∫ 1

η
G(t, s)h(s)ds ≤ R2, t ∈ [0, 1],

which implies ‖Tx‖ ≤ ‖x‖ also.
By Lemma 3.1 and Lemma 3.2 T has at least one fixed point in P ∩ (Ω2\Ω1) which is the

positive solution to (1.4).
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