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POSITIVE SOLUTIONS OF THE (n − 1, 1) CONJUGATE BOUNDARY

VALUE PROBLEM

BO YANG

Abstract. We consider the (n−1, 1) conjugate boundary value problem. Some upper estimates
to positive solutions for the problem are obtained. We also establish some explicit sufficient
conditions for the existence and nonexistence of positive solutions of the problem.

1. Introduction

In this paper we consider the (n − 1, 1) conjugate boundary value problem

u(n)(t) + g(t)f(u(t)) = 0, 0 ≤ t ≤ 1, (1.1)

u(i)(0) = u(1) = 0, i = 0, 1, · · · , n − 2. (1.2)

Throughout this paper, we assume that

(H1) n ≥ 3 is a fixed integer, and f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are continuous

functions.

The Green’s function G : [0, 1] × [0, 1] → [0,∞) for the problem (1.1)-(1.2) is given by

G(t, s) =
1

(n − 1)!

{

tn−1(1 − s)n−1 − (t − s)n−1, t ≥ s,
tn−1(1 − s)n−1, s ≥ t.

And the problem (1.1)-(1.2) is equivalent to the integral equation

u(t) =

∫ 1

0
G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (1.3)

The (n − 1, 1) conjugate problem and its various generalizations have been considered by

many authors. For example, in 1997, Eloe and Henderson [1] considered the problem (1.1)-(1.2)

and obtained some existence results for positive solutions to the problem. If n = 2, then the

problem (1.1)-(1.2) reduces to the second order problem

u′′(t) + g(t)f(u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u(1) = 0,

which has been extensively studied by many authors, including Graef and Yang [2].
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In 2009, Webb [4] considered a nonlocal version of the (n − 1, 1) conjugate problem. He

obtained a lower estimate for the Green’s function G(t, s), based on which a lower estimate to

positive solutions for the problem (1.1)-(1.2) can be proved (see Lemmas 2.8 and 2.9 below).

However, to our knowledge, no satisfactory upper estimates to positive solutions for the problem

(1.1)-(1.2) have been obtained in the literature. We know that upper and lower estimates for

positive solutions of boundary value problems have important applications. For example, once

we find some a priori upper and lower estimates for positive solutions of a certain boundary

value problem, we can use them together with the Krasnosell’skii fixed point theorem to derive

a set of existence and nonexistence conditions for positive solutions of the problem (See [5] for

a paper taking this approach). With this motivation, we in this paper make a further study

of positive solutions to the problem (1.1)-(1.2). Our main goal is to develop some new upper

estimates for positive solutions of the problem (1.1)-(1.2). Here, by a positive solution, we mean

a solution u(t) such that u(t) > 0 on (0, 1). Since the case n = 2 is a well-studied case, we in

this paper assume that n ≥ 3.

Throughout the paper, we let X = C[0, 1] be equipped with the supremum norm

‖v‖ = max
t∈[0,1]

|v(t)|, for all v ∈ X.

Obviously X is a Banach space. Also, we define

F0 = lim sup
x→0+

f(x)

x
, f0 = lim inf

x→0+

f(x)

x
,

F∞ = lim sup
x→+∞

f(x)

x
, f∞ = lim inf

x→+∞

f(x)

x
.

These constants will be used later in the statements of our existence and nonexistence theorems.

This paper is organized as follows. In Section 2, we obtain some new upper estimates to

positive solutions to the (n − 1, 1) conjugate problem, and discuss some lower estimates from

the literature. In Section 3, we establish some explicit sufficient conditions for the existence and

nonexistence of positive solutions to the problem.

2. Upper and Lower Estimates for Positive Solutions

Throughout the paper we define the constants

p =
(n − 1)n−1

(n − 1)n−1 + (n − 2)n−2
, q =

n − 2

n − 1
.
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We also define the functions w1 : [0, 1] → [0,+∞) and w2 : [0, 1] → [0,∞) by

w1(t) =

{

(n − 1)n−1(n − 2)2−n(tn−2 − tn−1), if t ≥ p,

tn−1, if t ≤ p,

and

w2(t) =

{

(n − 1)n−1(n − 2)2−n(tn−2 − tn−1), if t ≤ q,

1, if t ≥ q.

The functions w1(t) and w2(t) will be used to estimate positive solutions of the problem (1.1)-

(1.2). It is easy to see that ‖w2‖ = 1 and that both w1(t) and w2(t) are continuous functions.

An equivalent definition for the function w1(t) is

w1(t) = min{tn−1, (n − 1)n−1(n − 2)2−n(tn−2 − tn−1)}, 0 ≤ t ≤ 1.

The function w1(t) first appeared in [4]. It can be shown that

w1(t) ≤ w2(t), 0 ≤ t ≤ 1. (2.1)

The verification of (2.1) is straightforward and is therefore left to the reader.

Lemma 2.1. If u ∈ Cn[0, 1] satisfies (1.2), and

u(n)(t) ≤ 0 for 0 ≤ t ≤ 1, (2.2)

then u(t) ≥ 0 for 0 ≤ t ≤ 1.

Proof. It is well known that the Green’s function G(t, s) has the property

G(t, s) > 0 for (t, s) ∈ (0, 1) × (0, 1).

If u(n)(t) ≤ 0 on [0, 1], then

u(t) =

∫ 1

0
G(t, s)(−u(n)(s))ds ≥ 0, 0 ≤ t ≤ 1.

The proof of the lemma is complete. �

The next lemma was proved by Eloe and Henderson in [1].

Lemma 2.2. If u ∈ Cn[0, 1] satisfies (1.2) and (2.2), and u(t0) > 0 for some t0 ∈ (0, 1), then

u(t) > 0 for 0 < t < 1, (2.3)

and there exists c ∈ (0, 1) such that u′(c) = 0,

u′(t) > 0 for 0 < t < c, and u′(t) < 0 for c < t < 1. (2.4)

In other words, c is the unique zero of u′ in (0, 1).
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The next lemma provides a new upper estimate for functions satisfying (1.2), (2.2), and (2.3).

Lemma 2.3. Suppose that u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3). Let c be the unique zero

of u′ in (0, 1), then

u(t) ≤ β(t)‖u‖ for 0 ≤ t ≤ 1, (2.5)

where

β(t) =
tn−2

cn−1
((n − 1)c − (n − 2)t), 0 ≤ t ≤ 1.

Proof. We see from Lemma 2.2 that u(c) = ‖u‖. The inequality in (2.5) is trivial for t = 0,

t = c, and t = 1. We need only to show that the inequality holds for 0 < t < c and c < t < 1.

Let x ∈ (0, c) ∪ (c, 1) be a fixed number. Define

h(t) = u(t) − β(t)u(c) − (u(x) − β(x)u(c))
tn−2(t − c)2

xn−2(x − c)2
, 0 ≤ t ≤ 1.

It is easy to verify the following facts:

h(0) = h′(0) = · · · = h(n−3)(0) = 0,

h(c) = h′(c) = 0, h(x) = 0.

h(n)(t) = u(n)(t) − (u(x) − β(x)u(c))
n!

xn−2(x − c)2
, 0 ≤ t ≤ 1.

We take two cases to continue the proof.

Case I: 0 < x < c. In this case, because h(0) = h(x) = h(c) = 0, there exist t1 ∈ (0, x) and

s1 ∈ (x, c) such that h′(t1) = h′(s1) = 0.

Because h′(0) = h′(t1) = h′(s1) = h′(c) = 0, there exist t2 ∈ (0, t1), s2 ∈ (t1, s1), and

r2 ∈ (s1, c) such that h′′(t2) = h′′(s2) = h′′(r2) = 0.

Because h′′(0) = h′′(t2) = h′′(s2) = h′′(r2) = 0, there exist t3 ∈ (0, t2), s3 ∈ (t2, s2), and

r3 ∈ (s2, r2) such that h′′′(t3) = h′′′(s3) = h′′′(r3) = 0.

If we continue this procedure, we can show that for each i = 2, 3, · · · , n− 2, there exist ti, si,

and ri such that 0 < ti < si < ri < c and h(i)(ti) = h(i)(si) = h(i)(ri) = 0.

In particular, we have h(n−2)(tn−2) = h(n−2)(sn−2) = h(n−2)(rn−2) = 0. This implies that

there exist tn−1 ∈ (tn−2, sn−2) and sn−1 ∈ (sn−1, rn−2) such that h(n−1)(tn−1) = h(n−1)(sn−1) =

0. Because h(n−1)(tn−1) = h(n−1)(sn−1) = 0, there exists tn ∈ (tn−1, sn−1) such that h(n)(tn) = 0,

which implies that

0 = u(n)(tn) − (u(x) − β(x)u(c))
n!

xn−2(x − c)2
.

The above equation implies that

u(x) − β(x)u(c) =
u(n)(tn)

n!
xn−2(x − c)2 ≤ 0.
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In summary, if 0 < x < c then u(x) ≤ β(x)u(c). Hence, the inequality in (2.5) holds for

0 < t < c.

Case II: c < x < 1. In this case, because h(0) = h(c) = h(x) = 0, there exist t1 ∈ (0, c) and

s1 ∈ (c, x) such that h′(t1) = h′(s1) = 0.

Because h′(0) = h′(t1) = h′(c) = h′(s1) = 0, there exist t2 ∈ (0, t1), s2 ∈ (t1, c), and

r2 ∈ (c, s1) such that h′′(t2) = h′′(s2) = h′′(r2) = 0. If we continue from here and follow the

same lines as in Case I, we can show that u(x) ≤ β(x)u(c) for c < x < 1. The proof in Case II

is now complete.

In summary, we have u(t) ≤ β(t)u(c) for t ∈ (0, c) ∪ (c, 1). The proof of the lemma is

complete. �

As a by-product of Lemma 2.3, we have

Lemma 2.4. Suppose that u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3). Let c be the unique zero

of u′ in (0, 1). Then q ≤ c ≤ 1.

Proof. By Lemma 2.3 we have

0 ≤ u(t) ≤ β(t)u(c), 0 ≤ t ≤ 1.

Substituting t = 1 into the above inequality gives

0 ≤
u(c)

cn−1
((n − 1)c − (n − 2)).

This implies that (n− 1)c− (n− 2) ≥ 0. Hence c ≥ (n− 2)/(n− 1). The proof is complete. �

Lemma 2.4 is interesting in its own right. The following lower estimate was given in [1].

Lemma 2.5. Suppose that u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3). Let c be the unique zero

of u′ in (0, 1). Then

u(t) ≥ u(c)min{(t/c)n−1, (1 − t)/(1 − c)}, 0 ≤ t ≤ 1. (2.6)

Combining Lemmas 2.4 and 2.5, we get

Lemma 2.6. If u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3), then

u(t) ≥ ‖u‖γ(t), 0 ≤ t ≤ 1, (2.7)

where γ(t) = min{tn−1, (n − 1)(1 − t)}, 0 ≤ t ≤ 1.

Proof. Let c be the unique zero of u′ in (0, 1). By Lemma 2.4, we have (n− 2)/(n− 1) ≤ c ≤ 1.

For 0 ≤ t ≤ c we have

u(t) ≥ ‖u‖(t/c)n−1 ≥ ‖u‖tn−1 ≥ ‖u‖γ(t).
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For c ≤ t ≤ 1 we have

u(t) ≥ ‖u‖
1 − t

1 − c
≥ ‖u‖

1 − t

1 − (n − 2)/(n − 1)
= ‖u‖(n − 1)(1 − t) ≥ ‖u‖γ(t).

The proof is complete. �

Both Lemmas 2.5 and 2.6 provide a lower estimate to functions satisfying (1.2), (2.2), and

(2.3). The difference is that the lower estimate in Lemma 2.5 depends on the unique zero c of

u′ in (0, 1), while the lower estimate in Lemma 2.6 does not. If we know where c is, then (2.6)

is a better estimate that (2.7). However, if we don’t know where c is, then we have to do with

(2.7).

Lemma 2.7. If u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3), then

u(t) ≤ ‖u‖w2(t), 0 ≤ t ≤ 1. (2.8)

Proof. It is obvious that u(t) ≤ ‖u‖w2(t) for q ≤ t ≤ 1. We need only to show that u(t) ≤

‖u‖w2(t) for 0 ≤ t ≤ q. Let c be the unique zero of u′ in (0, 1). We have q ≤ c and u(c) = ‖u‖.

If we define

h(t) = w2(t)u(c) − u(t), 0 ≤ t ≤ q,

then we have h(0) = h′(0) = h′′(0) = · · · = h(n−3)(0) = 0, and

h(n)(t) = −u(n)(t) ≥ 0, 0 ≤ t ≤ q. (2.9)

We also note that

h(q) = w2(q)u(c) − u(q) = u(c) − u(q) ≥ 0,

h′(q) = w′
2(q)u(c) − u′(q) = −u′(q) ≤ 0.

To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ q. Assume the contrary

that h(t0) < 0 for some t0 ∈ (0, q). Because h(0) = 0 > h(t0) and h(t0) < 0 ≤ h(q), there exist

t1 ∈ (0, t0) and s1 ∈ (t0, q) such that h′(t1) < 0 and h′(s1) > 0.

Because h′(0) = 0 > h′(t1), h′(t1) < 0 < h′(s1), and h′(s1) > 0 ≥ h′(q), there exist t2 ∈ (0, t1),

s2 ∈ (t1, s1), and r2 ∈ (s1, q) such that h′′(t2) < 0, h′′(s2) > 0, and h′′(r2) < 0.

Because h′′(0) = 0 > h′′(t2), h′′(t2) < 0 < h′′(s2), and h′′(s2) > 0 > h′′(r2), there exist

t3 ∈ (0, t2), s3 ∈ (t2, s2), and r3 ∈ (s2, r2) such that h′′′(t3) < 0, h′′′(s3) > 0, and h′′′(r3) < 0.

If we continue this procedure, then finally we can show that there exist tn−2, sn−2, and rn−2

such that 0 < tn−2 < sn−2 < rn−2 < q and

h(n−2)(tn−2) < 0, h(n−2)(sn−2) > 0, and h(n−2)(rn−2) < 0.
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Because h(n−2)(tn−2) < 0 < h(n−2)(sn−2) and h(n−2)(sn−2) > 0 > h(n−2)(rn−2), there exist

tn−1 ∈ (tn−2, sn−2) and sn−1 ∈ (sn−2, rn−2) such that

h(n−1)(tn−1) > 0, h(n−1)(sn−1) < 0.

Therefore, there exists tn ∈ (tn−1, sn−1) such that h(n)(tn) < 0, which contradicts (2.9). The

proof is complete. �

Both Lemmas 2.3 and 2.7 provide an upper estimate to functions satisfying (1.2), (2.2), and

(2.3). The difference is that the upper estimate in Lemma 2.3 depends on the unique zero c of

u′ in (0, 1), while the upper estimate in Lemma 2.7 does not.

The next lemma was proved by Webb in [4].

Lemma 2.8. For t, s ∈ [0, 1] we have

w1(t)Φ0(s) ≤ G(t, s) ≤ Φ0(s),

where

Φ0(s) =
(τ(s))n−2s(1 − s)n−1

(n − 1)!
, τ(s) =

s

1 − (1 − s)(n−1)/(n−2)
.

Using Lemma 2.8, we can easily establish the following lower estimate.

Lemma 2.9. If u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3), then

u(t) ≥ w1(t)‖u‖, 0 ≤ t ≤ 1. (2.10)

Proof. On one hand, for 0 ≤ t ≤ 1 we have

u(t) =

∫ 1

0
G(t, s)(−u(n)(s))ds ≤

∫ 1

0
Φ0(s)(−u(n)(s))ds.

This means that

‖u‖ ≤

∫ 1

0
Φ0(s)(−u(n)(s))ds.

On the other hand, for 0 ≤ t ≤ 1, we have

u(t) =

∫ 1

0
G(t, s)(−u(n)(s))ds

≥ w1(t)

∫ 1

0
Φ0(s)(−u(n)(s))ds

≥ w1(t)‖u‖.

The proof is complete. �
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The estimates (2.7) and (2.10) are of the same type, that is, both are independent of c.

The two estimates are similar but (2.10) is a little better than (2.7). Both estimates are listed

here because they are obtained by different methods, and both methods are useful in finding

estimates.

Theorem 2.10. If u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3), then

w2(t)‖u‖ ≥ u(t) ≥ w1(t)‖u‖, 0 ≤ t ≤ 1, (2.11)

and

u(t) ≤ u(p)w2(t)/w1(p), 0 ≤ t ≤ 1. (2.12)

In particular, if u ∈ Cn[0, 1] is a positive solution to the boundary value problem (1.1)–(1.2),

then u(t) satisfies (2.11) and (2.12).

Proof. Suppose u ∈ Cn[0, 1] satisfies (1.2), (2.2), and (2.3). By Lemmas 2.7 and 2.9, the in-

equalities in (2.11) hold. Note that u(p) ≥ w1(p)‖u‖. For 0 ≤ t ≤ 1 we have

u(t) ≤ w2(t)‖u‖ = w2(t)w1(p)‖u‖/w1(p) ≤ w2(t)u(p)/w1(p).

Thus we proved (2.12).

If u is a positive solution to the problem (1.1)–(1.2), then u(t) satisfies (1.2), (2.2), and (2.3).

By the first half of the theorem, u also satisfies (2.11) and (2.12). The proof of the theorem is

now complete. �

We have shown that, for functions u satisfying (1.2), (2.2), and (2.3), there are several upper

and lower estimates of different types — the lower estimates (2.6), (2.7), (2.10), the upper

estimates (2.5), (2.8), (2.12), and the “natural” upper estimate

u(t) ≤ ‖u‖, 0 ≤ t ≤ 1.

These upper and lower estimates can be used in different situations. In the next section, we

will show how to use the upper estimate (2.10) and the lower estimate (2.8) to establish some

explicit existence and nonexistence conditions for positive solution of the problem (1.1)-(1.2).

3. Nonexistence and Existence Results

We begin by fixing some notations. First, we define

P = {v ∈ X | v(t) ≥ 0 on [0, 1]}.
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Clearly, P is a positive cone of the Banach space X. Define the operator T : P → X and its

associated linear operator L : X → X by

Tu(t) =

∫ 1

0
G(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1, for all u ∈ P,

Lu(t) =

∫ 1

0
G(t, s)g(s)u(s)ds, 0 ≤ t ≤ 1, for all u ∈ X.

It is well known that T : P → X and L : X → X are completely continuous operators. It is

easy to see that T (P ) ⊂ P and L(P ) ⊂ P . Now the integral equation (1.3) is equivalent to the

equality

Tu = u, u ∈ P.

In order to solve the problem (1.1)–(1.2), we only need to find a fixed point u of T in P such

that u 6= 0. We also define the constants

A =

∫ 1

0
G(p, s)g(s)w1(s) ds and B =

∫ 1

0
G(p, s)g(s)w2(s) ds.

Now we give some explicit sufficient conditions for the nonexistence of positive solutions.

Theorem 3.1. If (B/w1(p))f(x) < x for all x ∈ (0,+∞), then the problem (1.1)–(1.2) has no

positive solutions.

Proof. Assume the contrary that u(t) is a positive solution of the problem (1.1)–(1.2). Then

u ∈ P , u(t) > 0 for 0 < t < 1, and

u(p) =

∫ 1

0
G(p, s)g(s)f(u(s)) ds

< w1(p)B−1

∫ 1

0
G(p, s)g(s)u(s) ds

≤ w1(p)B−1(u(p)/w1(p))

∫ 1

0
G(p, s)g(s)w2(s)ds

= u(p),

which is a contradiction. �

Theorem 3.2. If Af(x) > x for all x ∈ (0,+∞), then the problem (1.1)–(1.2) has no positive

solutions.

The proof of Theorem 3.2 is similar to that of Theorem 3.1 and is therefore omitted. The

next theorem is from [4].
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Theorem 3.3. Let r(L) be the radius of the spectrum of L. Then r(L) > 0 and L has a positive

eigenfunction φ ∈ P \{0} corresponding to the principal eigenvalue r(L) of L. Let µ1 = 1/r(L).

If either

0 ≤ F0 < µ1 and µ1 < f∞ ≤ ∞

or

0 ≤ F∞ < µ1 and µ1 < f0 ≤ ∞,

then the problem (1.1)-(1.2) has at least one positive solution.

Here comes the natural question — how can we find the value of µ1? In general, there is no

explicit formula for finding µ1, and some kind of approximation has to be made. One approach

is to use a numerical method to find an approximation for µ1. Another approach is to develop

some theoretic upper and lower bounds for µ1. Both approaches are interesting. The following

upper and lower bounds for µ1 were given in [4].

Theorem 3.4. Let r(L) be the radius of the spectrum of L. Let µ1 = 1/r(L). Then

m < µ1 < M,

where

m :=

(

sup
0≤t≤1

∫ 1

0
G(t, s)g(s)ds

)−1

,

M := inf
0≤a<b≤1

(

inf
a≤t≤b

∫ b

a
G(t, s)g(s)ds

)−1

.

With the newly found upper estimate (2.8) from Section 2, we can now improve the lower

bound m for µ1. First, we introduce some notations. For each n ≥ 1, we let θn = T nw2 and

σn = T nw1. In other words, we define

θ1(t) =

∫ 1

0
G(t, s)g(s)w2(s)ds, 0 ≤ t ≤ 1,

θ2(t) =

∫ 1

0
G(t, s)g(s)θ1(s)ds, 0 ≤ t ≤ 1,

· · · · · · ,

σ1(t) =

∫ 1

0
G(t, s)g(s)w1(s)ds, 0 ≤ t ≤ 1,

σ2(t) =

∫ 1

0
G(t, s)g(s)σ1(s)ds, 0 ≤ t ≤ 1,

· · · · · · .
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Next, for each n ≥ 1, we define the constants

mn =

(

sup
(n−2)/(n−1)≤t≤1

θn(t)

)−1/n

,

Mn =

(

sup
(n−2)/(n−1)≤t≤1

σn(t)

)−1/n

.

Theorem 3.5. Let r(L) be the radius of the spectrum of L and let µ1 = 1/r(L). For each n ≥ 1,

we have mn ≤ µ1 ≤ Mn.

Proof. Let φ ∈ P \ {0} be a positive eigenfunction corresponding to the principal eigenvalue

r(L) of L. By Lemma 2.2, we have φ(t) > 0 for 0 < t < 1. Let n ≥ 1. We have

φ = µ1Tφ = µ2
1T

2φ = · · · = µn
1T nφ.

For each 0 ≤ t ≤ 1 we have

φ(t) = µn
1 (T nφ)(t)

≤ ‖φ‖µn
1 (T nw2)(t)

= ‖φ‖µn
1θn(t)

≤ ‖φ‖µn
1 sup

0≤t≤1
θn(t).

This implies that ‖φ‖ ≤ ‖φ‖µn
1‖θn‖. Thus we have

µ1 ≥ ‖θn‖
−1/n.

By Lemma 2.4, the maximum of θn(t) must occur at a point in the interval [(n− 2)/(n − 1), 1].

Therefore we have

‖θn‖ = sup
(n−2)/(n−1)≤t≤1

θn(t).

Thus we have proved that mn ≤ µ1. In a similar fashion, we can show that µ1 ≤ Mn. The proof

is complete. �

The next example was first considered in [4]. We now reconsider it to illustrate some of our

results.

Example 3.6. Consider the (3, 1) conjugate boundary value problem

u′′′′(t) + µg(t)u(t) = 0, 0 < t < 1, (3.1)

u(i)(0) = u(1) = 0, 0 ≤ i ≤ 2, (3.2)
EJQTDE, 2010 No. 53, p. 11



where g(t) ≡ 1, 0 ≤ t ≤ 1. Here µ > 0 is a parameter. This problem (3.1)-(3.2) is equivalent to

the equality

u = µLu,

where L : X → X is defined as

Lu(t) =

∫ 1

0
G(t, s)g(s)u(s)ds, 0 ≤ t ≤ 1, ∀u ∈ X.

Let r(L) be the radius of the spectrum of L and let µ1 = 1/r(L). In other words, we let µ1 be

the smallest eigenvalue of the boundary value problem (3.1)-(3.2). According to Webb [4], we

have

227.557 ≈ m ≤ µ1 ≤ M ≈ 2859.530.

With the software Maple, we can easily calculate the numbers mi and Mi, i = 1, 2, 3, 4. Our

calculations indicate that

m1 ≈ 437.107, M1 ≈ 2783.13,

m2 ≈ 598.3, M2 ≈ 1658.2,

m3 ≈ 693.5, M3 ≈ 1379.2,

m4 ≈ 751.6, M4 ≈ 1260.9.

By Theorem 3.5, we have mi ≤ µ1 ≤ Mi, i = 1, 2, 3, 4. This example shows that our lower

bounds mi (1 ≤ i ≤ 4) for µ1 improve m significantly, and our upper bounds Mi (1 ≤ i ≤ 4)

improve M significantly.

If we combine Theorems 3.3 and 3.5, we get the following existence result.

Theorem 3.7. If there exist positive integers k and l such that either

0 ≤ F0 < mk and Ml < f∞ ≤ ∞

or

0 ≤ F∞ < mk and Ml < f0 ≤ ∞,

then the problem (1.1)-(1.2) has at least one positive solution.

Example 3.8. Consider the (3, 1) conjugate boundary value problem

u′′′′(t) + g(t)f(u(t)) = 0, 0 < t < 1, (3.3)

u(i)(0) = u(1) = 0, 0 ≤ i ≤ 2, (3.4)

where g(t) ≡ 1, 0 ≤ t ≤ 1,

f(x) =
λx(1 + 9x)

1 + x
, x ≥ 0.
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Here λ > 0 is a parameter. It is easy to see that F0 = f0 = λ and f∞ = F∞ = 9λ. We see from

Example 3.6 that

m4 ≈ 751.6, M4 ≈ 1260.9.

By Theorem 3.7, we see that if

140.1 ≈ M4/9 < λ < m4 ≈ 751.6,

then the boundary value problem (3.3)-(3.4) has at least one positive solution.
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