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1. Introduction

Fractional differential equations have gained considerable importance due to their application

in various sciences, such as physics, chemistry, mechanics, engineering, etc. For details, see

[1-4] and references therein. Naturally, such equations need to be solved. Recently, there are

some papers focused on initial value problem of fractional functional differential equations[5-

12], and boundary value problems of fractional ordinary differential equations [13-20]. But

the results dealing with the boundary value problems of fractional functional differential

equations are relatively scarce.
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In this paper, we consider the existence of positive solutions for the following fractional

functional differential equation

CDαx(t) = f(t, xt), t ∈ [0, T ], (1)

with the boundary condition

Ax0 − xT = φ, (2)

where α,A, T are real numbers with 0 < α ≤ 1, A > 1 and T > 0. CDα denote Caputo’s

fractional derivative. f : [0, T ]×C[−r, 0] → R is a given function satisfying some assumptions

that will be specified later, and φ ∈ C[−r, 0], where 0 ≤ r < T . As usual, C[−r, 0] is the

space of continuous functions on [−r, 0], equipped with ‖φ‖ = max−r≤θ≤0 |φ(θ)|. For any

t ∈ [0, T ] and x ∈ C[−r, T ], the function xt is defined by xt(θ) = x(t + θ), − r ≤ θ ≤ 0.

The boundary value problem (1) − (2) belongs to a class of problems knows as “Floquet

problems” which arise from physics (see [21]). The existence of positive solutions of the first

order functional differential equations concerned with this problem was discussed by Mavridis

and Tsamatos in [22].

In this paper, we firstly deduced the problem (1)−(2) to an equivalent operator equation.

Next, using two fixed-point theorems, we get that the equivalent operator has (at least) a

fixed point, it means that the boundary value problem (1) − (2) has (at least) one positive

solution, which is upper and lower bounded by specific real numbers .

2. Preliminaries

In this section, we introduce definitions and preliminary facts which are used throughout

this paper.

Let Ω be a finite or infinite interval of the real axis R = (−∞,∞). We denote by LpΩ

(1 ≤ p ≤ ∞) the set of those Lebesgue measurable functions f on Ω for which ‖f‖LpΩ < ∞,

where

‖f‖LpΩ =

(
∫

Ω

|f(t)|pdt

)
1

p

(1 ≤ p < ∞)

and

‖f‖L∞Ω = ess supx∈Ω|f(t)|.

Definition 2.1. [2,3] The fractional integral of order α with the lower limit t0 for a function

f is defined as

Iαf(t) =
1

Γ(α)

t
∫

t0

f(s)

(t − s)1−α
ds, t > t0, α > 0, (3)

provided the right side is point-wise defined on [t0,∞), where Γ is the gamma function.
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Definition 2.2. [2,3] Riemann-Liouville derivative of order α with the lower limit t0 for a

function f : [t0,∞) → R can be written as

LDαf(t) =
1

Γ(n − α)

dn

dtn

∫ t

t0

f(s)

(t − s)α+1−n
ds, t > t0, n − 1 < q < n.

The first−and maybe the most important−property of Riemann-Liouville fractional deriva-

tive is that Riemann-Liouville fractional differentiation operator is a left inverse to the

Riemann-Liouville fractional integration operator of the same order α.

Lemma 2.1.[2] Let f(t) ∈ L1[t0,∞). Then

LDα(Iαf(t)) = f(t), t > t0 and 0 < α < 1

Definition 2.3. [2] Caputo’s derivative of order α for a function f : [t0,∞) → R can be

written as

CDαf(t) = LDα

(

f(t) −
n−1
∑

k=0

(t − t0)
k

k!
f (k)(t0)

)

, t > t0, n − 1 < α < n.

One can show that if f(t) ∈ Cn[t0,∞), then

CDαf(t) =
1

Γ(n − α)

∫ t

t0

f (n)(s)

(t − s)α+1−n
ds.

Obviously, Caputo’s derivative of a constant is equal to zero.

Definition 2.4. Let X be a real Banach space. A cone in X is a nonempty, closed set P ⊂ X

such that

(i) λu + µv ∈ P for all u, v ∈ P and all λ, µ ≥ 0,

(ii) u,−u ∈ P implies u = 0.

Let P be a cone in a Banach space X. Then, for any b > 0, we denote by Pb the set

Pb = {x ∈ P : ‖x‖ < b},
and by ∂Pb the boundary of Pb in P , i.e, the set

∂Pb = {x ∈ P : ‖x‖ = b}.
In order to prove our results, and since we are looking for positive solutions, we will use

the following two lemmas, which are applications of the fixed point theory in a cone. Their

proofs can be found in [23,24].

Lemma 2.2. Let g : P b → P be a completely continuous map such that g(x) 6= λx for all

x ∈ ∂Pb and λ ≥ 1, then g has a fixed point in Pb.

Lemma 2.3. Let E = (E, ‖ · ‖) be a Banach space, P ⊂ E be a cone, and ‖ · ‖ be

increasing (strictly) with respect to P . Also, σ, τ are positive constants with σ 6= τ , suppose

g : Pmax{σ,τ} → P is a completely continuous map and assume the conditions

(i) g(x) 6= λx for every x ∈ ∂Pσ and λ ≥ 1,
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(ii) ‖g(x)‖ ≥ ‖x‖ for x ∈ ∂Pτ ,

hold, then g has at least a fixed point x with min{σ, τ} ≤ ‖x‖ ≤ max{σ, τ}.

3. Main results

Let the intervals I := [0, T ] and J := [−r, 0] and set C(J ∪ I) be endowed with the ordering

x ≤ y if x(t) ≤ y(t) for all t ∈ (J ∪ I), and the maximum norm, ‖x‖J∪I = max−r≤t≤T |x(t)|.
Define the cone P ⊂ C(J ∪ I) by P = {x ∈ C(J ∪ I) | x(t) > 0} and set Pl = {x ∈
P | ‖x‖J∪I ≤ l, l > 0} and C+(J) = {x ∈ C(J)| x(t) ≥ 0, t ∈ J}.

The following assumptions are adopted throughout this section.

(H1) for any ϕ ∈ C(J), f(t, ϕ) is measurable with respect to t on I,

(H2) for any given l > 0, x ∈ Pl, there exist α1 ∈ (0, α) and a function ml(t) ∈ L
1

α1 I such

that

|f(t, xt)| ≤ ml(t), t ∈ I,

(H3) f(t, ϕ) is continuous with respect to ϕ on C(J),

(H4) f : I × C+(J) → R+, φ(0) > 0 and φ(t) > − φ(0)
A−1 , for t ∈ J ,

(H5) there exists a ρ > 0 such that

ρ >
φ(0)

A − 1
+

‖φ‖
A

+
AMρ

(A − 1)Γ(α)(1 + β)1−α1

T (1+β)(1−α1),

where Mρ = ‖mρ(t)‖
L

1
α1 I

.

In order to gain our results, firstly, we must reformulate our boundary value problem

(1) − (2) into an abstract operator equation. This is done in the following lemma.

Lemma 3.1. Assume that (H1) − (H3) hold. Then a function x ∈ Pl is a solution of the

boundary value problem (1) − (2) if and only if x(t) = Fx(t), t ∈ J ∪ I, where F : Pl →
C(J ∪ I) is given by the formula

Fx(t) =



































φ(0)
A−1 + 1

(A−1)Γ(α)

T
∫

0
(T − s)α−1f(s, xs)ds + 1

Γ(α)

t
∫

0
(t − s)α−1f(s, xs)ds, t ∈ I,

φ(0)
A(A−1) + 1

A(A−1)Γ(α)

T
∫

0
(T − s)α−1f(s, xs)ds

+ 1
AΓ(α)

T+t
∫

0
(T + t − s)α−1f(s, xs)ds + φ(t)

A
, t ∈ J.

Proof. Firstly, it is easy to obtain that f(t, xt) is Lebesgue measurable in I according to

conditions (H1) and (H3). The direct calculation gives that (t−s)α−1 ∈ L
1

1−α1 [0, t], for t ∈ I.

In light of Hölder inequality and the condition (H2), we obtain that (t − s)α−1f(s, xs) is

Lebesgue integrable with respect to s ∈ [0, t] for all t ∈ I, and

t
∫

0

|(t − s)α−1f(s, xs)|ds ≤ ‖(t − s)α−1‖
L

1

1−α1 [0,t]
‖ml(t)‖

L
1

α1 I
. (4)
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Hence, Fx exists. From the formula of Fx, we have

Fx(0 ) = Fx(0+), x ∈ Pl.

So it is clear that Fx is a continuous function for every x ∈ Pl. It is to say that F : Pl →
C(J ∪ I). Moreover, from (1), we have

Iα CDαx(t) = Iαf(t, xt), t ∈ I,

i.e.,

x(t) = x(0) +
1

Γ(α)

t
∫

0

(t − s)α−1f(s, xs)ds, t ∈ I. (5)

Since r < T , if θ ∈ J , then T + θ ∈ I. Thus from (2) and (6) we get

Ax(θ) −
(

x(0) +
1

Γ(α)

T+θ
∫

0

(T + θ − s)α−1f(s, xs)ds

)

= φ(θ). (6)

Therefore, for θ = 0, we get

x(0) =
φ(0)

A − 1
+

1

(A − 1)Γ(α)

T
∫

0

(T − s)α−1f(s, xs)ds. (7)

Using (6) and (8) we have

x(t) =
φ(0)

A − 1
+

1

(A − 1)Γ(α)

T
∫

0

(T − s)α−1f(s, xs)ds +
1

Γ(α)

t
∫

0

(t − s)α−1f(s, xs)ds, t ∈ I.

Also, by (7) and (8), for t ∈ J we get

x(t) =
φ(0)

A(A − 1)
+

1

A(A − 1)Γ(α)

T
∫

0

(T − s)α−1f(s, xs)ds

+
1

AΓ(α)

T+t
∫

0

(T + t − s)α−1f(s, xs)ds +
φ(t)

A
.

So,

x(t) = Fx(t), t ∈ J ∪ I.

On the other hand, if x ∈ Pl is such that x(t) = Fx(t), t ∈ J ∪ I, then, by Definition 2.3 and

Lemma 2.1, for every t ∈ I we have

CDαx(t) = LDαFx(t) = f(t, xt).

EJQTDE, 2010 No. 50, p. 5



Also for any θ ∈ J , it is clear that

Ax0(θ) − xT (θ) = Ax(θ) − x(T + θ)

= φ(θ).

The proof is complete.

Lemma 3.2. Assume that (H1) − (H4) hold. Then Fx(t) > 0, for t ∈ J ∪ I, x ∈ Pl, and

F : Pl → P is completely continuous operator.

Proof. From Lemma 3.1, we get F : Pl → C(J ∪ I), and by (H4), we easily obtain Fx(t) > 0

for x ∈ Pl. Also, it is clear that F : Pl → P is continuous according to condition (H3).

Let β = α−1
1−α1

∈ (−1, 0). For every t ∈ I, we have

|Fx(t)| ≤ φ(0)

A − 1
+

Ml

(A − 1)Γ(α)
‖(T − s)α−1‖

L
1

1−α1 I
+

Ml

Γ(α)
‖(t − s)α−1‖

L
1

1−α1 [0,t]

≤ φ(0)

A − 1
+

Ml

(A − 1)Γ(α)(1 + β)1−α1

T (1+β)(1−α1) +
Ml

Γ(α)(1 + β)1−α1

T (1+β)(1−α1).

Also, for every t ∈ J , we have

|Fx(t)| ≤ ‖φ‖
A − 1

+
Ml

A(A − 1)Γ(α)
‖(T − s)α−1‖

L
1

1−α1 I
+

Ml

AΓ(α)
‖(T + t − s)α−1‖

L
1

1−α1 [0,T+t]

≤ ‖φ‖
A − 1

+
Ml

A(A − 1)Γ(α)(1 + β)1−α1

T (1+β)(1−α1) +
Ml

AΓ(α)(1 + β)1−α1

T (1+β)(1−α1).

Hence, LPl is bounded.

Now, we will prove that LPl is equicontinuous.

In the following, we divide the proof into three cases.

Case 1. x ∈ Pl, 0 ≤ t1 < t2 ≤ T,

|Fx(t2) − Fx(t1)|

≤
∣

∣

∣

∣

1

Γ(α)

t2
∫

0

(t2 − s)α−1f(s, xs)ds − 1

Γ(α)

t1
∫

0

(t1 − s)α−1f(s, xs)ds

∣

∣

∣

∣

≤ 1

Γ(α)

t1
∫

0

|(t2 − s)α−1 − (t1 − s)α−1)|f(s, xs)ds +
1

Γ(α)

t2
∫

t1

(t2 − s)α−1f(s, xs)ds

≤ Ml

Γ(α)

(

t1
∫

0

[(t1 − s)α−1 − (t2 − s)α−1)]
1

1−α1 ds

)1−α1

+
Ml

Γ(α)

(

t2
∫

t1

[(t2 − s)α−1]
1

1−α1 ds

)1−α1

≤ Ml

Γ(α)

(

t1
∫

0

(t1 − s)β − (t2 − s)βds

)1−α1

+
Ml

Γ(α)

(

t2
∫

t1

(t2 − s)βds

)1−α1

≤ Ml

Γ(α)(1 + β)1−α1

(

t
1+β
1 − t

1+β
2 + (t2 − t1)

1+β

)1−α1
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+
Ml

Γ(α)(1 + β)1−α1

(t2 − t1)
(1+β)(1−α1)

≤ 2Ml

Γ(α)(1 + β)1−α1

(t2 − t1)
(1+β)(1−α1).

Case 2. x ∈ Pl,−r ≤ t1 < t2 ≤ 0,

|Fx(t2) − Fx(t1)|

≤ |φ(t2)

A
− φ(t1)

A
|

+
1

AΓ(α)

∣

∣

∣

∣

T+t2
∫

0

(T + t2 − s)α−1f(s, xs)ds −
T+t1
∫

0

(T + t1 − s)α−1f(s, xs)ds

∣

∣

∣

∣

≤ 1

A
|φ(t2) − φ(t1)| +

Ml

AΓ(α)

(

T+t1
∫

0

[(T + t1 − s)α−1 − (T + t2 − s)α−1)]
1

1−α1 ds

)1−α1

+
Ml

AΓ(α)

(

T+t2
∫

T+t1

(T + t2 − s)βds

)1−α1

≤ 1

A
|φ(t2) − φ(t1)| +

Ml

AΓ(α)(1 + β)1−α1

[(T + t1)
1+β − (T + t2)

1+β + (t2 − t1)
1+β ]1−α1

+
Ml

AΓ(α)(1 + β)1−α1

(t2 − t1)
(1+β)(1−α1)

≤ 1

A
|φ(t2) − φ(t1)| +

2Ml

AΓ(α)(1 + β)1−α1

(t2 − t1)
(1+β)(1−α1).

Case 3. x ∈ Pl,−r ≤ t1 < 0 ≤ t2 ≤ T,

|Fx(t2) − Fx(t1)|

≤ |Fx(t2) − Fx(0)| + |Fx(0) − Fx(t1)|

≤ 1

Γ(α)

t2
∫

0

(t2 − s)α−1f(s, xs)ds +
|φ(0) − φ(t1)|

A

1

AΓ(α)

∣

∣

∣

∣

T
∫

0

(T − s)α−1f(s, xs)ds −
T+t1
∫

0

(T + t1 − s)α−1f(s, xs)ds

∣

∣

∣

∣

≤ Ml

Γ(α)(1 + β)1−α1

t
(1+β)(1−α1)
2 +

|φ(0) − φ(t1)|
A

+
2Ml

AΓ(α)(1 + β)1−α1

(−t1)
(1+β)(1−α1).

According to the continuity of φ and t(1+β)(1−α1), we can easily obtain LPl is equicontinuous.

Then F : Pl → P is a completely continuous operator by Arzela-Ascoli theorem. The proof

is complete.

Theorem 3.1. Assume that the conditions (H1) − (H5) hold. Then the boundary value

problem (1) − (2) has at least one positive solution x, such that

φ(0)

A − 1
≤ ‖x‖J∪I < ρ.
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Proof. From Lemma 3.2, F : P ρ → P is a completely continuous operator.

Furthermore, we will show that λx 6= Fx for every λ ≥ 1 and x ∈ ∂Pρ. Otherwise, let

x ∈ ∂Pρ and λ ≥ 1 such that λx = Fx. Then for every t ∈ I, we have

|x(t)| ≤ λ|x(t)|

=
φ(0)

A − 1
+

1

(A − 1)Γ(α)

T
∫

0

(T − s)α−1f(s, xs)ds +
1

Γ(α)

t
∫

0

(t − s)α−1f(s, xs)ds

≤ φ(0)

A − 1
+

Mρ

(A − 1)Γ(α)

(

T
∫

0

(T − s)βds

)1−α1

+
Mρ

Γ(α)

(

t
∫

0

(t − s)βds

)1−α1

≤ φ(0)

A − 1
+

Mρ

(A − 1)Γ(α)

1

(1 + β)1−α1

T (1+β)(1−α1) +
Mρ

Γ(α)

1

(1 + β)1−α1

T (1+β)(1−α1)

≤ φ(0)

A − 1
+

AMρ

(A − 1)Γ(α)(1 + β)1−α1

T (1+β)(1−α1).

Also, for every t ∈ J , we have

|x(t)| ≤ λ|x(t)|

≤ φ(0)

A(A − 1)
+

‖φ‖
A

+
Mρ

A(A − 1)Γ(α)

(

T
∫

0

(T − s)βds

)1−α1

+
Mρ

AΓ(α)

(

T+t
∫

0

(T + t − s)βds

)1−α1

≤ φ(0)

A(A − 1)
+

‖φ‖
A

+
Mρ

A(A − 1)Γ(α)

1

(1 + β)1−α1

T (1+β)(1−α1)

+
Mρ

AΓ(α)(1 + β)1−α1

T (1+β)(1−α1)

≤ φ(0)

A(A − 1)
+

‖φ‖
A

+
Mρ

(A − 1)Γ(α)(1 + β)1−α1

T (1+β)(1−α1).

Consequently, for every t ∈ J ∪ I, it holds

‖x‖J∪I < ρ,

which contradicts with x ∈ ∂Pρ.

So applying Lemma 2.2, we can obtain that L has at least a fixed point, what means that

the boundary value problem (1) − (2) has at least one positive solution x, such that

‖x‖J∪I < ρ.

Then, taking into account the formula of L and the fact A > 1, we easily conclude that

x(t) ≥ φ(0)

A − 1
, t ∈ I,
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which implies that

‖x‖J∪I ≥ φ(0)

A − 1
.

Observe that φ(0)
A−1 < ρ. Therefore, we finally have

φ(0)

A − 1
≤ ‖x‖J∪I < ρ.

The proof is complete.

In order to gain our second result, we need the following assumption:

(H6) There exists an interval E ⊆ I, and functions u : E → [0, r], continuous v : E → [0,+∞)

with sup{v(t) : t ∈ E} > 0 and nonincreasing w : [0,+∞) → [0,+∞) such that

f(t, y) ≥ v(t)w(y(−u(t))), (t, y) ∈ E × C+(J).

Let

µ :=
1

A(A − 1)

∫

E

v(s)ds, Λ :=
φ(0)

A(A − 1)
+

φ(−r)

A
.

Theorem 3.2. Suppose that (H1) − (H6) hold, also suppose that there exists τ > 0, such

that

τ ≤ Tα−1

Γ(α)
µw(τ). (8)

Then the boundary value problem (1) − (2) has at least one positive solution x, such that

d ≤ ‖x‖J∪I ≤ max{τ, ρ},

where

d =

{

ρ, if τ > ρ,

max{τ,Λ}, if τ < ρ,

and ρ is the constant involved in (H5) and τ 6= ρ.

Proof. From Lemma 3.2, F : Pmax{τ,ρ} → P is a completely continuous map.

As we did in Theorem 3.1, we can prove that Fx 6= λx for every λ ≥ 1 and x ∈ ∂Pρ.

Now we will prove that ‖Fx‖J∪I ≥ ‖x‖J∪I for every x ∈ ∂Pτ and t ∈ J ∪ I. By (H4) and

(H6), we have

Fx(−r) =
φ(0)

A(A − 1)
+

1

A(A − 1)Γ(α)

T
∫

0

(T − s)α−1f(s, xs)ds

+
1

AΓ(α)

T−r
∫

0

(T − r − s)α−1f(s, xs)ds +
φ(−r)

A

≥ 1

A(A − 1)Γ(α)

T
∫

0

(T − s)α−1f(s, xs)ds
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≥ 1

A(A − 1)Γ(α)

∫

E

(T − s)α−1v(s)w(x(s − u(s)))ds

≥ 1

A(A − 1)Γ(α)
Tα−1

∫

E

v(s)w(x(s − u(s)))ds

≥ Tα−1

Γ(α)
µw(τ)

≥ τ.

Therefore, for every x ∈ ∂Pτ , we have ‖Fx‖J∪I ≥ ‖x‖J∪I = τ.

Applying Lemma 2.3, we get that L has a fixed point, which means that the boundary

value problem (1) − (2) has at least one positive solution x, such that

min{τ, ρ} ≤ ‖x‖J∪I ≤ max{τ, ρ}.

But x is a positive solution of the boundary value problem(1)− (2), this means that x = Fx

and it is easy to see that x(−r) = Fx(−r) ≥ Λ, which implies that

‖x‖J∪I ≥ Λ.

Moreover, it is clear that Λ ≤ ρ. Hence

d ≤ ‖x‖J∪I ≤ max{τ, ρ}.

The proof is complete.

Now, we give the following assumption (H6)
′, which is similar to assumption (H6), when

the function w is nondecreasing.

(H6)
′ There exists an interval E ⊆ I, and functions u : E → [0, r], continuous v : E → [0,+∞)

with sup{v(t) : t ∈ E} > 0 and nondecreasing w : [0,+∞) → [0,+∞) such that

f(t, y) ≥ v(t)w(y(−u(t))), (t, y) ∈ E × C+(J).

Theorem 3.3. Suppose that (H1) − (H5), (H6)
′ hold, and there exists τ > 0 such that

τ ≤ Tα−1

Γ(α)
µw(0). (9)

Then the boundary value problem (1) − (2) has at least one positive solution x, such that

d ≤ ‖x‖J∪I ≤ max{τ, ρ},

where d is defined in Theorem 3.2 , ρ is the constant involved in (H5) and τ 6= ρ.

Proof. F : Pmax{τ,ρ} → P is a completely continuous map.

As we did in Theorem 3.1, we can prove that Fx 6= λx for every λ ≥ 1 and x ∈ ∂Pρ.
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Now we will prove that ‖Fx‖J∪I ≥ ‖x‖J∪I for every x ∈ ∂Pτ .

As in Theorem 3.2, using (H4) and (H6)
′, we obtain

Fx(−r) ≥ 1

A(A − 1)Γ(α)

T
∫

0

(T − s)α−1f(s, xs)ds

≥ 1

A(A − 1)Γ(α)
Tα−1

∫

E

v(s)w(x(s − u(s)))ds

≥ Tα−1

Γ(α)
µw(0)

≥ τ.

Therefore, for every x ∈ ∂Pτ , we have ‖Fx‖J∪I ≥ ‖x‖J∪I = τ.

Applying Lemma 2.3, we get that L has at least a fixed point, which means that the

boundary value problem (1) − (2) has at least one positive solution x, such that

min{τ, ρ} ≤ ‖x‖J∪I ≤ max{τ, ρ}.

Then

‖x‖J∪I ≥ Λ, Λ ≤ ρ.

So d ≤ ‖x‖J∪I ≤ max{τ, ρ}. The proof is complete.

Theorem 3.4. Suppose that (H1)−(H6) (respectively (H1)−(H5), (H6)
′) hold, additionally,

there exist τ > 0 such that (9) (respectively (10)) holds. Then if ρ < τ , the boundary value

problem (1) − (2) has at least two positive solutions x1, x2, such that

φ(0)

A − 1
≤ ‖x1‖J∪I < ρ < ‖x2‖J∪I < τ.

Example 3.1. Consider the boundary value problem

D
2

3 x(t) = (sin t)
√

xt, t ∈ I := [0, 1], (10)

5x0 − x1 =
1

2
, (11)

where f(t, xt) = (sin t)
√

xt, for t ∈ I, α = 2
3 , A = 5 and φ(t) = 1

2 . For any x ∈ C[−1
2 , 1], The

xt defined by xt(θ) = x(t + θ),−1
2 ≤ θ ≤ 0.

For any given l > 0, x ∈ Pl, choose ml(t) =
√

lt and α1 = 1
2 such that ml(t) ∈ L

1

α1 I. So

the assumption (H2) holds and Ml = ‖ml(t)‖L2I =
√

l
3 .

Now observe that assumptions (H1), (H3) − (H4) hold. For ρ = 1.27,

φ(0)

A − 1
+

‖φ‖
A

+
AMρ

(A − 1)Γ(α)(1 + β)1−α1

T (1+β)(1−α1) =
9

40
+

5
√

ρ

4Γ(2
3 )

< ρ.

Hence, the condition (H5) holds. Therefore, by applying Theorem 3.1, we can get that the

boundary value problem (11)-(12) has at least one positive solution x satisfying 0.125 ≤
‖x‖J∪I ≤ 1.27.
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