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2010, No. 49, 1-15; http://www.math.u-szeged.hu/ejqtde/Osillation and nonosillation of two terms linearand half-linear equations of higher orderR. Oinarov and S. Y. RakhimovaL.N. Gumilev Eurasian National Universityo_ryskul�mail.ru, rakhimova.salta�mail.ruAbstrat. In this paper we investigate the properties of nonosillation forthe equation
(−1)n(ρ(t)|y(n)|p−2y(n))(n) − v(t)|y|p−2y = 0,where 1 < p < ∞ and v is a non-negative ontinuous funtion and ρ is a positive

n-times ontinuously di�erentiable funtion on the half - line [0,∞). When thepriniple of reiproity is used for the linear equation (p = 2) we suppose thatthe funtions v and ρ are positive and n-times ontinuously di�erentiable on thehalf - line [0,∞).Mathematis Subjet Classi�ation. 34C10.Key words and phrases. Osillation, nonosillation, higher order half�linear di�erential equation, variational method, weighted Hardy type inequalities.1. IntrodutionLet I = [0,∞) and 1 < p < ∞. We onsider the following higher orderdi�erential equation
(−1)n(ρ(t)|y(n)(t)|p−2y(n)(t))(n) − v(t)|y(t)|p−2y(t) = 0 (1)on I, where v is a non-negative ontinuous funtion and ρ is a positive n-timesontinuously di�erentiable funtion on I. When the priniple of reiproity isused for the linear equation (p = 2) we suppose that the funtions v and ρ arepositive and n-times ontinuously di�erentiable on I.A funtion y : I → R is said to be a solution of the equation (1), if y(t) and

ρ(t)|y(n)(t)|p−2y(n)(t) are n-times ontinuously di�erentiable and y(t) satis�es theequation (1) on I.The equation (1) is alled osillatory at in�nity if for any T ≥ 0 there existpoints t1 > t2 > T and a nonzero solution y(·) of the equation (1) suh that
y(i)(tk) = 0, i = 0, 1, ..., n − 1, k = 1, 2; otherwise the equation (1) is allednonosillatory.If p = 2, then the equation (1) beomes a higher order linear equation

(−1)(n)(ρ(t)y(n)(t))(n) − v(t)y(t) = 0. (2)In the ase n = 1 the osillatory properties of the equations (1) and (2) havebeen enough well studied and there are known various investigation methods (see[1℄ and the bibliography therein). EJQTDE, 2010 No. 49, p. 1



The variational method to investigate the osillatory properties of higherorder linear equations and their relations to spetral harateristis of the orre-sponding di�erential operators are well presented in the monograph [2℄. Anothermethod is the transition from a higher order linear equation to a Hamilton systemof equations [3℄. However, to obtain the onditions of osillation or nonosillationof a higher order linear equation by this method we need to �nd the prinipalsolutions of a Hamilton system (see [4,5℄) that is not an easy task.However, the general method of the investigation of the osillatory propertiesfor the equation (1) has been not developed yet. In the monograph [1℄ by O.Do�sl�y, one of the leading experts in the osillation theory of half�linear di�eren-tial equations, and his olleagues, the osillation theory of half�linear equationsof higher order is ompared with "terra inognita".In this book the authors mention that it is possible to use Hardy's inequalityin the osillation theory of di�erential equations. That was done by M. Otelbaev[6℄ who found the onditions of osillation and nonosillation of Sturm-Liouville'sequation.The main aim of this paper is to establish the onditions of osillation andnonosillation of the equations (1) and (2) in terms of their oe�ients by ap-plying the latest results in the theory of weighted Hardy type inequalities.The paper is organized in the following way: In Setion 2 we formulate thefats and statements, whih are required for proofs of the main results. In Setion3 the main results with proofs are presented.2. PreliminariesLet IT = [T,∞), T ≥ 0 and 1 < p < ∞. Suppose that Lp ≡ Lp(ρ, IT ) isthe spae of measurable and �nite almost everywhere funtions f , for whih thefollowing norm
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, f ∈ Lp, (3)where C > 0 does not dependent on f .For about the last 50 years the inequality (3) has been intensively investigatedand at the present there are numerous riteria for the validity of this inequality.EJQTDE, 2010 No. 49, p. 2



The history of this problem and the results of investigations of weighted Hardytype inequalities are exposed in the book [7℄.Let
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.The riteria for J(T ) to be �nite whih is equivalent to the validity of theinequality (3) are given in Theorem A (see [7℄).Theorem A. Let 1 < p < ∞.Then J(T ) ≡ J(ρ, v; T ) < ∞ if and only if A1(T ) < ∞ or A2(T ) < ∞,where
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dt.Moreover, J(T ) an be estimated from above and from below, i.e.,
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+ 1
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= 1.In [8℄ it is shown that the onstant p
(
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)p−1 in (4) is the best possible.Remark. Here and further in theorems the onditions of the type A1(T ) ≤
K < ∞ mean that there the integrals onverge with respet to in�nite interval,and the onditions of the type A1(T ) ≥ K allow the divergene of the integrals.Next, we onsider the following expression
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.We quote the following result proved in [9℄.Theorem B. Jn(T ) ≡ Jn(ρ, v; T ) < ∞ if and only if B1(T ) < ∞ and
B2(T ) < ∞, where

B1(T ) ≡ B1(ρ, v; T ) = sup
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B2(T ) ≡ B2(ρ, v; T ) = sup
x>T

∞
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ρ−1(s)ds.Moreover, there exists a onstant β ≥ 1 independent of ρ, v and T suh that
B(T ) ≤ Jn(T ) ≤ βB(T ), (6)where B(T ) = max{B1(T ), B2(T )}.Assume that ACn−1

p (ρ, IT ) is a set of all funtions f that have absolutelyontinuous n − 1 order derivatives on [T, N ] for any N > T and f (n) ∈ Lp. Let
ACn−1

p,L (ρ, IT ) = {f ∈ ACn−1
p (ρ, IT ) : f (i)(T ) = 0, i = 0, 1, ..., n− 1}.Suppose that A0Cn−1
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p,L (ρ, IT ) thatare equal to zero in a neighborhood of in�nity. The funtion f from ACn−1

p,L (ρ, IT )is alled nontrivial if ‖f (n)‖p 6= 0; we write down that f 6= 0.From the variational method for higher order linear equations [2℄ we have:Theorem C. The equation (2)(i) is nonosillatory if and only if there exists T ≥ 0 suh that
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∞
∫

T

(ρ(t)|f (n)(t)|p − v(t)|f(t)|p)dt > 0 (9)for all nontrivial f ∈ A0Cn−1
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It is obvious that A0Cn−1
p (ρ, IT ) ⊂ ACn−1

p,L (ρ, IT ) ⊂ W n
p (ρ, IT ). The losuresof the sets A0Cn−1

p (ρ, IT ) and ACn−1
p,L (ρ, IT ) with respet to the norm (10) wedenote by W n

◦
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p,L(ρ, IT ), respetively. Sine ρ(t) > 0for t ≥ 0 we have that
f (i)(T ) = 0, i = 0, 1, ..., n− 1 (11)for any f ∈ W n

p,L(ρ, IT ). 3. Main resultsIn this setion we onsider nonosillation of the equations (1) and (2) andosillation of the equation (2).Theorem 1. Let 1 < p < ∞. Suppose that v is a non-negative ontinuousfuntion and ρ is a positive and n-times ontinuously di�erentiable funtion on
I. If one of the following onditions
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(13)holds, then the equation (1) is nonosillatory.Nonosillation of the equation (2) follows from Theorem 1 with p = 2:Theorem 2. Suppose that v is a non-negative ontinuous funtion and ρ isa positive and n-times ontinuously di�erentiable funtion on I. If one of thefollowing onditions
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holds, then the equation (2) is nonosillatory.Proof of Theorem 1. If we show that from one of onditions (12) or (13)it follows that there exists T ≥ 0 suh that
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Let us notie that the ondition (23) is obtained in Theorem 9.4.5 in [1℄ byanother way.Now, we onsider the problem of osillation of the equation (2).By Theorem 2 it is easy to prove that if both integrals
∞
∫

T

ρ−1(s)dsand
∞
∫

T

v(t)(t− T )2(n−1)dtare �nite, then the equation (2) is nonosillatory.Therefore, we are interested in the ase when at least one of these integralsis in�nite.We start with the ase
∞
∫

T

ρ−1(s)ds = ∞. (24)Theorem 3. Let (24) hold. If one of the inequalities
lim

T→∞
sup
x>T

x
∫

T

ρ−1(s)ds
∞
∫

x

v(t)(t− x)2(n−1)dt > [(n − 1)!]2or
lim

T→∞
sup
x>T

x
∫

T

ρ−1(s)(x − s)2(n−1)ds

∞
∫

x

v(t)dt > [(n − 1)!]2holds, then the equation (2) is osillatory.Proof of Theorem 3. If we show that
F2,0(T ) > 1 (25)for any T ≥ 0, then the equation (2) is osillatory.Indeed, from (25) it follows that for every T ≥ 0 there exists a nontrivialfuntion f̃ ∈ A0Cn−1

p (ρ, IT ) suh that the inequality (8) holds. Consequently, byTheorem C the equation (2) is osillatory.Aording to the results of [11℄ the ondition (24) implies that W n
◦

2 = W n
2,L.Then

F2,0(T ) = F2,L(T ) (26)and from (17) we have
F2,0(T ) = sup

0 6=f∈Wn
2,L

∞
∫

T
v(t)|f(t)|2dt

∞
∫

T
ρ(t)|f (n)(t)|2dt

=EJQTDE, 2010 No. 49, p. 8



=
1

[(n − 1)!]2
sup

0 6=g∈L2

∞
∫

T
v(t)

∣

∣

∣

∣

∣

t
∫

T
(t − s)n−1g(s)ds

∣

∣

∣

∣

∣

2

dt

∞
∫

T
ρ(t)|g(t)|2dt

=
Jn(T )

[(n − 1)!]2
. (27)From the estimate (6) of Theorem B it follows that

B(T )

[(n − 1)!]2
≤ F2,0(T ) ≤ β

B(T )

[(n − 1)!]2
. (28)From the left�hand side of the inequality (28) and the assumptions of Theoremit follows that the inequality (25) holds. Thus, the equation (2) is osillatory.The proof of Theorem 3 is ompleted.Let us turn to the equation (2) with parameter λ > 0 in the form:

(−1)n(ρ(t)y(n))(n) − λv(t)y = 0. (29)If the equation (29) for any λ > 0 is osillatory or nonosillatory, then theequation (29) is alled strongly osillatory or strongly nonosillatory, respetively.Theorem 4. If the ondition (24) is satis�ed, then the equation (29)(i) is strongly nonosillatory if and only if
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v(t)dt = ∞. (33)holds.Proof of Theorem 4. Let the equation (29) be nonosillatory for any λ > 0.Then by the riterion of nonosillation (7) of Theorem C for every λ > 0 thereexists Tλ ≥ 0 suh that λF2,0(Tλ) ≤ 1. Then lim
λ→∞

F2,0(Tλ) = 0. However, if theequation (29) is nonosillatory for λ = λ0 > 0, then by (7) it is nonosillatoryfor any 0 < λ ≤ λ0. Therefore, Tλ does not derease. Hene
lim
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Thus, from the left�hand side of the inequality (28) and from (34) it followsthat lim
T→∞

B(T ) = 0, where B(T ) = max{B1(T ), B2(T )} and
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∞
∫

x

v(t)dt

x
∫

T

(x − s)2(n−1)ρ−1(s)ds,
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∞
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ε
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∫
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v(t)(t − x)2(n−1)dt ≤ ε,whih means that the equality (30) is satis�ed. The equality (31) an be provedsimilarly.Now, we shall prove that if the equalities (30) and (31) hold, then the equation(29) is strongly nonosillatory.Sine the equalities (30) and (31) hold, then lim
T→∞

B(T ) = 0. Therefore, fromthe right�hand side of the inequality (28) we have the equality (34). Hene forevery λ > 0 there exists Tλ ≥ 0 suh that λF2,0(Tλ) < 1. Then the equation(29) is strongly nonosillatory. Thus, (i) is proved.Let us prove (ii). Let the equation (29) be strongly osillatory. By TheoremC we have that λF2,0(T ) ≥ 1 for every λ > 0 and for every T ≥ 0. Therefore,
F2,0(T ) ≥ sup

λ>0

1
λ

= ∞ for every T ≥ 0.Thus, from the right�hand side of the inequality (28) it follows that B(T ) =
∞ for every T ≥ 0, so at least B1(T ) = ∞ or B2(T ) = ∞. This means that theequality (32) or (33) holds.Suppose that for every T ≥ 0 one of the onditions (32) or (33) holds. Theneither B1(T ) = ∞ or B2(T ) = ∞. Therefore, B(T ) = ∞ for any T ≥ 0. ThenEJQTDE, 2010 No. 49, p. 10



from the left�hand side of the inequality (28) it follows F2,0(T ) = ∞ for any
T ≥ 0. Consequently, λF2,0(T ) > 1 for any λ > 0 and T ≥ 0, whih by (8)means the osillation of the equation (29) for λ > 0.The proof of Theorem 4 is ompleted.Corollary 1. Let T ≥ 0. If the onditions (24) and

∞
∫

T

v(t)(t − T )2(n−1)dt = ∞are satis�ed, then the equation (2) is strongly osillatory.As an example let us onsider the equation
(−1)n

(

t−αy(n)(t)
)(n)

− λv(t)y(t) = 0, (35)where α ≥ 0 and v is a non�negative ontinuous funtion on I. Sine α ≥ 0,then the onditions (24) for the equation (35) is valid.Sine
x
∫

0
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1
∫

0

sα(1 − s)2(n−1)ds,then the onditions (31) and (33) for the equation (35) are respetively equivalentto the onditions
lim
x→∞

x2n−1+α
∞
∫

x

v(t)dt = 0, (36)

lim
x→∞

sup x2n−1+α
∞
∫

x

v(t)dt = ∞. (37)Using the L'Hospital rule 2(n − 1) times it is easy to see that from (36) itfollows the ondition (30)
lim
x→∞

xα+1
∞
∫

x

v(t)(t− x)2(n−1)dt = 0for the equation (35).Thus, by Theorem 4 the equation (35) is strongly nonosillatory if and onlyif (36) is orret. Moreover, it is strongly osillatory if and only if (37) is orret.This yields for α = 0 the validity of Theorems 15 and 16 from the monograph[2℄.Now, we use Theorem 3 to the equation (35) for λ = 1. Let k =

lim
T→∞

sup
x>T

x
∫

T
sα(x − s)2(n−1)ds

∞
∫

x
v(t)dt and γ > 1.
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Then
sup
x>T

x
∫

T

sα(x − s)2(n−1)ds

∞
∫

x

v(t)dt ≥
γT
∫

T

sα(γT − s)2(n−1)ds

∞
∫

γT

v(t)dt =

=
1

γ2n−1+α

γ
∫

1

sα(γ − s)2(n−1)ds(γT )2n−1+α
∞
∫

γT

v(t)dt.If
sup
γ>1

1

γ2n−1+α

γ
∫

1

sα(γ − s)2(n−1)ds lim
x→∞

x2n−1+α
∞
∫

x

v(t)dt > [(n − 1)!]2, (38)then k > [(n − 1)!]2 and by Theorem 3 the equation (35) is osillatory.In [12℄ the exat values of the osillation onstants of the equation (35) areobtained for the di�erent values α ∈ R. Moreover, there in Proposition 2.2the main osillation onditions found before are olleted. If we ompare theonditions (38) and the onditions from Proposition 2.2 for α ≥ 0, we an seethat the onditions (38) are better than the onditions from Proposition 2.2. Forexample, when n = 2 and α = 0 we have that
sup
γ>1

1

γ3

γ
∫

1

(γ − s)2ds =
1

3
sup
γ>1

(

1 −
1

γ

)3

=
1

3
.Therefore, from (38) it follows that the equation yIV (t) = v(t)y(t) is osillatoryif lim

x→∞
x3

∞
∫

x
v(t)dt > 3. The analogous ondition from Proposition 2.2 has theform lim

x→∞
x3

∞
∫

x
v(t)dt > 12.Next, we assume that the funtions v and ρ are positive and n-times ontin-uously di�erentiable on I. Then by the priniple of reiproity [4℄ the equation(2) and the reiproal equation

(−1)n(v−1(t)y(n))(n) − ρ−1(t)y = 0 (39)are simultaneously osillatory or nonosillatory. Applying the priniple of rei-proity we obtain the following theorems.Theorem 5. Let funtions v and ρ be positive and n-times ontinuouslydi�erentiable on I. Then, if one of the following onditions
lim

T→∞
sup
x>T

x
∫

T

v(t)dt

∞
∫

x

ρ−1(s)(s − T )2(n−1)ds <





(n − 1)!

2





2

,or
lim

T→∞
sup
x>T







x
∫

T

v(t)dt







−1 x
∫

T

ρ−1(s)(s− T )2(n−1)







s
∫

T

v(t)dt







2

ds <





(n − 1)!

2





2EJQTDE, 2010 No. 49, p. 12



holds, then the equation (2) is nonosillatory.Indeed, if the ondition of Theorem 5 is satis�ed, then by Theorem 2 theequation (39) is nonosillatory. Therefore, the equation (2) is also nonosillatory.In the ase of
∞
∫

T

v(t)dt = ∞ (40)the following theorem is valid.Theorem 6. Suppose that v and ρ are positive n-times ontinuously dif-ferentiable funtions on I. Let the ondition (40) hold. Then, if one of thefollowing inequalities
lim

T→∞
sup
x>T

x
∫

T

v(t)dt
∞
∫

x

ρ−1(s)(s− x)2(n−1)ds > [(n − 1)!]2or
lim

T→∞
sup
x>T

x
∫

T

v(t)(x − t)2(n−1)dt

∞
∫

x

ρ−1(s)ds > [(n − 1)!]2holds, then the equation (2) is osillatory.The proofs of this theorem and the following theorem are based on the prin-iple of reiproity.Theorem 7. Suppose that v and ρ is positive and n-times ontinuouslydi�erentiable funtions on I. Let the ondition (40) hold. Then the equation(29)(i) is strongly nonosillatory if and only if
lim
x→∞

x
∫

0

v(t)dt
∞
∫

x

ρ−1(s)(s − x)2(n−1)ds = 0and
lim
x→∞

x
∫

0

v(t)(x− t)2(n−1)dt
∞
∫

x

ρ−1(s)ds = 0;(ii) is strongly osillatory if and only if one of the following onditions
lim
x→∞

sup
x
∫

0

v(t)dt

∞
∫

x

ρ−1(s)(s− x)2(n−1)ds = ∞or
lim
x→∞

sup
x
∫

0

v(t)(x − t)2(n−1)dt

∞
∫

x

ρ−1(s)ds = ∞holds. EJQTDE, 2010 No. 49, p. 13



Corollary 2. Let T ≥ 0. If the onditions (40) and
∞
∫

T

ρ−1(t)(t − T )2(n−1)dt = ∞are satis�ed, then the equation (2) is strongly osillatory.Aknowledgements. The authors express deep gratitude to professor T.Tararykova for the help and advies in preparing of this paper. We also thankthe Referee for some valuable suggestions, whih have improved this paper.

EJQTDE, 2010 No. 49, p. 14



Referenes[1℄ O. Do�sl�y and P. �Reh�ak, Half�linear di�erential equations, Math. Studies,North-Holland, 202 (2005).[2℄ I. M. Glazman, Diret methods of qualitative analysis of singular di�ertialoperators, Jerusalim, 1965.[3℄ W. A. Coppel, Disonjugay, Letures Notes in Math., Springer Verlag,Berlin-Heidelberg, 220 (1971).[4℄ O. Do�sl�y, Osillation and spetral properties of self-adjoint di�erential op-erators, Nonlinear Anal. Theory, Methods and Appl., (3)30 (1997).[5℄ O. Do�sl�y, Nehari-type osillation riteria for self-adjoint linear di�erentialequations, J. Math. Anal. Appl., 182 (1994).[6℄ M. Otelbayev, Estimates of the spetrum of the Sturm�Liouville operator,Gylym, Alma-Ata, 1990 (in Russian).[7℄ A. Kufner, L. Malegranda and L.�E. Persson, The Hardy inequality. Aboutits history and some related results, Pilsen, 2007.[8℄ V. M. Manakov, On the best onstant in weighted inequalities for Riemann�Liouville integrals, Bull. London Math. So., 24 (1992).[9℄ V. D. Stepanov, On one weighted Hardy type inequality for derivatives higherorder, Trudy MIAN USSR, 187 (1989) (in Russian).[10℄ G. H. Hardy, J. E. Littlewood and G. P�olya, Inequalities, 2nd ed., CambridgeUniversity Press, 1967.[11℄ P. I. Lizorkin, On the losure of the set of in�nitely di�erentiable funtionwith ompat support in the weighted spae W l
p,φ, DAN USSR, 239(4) (1978)(in Russian).[12℄ O. Do�sl�y, Constants in osillation theory of higher order Sturm�Liouvilledi�erential equations, Eletron. J. Di�er. Equ., 34 (2002).(Reeived April 2, 2010)

EJQTDE, 2010 No. 49, p. 15


