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Abstract

In this paper, we are focused upon the global uniqueness results for a
stochastic integro-differential equation in Fréchet spaces. The main results are
proved by using the resolvent operators combined with a nonlinear alternative
of Leray-Schauder type in Fréchet spaces due to Frigon and Granas. As an
application, a controllability result with one parameter is given to illustrate
the theory.
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1 Introduction

In this paper, we consider the uniqueness of mild solutions on a semi-infinite pos-
itive real interval J := [0,+∞) for a class of stochastic integro-differential equations
in the abstract form

dx(t) =

[
Ax(t) +

∫ t

0

B(t− s)x(s)ds

]
dt+ f(t, x(t))dw(t), t ∈ J, (1.1)

x(0) = x0, (1.2)

where A : D(A) ⊂ H → H, B(t) : D(B(t)) ⊂ H → H, t ≥ 0, are linear, closed,
and densely defined operators in a Hilbert space H, f : J × H → LQ(K,H) is an
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appropriate function specified later and w(t), t ≥ 0 is a given K-valued Brownian
motion, which will be defined in Section 2. The initial data x0 is an F0-adapted,
H-valued random variable independent of the Wiener process w.

Stochastic differential and integro-differential equations have attracted great in-
terest due to their applications in characterizing many problems in physics, biology,
mechanics and so on. Qualitative properties such as existence, uniqueness and sta-
bility for various stochastic differential and integro-differential systems have been
extensively studied by many researchers, see for instance [1, 2, 3, 4, 5, 6, 7, 8, 9] and
the references therein. The theory of nonlinear functional integro-differential equa-
tions with resolvent operators serves as an abstract formulation of partial integro-
differential equations which arises in many physical phenomena [10, 11, 12, 13, 14].
Just as pointed out by Ouahab in [15], the investigation of many properties of so-
lutions for a given equation, such as stability, oscillation, often needs to guarantee
its global existence. Thus it is of great importance to establish sufficient conditions
for global existence results for functional differential equations. The existence of
unique global solutions for deterministic functional differential evolution equations
with infinite delay in Fréchet spaces were studied by Baghli et al. [16, 17] and Ben-
chohra et al. [18]. Motivated by the works [16, 17, 19, 18], the main purpose of this
paper is to establish the global uniqueness of solutions for the problem (1.1)-(1.2).
Our approach here is based on a recent Frigon and Granas nonlinear alternative of
Leray-Schauder type in Fréchet spaces [20] combined with the resolvent operators
theory. The obtained result can be seen as a contribution to this emerging field.

The rest of this paper is organized as follows: In section 2, we recall some basic
definitions, notations, lemmas and theorems which will be needed in the sequel.
In section 3, we prove the existence of the unique mild solutions for the problem
(1.1)-(1.2). Section 4 is reserved for an application.

2 Preliminaries

This section is concerned with some basic concepts, notations, definitions, lem-
mas and preliminary facts which are used throughout this paper. For more details
on this section, we refer the reader to [5, 21].

Throughout the paper, (H, ‖ · ‖, 〈·, ·〉) and (K, ‖ · ‖K, 〈·, ·〉K) denote two real sep-
arable Hilbert spaces. Let (Ω,F ,P) be a complete probability space equipped with
some filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous
and F0 contains all P-null sets). Let {ei}

∞
i=1 be a complete orthonormal basis of

K. We denote by {w(t), t ≥ 0} a cylindrical K-valued Wiener process with a finite
trace nuclear covariance operator Q ≥ 0, denote Tr(Q) =

∑∞

i=1 λi = λ <∞, which
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satisfies that Qei = λiei, i = 1, 2, · · · . So, actually, w(t) is defined by

w(t) =

∞∑

i=1

√
λiwi(t)ei, t ≥ 0,

where {wi(t)}
∞
i=1 are mutually independent one-dimensional standard Wiener pro-

cesses. We then let Ft = σ{w(s) : 0 ≤ s ≤ t} be the σ-algebra generated by
w.

Let L(K,H) denote the space of all linear bounded operators from K into H,
equipped with the usual operator norm ‖ · ‖L(K,H). For φ ∈ L(K,H), we define

‖φ‖2
Q = Tr(φQφ∗) =

∞∑

i=1

‖
√
λiφei‖

2.

If ‖φ‖2
Q <∞, then φ is called a Q-Hillbert-Schmidt operator. Let LQ(K,H) denote

the space of all Q-Hillbert-Schmidt operators φ : K → H. The completion LQ(K,H)
of L(K,H) with respect to the topology induced by the norm ‖ · ‖Q where ‖φ‖2

Q =
〈φ, φ〉 is a Hilbert space with the above norm topology.

The collection of all strongly measurable, square integrable, H-valued random
variables, denoted by L2(Ω,H), is a Banach space equipped with norm ‖x‖L2(Ω;H) =

(E‖x‖2)
1
2 , where the expectation E is defined E[x] =

∫
Ω
x(w)dP(w). An important

subspace is given by L0
2(Ω,H) = {f ∈ L2(Ω,H) : f is F0 − measurable}. Let

CFt
(J,H) denote the space of all continuous and Ft-adapted measurable processes

from J into H.
A measurable function x : [0,+∞) → H is Bochner integrable if ‖x‖ is Lebesgue

integrable. (For details on the Bochner integral properties, see Yosida [22]).
Let L1([0,+∞),H) be the space of measurable functions x : [0,+∞) → H which

are Bochner integrable, equipped with the norm

‖x‖L1 =

∫ +∞

0

‖x(t)‖dt.

Consider the space

B+∞ = {x : J → H ∈ CFt
(J,H) : x0 ∈ L0

2(Ω,H)}.

Throughout the rest of the paper, A : D(A) ⊂ H → H is the infinitesimal
generator of a resolvent operator R(t), t ≥ 0 in the Hilbert space H and B(t) :
D(B(t)) ⊂ H → H, t ≥ 0 is a bounded linear operator. To obtain our results, we
assume that the abstract Cauchy problem

dx(t) =

[
Ax(t) +

∫ t

0

B(t− s)x(s)ds

]
dt, t ≥ 0, (2.1)
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x(0) = x0 ∈ H, (2.2)

has an associated resolvent operator of bounded linear operators R(t), t ≥ 0 on H.

Definition 2.1 A family of bounded linear operators R(t), t ≥ 0 from H into H is a
resolvent operator family for the problem (2.1)-(2.2) if the following conditions are
verified.

(i) R(0) = I (the identity operator on H) and the map t→ R(t)x is a continuous
function on [0,+∞) → H for every x ∈ H.

(ii) AR(·)x ∈ C([0,∞),H) and R(·)x ∈ C1([0,∞),H) for every x ∈ D(A).
(iii) For every x ∈ D(A) and t ≥ 0,

d

dt
R(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds,

d

dt
R(t)x = R(t)Ax+

∫ t

0

R(t− s)B(s)xds.

For more details on semigroup theory and resolvent operators, we refer [13, 14,
23, 24].

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. Let Y ⊂ X,
we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.

With X, we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows: For
every n ∈ N, we consider the equivalence relation x ∼n y if and only if ‖x− y‖n = 0
for all x, y ∈ X. We denote Xn = (X|∼n

, ‖ · ‖n) the quotient space, the completion
of Xn with respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence the {Y n} of
subsets Y n ⊂ Xn as follows: For every x ∈ X, we denote [x]n the equivalence class
of x of subset Xn and we defined Y n = {[x]n : x ∈ Y }. We denote Y n, intn(Y n) and
∂nY

n, respectively, the closure, the interior and the boundary of Y n with respect to
‖ · ‖n in Xn. We assume that the family of semi-norms {‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ · · · for every x ∈ X.

Definition 2.2 A function f : J×H → LQ(K,H) is said to be an L2-Carathéodory
function if it satisfies:

(i) for each t ∈ J the function f(t, ·) : H → LQ(K,H) is continuous;
(ii) for each x ∈ H the function f(·, x) : J → LQ(K,H) is Ft-measurable;
(iii) for every positive integer k there exists αk ∈ L1

loc(J,R+) such that

E‖f(t, x)‖2 ≤ αk(t) for all E‖x‖2 ≤ k

and for almost all t ∈ J .
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Definition 2.3 [20] A function G : X → X is said to be a contraction if for each
n ∈ N there exists kn ∈ (0, 1) such that:

‖G(x) −G(y)‖n ≤ kn‖x− y‖n for all x, y ∈ X.

Theorem 2.1 (Nonlinear Alternative of Granas-Frigon, [20]). Let X be a Fréchet
space and Y ⊂ X a closed subset and N : Y → X be a contraction such that N(Y )
is bounded. Then one of the following statements hold:

(C1) N has a unique fixed point;
(C2) There exists λ ∈ [0, 1), n ∈ N, and x ∈ ∂nY

n such that ‖x− λN(x)‖n = 0.

3 Existence Results

In this section, we prove that there is a unique global mild solution for the
problem (1.1)-(1.2). We begin introducing the following concept of mild solutions.

Definition 3.1 An Ft-adapted stochastic process x : [0,+∞) → H is called a mild
solution of (1.1)-(1.2) if x(0) = x0 ∈ L0

2(Ω,H), x(t) is continuous and satisfies the
following integral equation

x(t) = R(t)x0 +

∫ t

0

R(t− s)f(s, x(s))dw(s), for each t ∈ [0,+∞).

Let us list the following assumptions:
(H1) A is the infinitesimal generator of a resolvent operator R(t), t ≥ 0 in the
Hilbert space H and there exists a constant M > 0 such that

‖R(t)‖2 ≤M, t ≥ 0.

(H2) The function f : J × H → LQ(K,H) is L2-Carathéodory and satisfies the
following conditions:

(i) There exist a function p ∈ L1
loc(J,R+) and a continuous nondecreasing func-

tion ψ : J → (0,+∞) such that

E‖f(t, u)‖2 ≤ p(t)ψ(E‖u‖2),

for a.e. t ∈ J and each u ∈ H.
(ii) For all R > 0, there exists a function lR ∈ L1

loc(J,R+) such that

E‖f(t, u) − f(t, v)‖2 ≤ lR(t)E‖u− v‖2,

for all u, v ∈ H with E‖u‖2 ≤ R and E‖v‖2 ≤ R.
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Theorem 3.1 Assume the conditions (H1)-(H2) are satisfied and moreover for each
n ∈ N ∫ +∞

cn

ds

ψ(s)
> 2Tr(Q)M

∫ n

0

p(s)ds, (3.1)

where cn = 2ME‖x0‖
2. Then the problem (1.1)-(1.2) has a unique mild solution on

J .

Proof: Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms

‖x‖n := sup{e−τL∗

n(t)E‖x(t)‖2 : t ∈ [0, n]},

where L∗
n(t) =

∫ t

0
ln(s)ds, and ln(t) = MTr(Q)ln(t) and ln is the function from (H2).

Then B+∞ is a Fréchet space with the family of semi-norms ‖ · ‖n∈N.
We transform (1.1)-(1.2) into a fixed point problem. Consider the operator

Γ : B+∞ → B+∞ defined by

Γ(x)(t) = R(t)x0 +

∫ t

0

R(t− s)f(s, x(s))dw(s), t ∈ J.

Clearly fixed points of the operator Γ are mild solutions of the problem (1.1)-(1.2).
For convenience, we set for n ∈ N

cn = 2ME‖x0‖
2, m(t) = 2Tr(Q)Mp(t).

Let x ∈ B+∞ be a possible fixed point of the operator Γ. By the hypotheses (H1)
and (H2), we have for each t ∈ [0, n]

E‖x(t)‖2 ≤ 2E‖R(t)x0‖
2 + 2E

∥∥∥∥
∫ t

0

R(t− s)f(s, x(s))dw(s)

∥∥∥∥
2

≤ 2ME‖x0‖
2 + 2Tr(Q)M

∫ t

0

p(s)ψ(E‖x(s)‖2)ds.

We consider the function u defined by

u(t) = sup{E‖x(s)‖2 : 0 ≤ s ≤ t}, 0 ≤ t < +∞.

Let t∗ ∈ [0, t] be such that
u(t) = E‖x(t∗)‖2.

By the previous inequality, we have

u(t) ≤ 2ME‖x0‖
2 + 2Tr(Q)M

∫ t

0

p(s)ψ(u(s))ds.
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Let us take the right-hand side of the above inequality as v(t). Then, we have

u(t) ≤ v(t) for all t ∈ [0, n] and v(0) = cn = 2ME‖x0‖
2

and
v′(t) = 2Tr(Q)Mp(t)ψ(u(t)) a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) = 2Tr(Q)Mp(t)ψ(v(t)) a.e. t ∈ [0, n].

This implies that for each t ∈ [0, n], we have

∫ v(t)

cn

ds

ψ(s)
≤

∫ n

0

m(s)ds <

∫ +∞

cn

ds

ψ(s)
.

Thus by (3.1), for every t ∈ [0, n], there exists a constant Λn, such that v(t) ≤ Λn

and hence u(t) ≤ Λn. Since ‖x‖n ≤ u(t), we have ‖x‖n ≤ Λn. Set

X = {x ∈ B+∞ : sup{E‖x(t)‖2 : 0 ≤ t ≤ n} ≤ Λn + 1 for all n ∈ N}.

Clearly, X is a closed subset of B+∞.
We shall show that Γ : X → B+∞, is a contraction operator. Indeed, consider

x, x ∈ B+∞, thus using (H1) and (H2) for each t ∈ [0, n] and n ∈ N

E‖Γ(x)(t) − Γ(x)(t)‖2 = E

∥∥∥∥
∫ t

0

R(t− s)[f(s, x(s)) − f(s, x(s))]dw(s)

∥∥∥∥
2

≤ Tr(Q)M

∫ t

0

ln(s)E‖x(s) − x(s)‖2ds

≤

∫ t

0

[ln(s)e
τL∗

n(s)][e−τL∗

n(s)E‖x(s) − x(s)‖2]ds

≤

∫ t

0

[ln(s)e
τL∗

n(s)]ds‖x− x‖n

≤

∫ t

0

1

τ
[eτL∗

n(s)]′ds‖x− x‖n

≤
1

τ
eτL∗

n(t)‖x− x‖n.

Therefore

‖Γ(x) − Γ(x)‖n ≤
1

τ
‖x− x‖n.

So, the operator Γ is a contraction for all n ∈ N. From the choice of X there is
no x ∈ ∂Xn such that x = λΓ(x) for some λ ∈ (0, 1). Then the statement (C2) in
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theorem 2.1 does not hold. A consequence of the nonlinear alternative of Frigon and
Granas shows that (C1) holds. We deduce that the operator Γ has a unique fixed
point x, which is the unique mild solution of the problem (1.1)-(1.2). The proof is
completed.

Example 3.1 Consider the following nonlinear stochastic functional differential
equations





∂v

∂t
(t, x) =

∂2

∂x2

[
v (t, x) +

∫ t

0
b(t− s)v (s, x) ds

]
+ k(t, v(t, x))dw (t) , t ≥ 0, x ∈ [0, π] ,

v (t, 0) = v(t, π) = 0, t ≥ 0,
v (0, x) = u0 (x) , x ∈ [0, π] ,

(3.2)
where w (t) denotes a K-valued Brownian motion, k : R+×R → R, u0 (·) ∈ L2 ([0, π])
is F0-measurable and satisfies E ‖u0‖

2 <∞.
Let H = L2 ([0, π]) and define A : H → H by Az = z′′ with domain

D(A) = {z ∈ H, z, z′ are absolutely continuous, z′′ ∈ H, z(0) = z(π) = 0} .

Then A generates a strongly continuous semigroup and resolvent operator R(t) can
be extracted from this semigroup [13].

Hence let f (t, v) (·) = k(t, v (·)). Then the system (3.2) takes the abstract form
as (1.1)-(1.2). Further, we can impose some suitable conditions on the above-defined
functions to verify the assumptions on Theorem 3.1, we can conclude that the system
(3.2) admits a unique mild solution on J.

4 Controllability Results

As an application of Theorem 3.1, we consider the following controllability for
stochastic functional integro-differential evolution equations of the form

dx(t) =

[
Ax(t) +

∫ t

0

B(t− s)x(s)ds

]
dt+Cu(t)dt+f(t, x(t))dw(t), t ∈ J = [0,+∞),

(4.1)

x(0) = x0, (4.2)

where the control function u(·) is given in L2(J,U), the Banach space of admissible
control functions with U is real separable Hilbert space with the norm | · |, C is a
bounded linear operator from U into H. And the functions A,B(t − s), f and x0

are as in problem (1.1)-(1.2). For more results on the controllability defined on a
compact interval, we refer to [25, 26, 27, 28, 29, 30, 31] and the references therein.
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Definition 4.1 An Ft-adapted stochastic process x : [0,+∞) → H is called a mild
solution of the problem (4.1)-(4.2) if x(0) = x0 ∈ L0

2(Ω,H), x(t) is continuous and
satisfies the following integral equation

x(t) = R(t)x0 +

∫ t

0

R(t− s)Cu(s)ds+

∫ t

0

R(t− s)f(s, x(s))dw(s), t ∈ J = [0,+∞).

Definition 4.2 The system (4.1)-(4.2) is said to controllable if for every initial
random variable x0 ∈ L0

2(Ω,H), x∗ ∈ H, and n ∈ N, there is some Ft-adapted
stochastic control u ∈ L2([0, n],U) such that the mild solution x(·) of (4.1)-(4.2)
satisfies the terminal condition x(n) = x∗.

We need the following assumption besides the conditions (H1)-(H2):
(H3) For each n ∈ N, the linear operator W : L2([0, n],U) → L2(Ω,H) is defined by

Wu =

∫ n

0

R(n− s)Cu(s)ds,

has a pseudo invertible operator W̃−1 which takes values in L2([0, n],U)/KerW and
there exist positive constants M1 and M2 such that

‖C‖2 ≤ M1, and ‖W̃−1‖2 ≤M2.

Remark 4.1 For the construction of W̃−1 see the paper of Quinn and Carmichael
[32].

Theorem 4.1 Assume the conditions (H1)-(H3) are satisfied and moreover for each
n ∈ N, there exists a constant Λn > 0 such that

Λn

βn + 3Tr(Q)M [3MM1M2n2 + 1]ψ(Λn)‖p‖L1
[0,n]

> 1, (4.3)

with

βn = βn(x∗, x0) = 3M [3MM1M2n
2 + 1]E‖x0‖

2 + 9MM1M2n
2E‖x∗‖2.

Then the system (4.1)-(4.2) is controllable on J .

Proof: Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms

‖x‖n := sup{e−τL∗

n(t)E‖x(t)‖2 : t ∈ [0, n]},

where L∗
n(t) =

∫ t

0
ln(s)ds, and ln(t) = 2Tr(Q)Mln(t)[MM1M2n

2 + 1] and ln is the
function from (H2). Then B+∞ is a Fréchet space with the family of semi-norms
‖ · ‖n∈N.
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We transform (4.1)-(4.2) into a fixed point problem. Consider the operator
Ξ : B+∞ → B+∞ defined by

Ξ(x)(t) = R(t)x0 +

∫ t

0

R(t− s)Cux(s)ds+

∫ t

0

R(t− s)f(s, x(s))dw(s), t ∈ J.

Using the condition (H3), for arbitrary function x(·), we define the control

ux(t) = W̃−1

[
x∗ − R(n)x0 −

∫ n

0

R(n− s)f(s, x(s))dw(s)

]
(t).

Noting that, we have

E‖ux(t)‖
2 ≤ ‖W̃−1‖2E

∥∥∥∥x
∗ − R(t)x0 −

∫ n

0

R(n− τ)f(τ, x(τ))dw(τ)

∥∥∥∥
2

.

Applying (H1)-(H3), we get

E‖ux(t)‖
2 ≤ 3M2

[
E‖x∗‖2 +ME‖x0‖

2 + Tr(Q)M

∫ n

0

p(τ)ψ(E‖x(τ)‖2)dτ

]
.

We shall show that using this control the operator Ξ has a fixed point x(·). Then
x(·) is a mild solution of the system (4.1)-(4.2).

Let x ∈ B+∞ be a possible fixed point of the operator Ξ. By the conditions
(H1)-(H3), we have for each t ∈ [0, n]

E‖x(t)‖2 ≤ 3E‖R(t)x0‖
2 + 3E

∥∥∥∥
∫ t

0

R(t− s)Cux(s)ds

∥∥∥∥
2

+3E

∥∥∥∥
∫ t

0

R(t− s)f(s, x(s))dw(s)

∥∥∥∥
2

≤ 3ME‖x0‖
2 + 3Tr(Q)M

∫ t

0

p(s)ψ(E‖x(s)‖2)ds

+9MM1M2n

∫ t

0

[
E‖x∗‖2 +ME‖x0‖

2 + Tr(Q)M

∫ n

0

p(τ)ψ(E‖x(τ)‖2)dτ

]
ds

≤ 3ME‖x0‖
2 + 9MM1M2n

2[E‖x∗‖2 +ME‖x0‖
2]

+9Tr(Q)M1M2M
2n2

∫ n

0

p(s)ψ(E‖x(s)‖2)ds

+3Tr(Q)M

∫ t

0

p(s)ψ(E‖x(s)‖2)ds.

Set
βn = 3ME‖x0‖

2 + 9MM1M2n
2[E‖x∗‖2 +ME‖x0‖

2].
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So

E‖x(t)‖2 ≤ βn + 9Tr(Q)M1M2M
2n2

∫ n

0

p(s)ψ(E‖x(s)‖2)ds

+3Tr(Q)M

∫ t

0

p(s)ψ(E‖x(s)‖2)ds.

We consider the function µ defined by

µ(t) = sup{E‖x(s)‖2 : 0 ≤ s ≤ t}, 0 ≤ t < +∞.

Let t∗ ∈ [0, t] be such thatµ(t) = E‖x(t∗)‖2. If t∗ ∈ [0, n], by the previous inequality,
we have for t ∈ [0, n]

µ(t) ≤ βn + 9Tr(Q)M1M2M
2n2

∫ n

0

p(s)ψ(µ(s))ds+ 3Tr(Q)M

∫ t

0

p(s)ψ(µ(s))ds.

Then, we have

µ(t) ≤ βn + 3Tr(Q)M [3MM1M2n
2 + 1]

∫ n

0

p(s)ψ(µ(s))ds.

Consequently,

‖x‖n

βn + 3Tr(Q)M [3MM1M2n2 + 1]ψ(‖x‖n)‖p‖L1
[0,n]

≤ 1.

Then by the condition (4.3), there exists Λn such that µ(t) ≤ Λn. Since ‖x‖n ≤ µ(t),
we have ‖x‖n ≤ Λn.

Set

X = {x ∈ B+∞ : sup{E‖x(t)‖2 : 0 ≤ t ≤ n} ≤ Λn + 1 for all n ∈ N}.

Clearly, X is a closed subset of B+∞.
We shall show that Ξ : X → B+∞ is a contraction operator. Indeed, consider

x, x ∈ B+∞. By (H1)-(H3) for each t ∈ [0, n] and n ∈ N

E‖Ξ(x)(t) − Ξ(x)(t)‖2

≤ 2E

∥∥∥∥
∫ t

0

R(t− s)C[ux(s) − ux(s)]ds

∥∥∥∥
2

+2E

∥∥∥∥
∫ t

0

R(t− s)[f(s, x(s)) − f(s, x(s))]dw(s)

∥∥∥∥
2

≤ 2MM1n

∫ t

0

E

∥∥∥∥W̃
−1

[
x∗ −R(n)x0 −

∫ n

0

R(n− s)f(τ, x(τ))dw(τ)

]
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−W̃−1

[
x∗ − R(n)x0 −

∫ n

0

R(n− s)f(τ, x(τ))dw(τ)

]∥∥∥∥
2

ds

+2Tr(Q)M

∫ t

0

ln(s)E‖x(s) − x(s)‖2ds

≤ 2MM1M2n

∫ t

0

Tr(Q)M

∫ n

0

E‖f(τ, x(τ)) − f(τ, x(τ))‖2
LQ(K,H)dτds

+2Tr(Q)M

∫ t

0

ln(s)E‖x(s) − x(s)‖2ds

≤ 2Tr(Q)M1M2M
2n2

∫ t

0

ln(s)E‖x(s) − x(s)‖2ds

+2Tr(Q)M

∫ t

0

ln(s)E‖x(s) − x(s)‖2ds

≤

∫ t

0

[ln(s)eτL∗

n(s)][e−τL∗

n(s)E‖x(s) − x(s)‖2]ds

≤

∫ t

0

[ln(s)eτL∗

n(s)]ds‖x− x‖n

≤

∫ t

0

1

τ
[eτL∗

n(s)]′ds‖x− x‖n

≤
1

τ
eτL∗

n(t)‖x− x‖n.

Therefore

‖Ξ(x) − Ξ(x)‖n ≤
1

τ
‖x− x‖n.

So, the operator Ξ is a contraction for all n ∈ N. From the choice of X there is
no x ∈ ∂Xn such that x = λΞ(x) for some λ ∈ (0, 1). Then the statement (C2) in
Theorem 2.1 does not hold. A consequence of the nonlinear alternative of Frigon
and Granas shows that (C1) holds. We deduce that the operator Ξ has a unique
fixed point x, which is the unique mild solution of the problem (4.1)-(4.2). The
proof is completed.
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