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1 Introduction

In this paper, we study non-simultaneous blow-up for the following reaction-diffusion sys-

tem

ut = uxx − a1e
α1u, vt = vxx − a2e

β1v, (x, t) ∈ (0, 1) × (0, T ),

ux(1, t) = eα2u(1,t)+pv(1,t), vx(1, t) = equ(1,t)+β2v(1,t), t ∈ (0, T ),

ux(0, t) = 0, vx(0, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, 1],

(1.1)

where p, q, ai > 0, αi, βi ≥ 0, i = 1, 2. The initial data satisfy u0, v0 ≥ 0, u
′

0, v
′

0 ≥ 0,

u
′′

0 − a1e
α1u0 , v

′′

0 − a2e
β1v0 ≥ δ > 0, as well as the compatibility conditions on [0, 1]. By

comparison principle, it follows that ut, vt > 0, ux, vx ≥ 0 and u, v ≥ 0 for (x, t) ∈ [0, 1] ×
[0, T ).

The reaction-diffusion system (1.1) can be used to describe heat propagations in mixed

solid media with nonlinear absorption and nonlinear boundary flux [1-3, 5, 9, 11, 16]. The
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nonlinear Neumann boundary values in (1.1), coupling the two heat equations, represent

some cross-boundary flux.

The problem of heat equations

ut = ∆u, vt = ∆v, (x, t) ∈ Ω × (0, t), (1.2)

coupled via somewhat special nonlinear Neumann boundary conditions

∂u

∂ν
= vp,

∂v

∂ν
= uq, (x, t) ∈ ∂Ω × (0, T ), (1.3)

was studied by Deng [7] and Lin and Xie [11], who showed that the solutions glob-

ally exist if pq ≤ 1 and may blow up in finite time if pq > 1 with the blow-up rates

O
(
(T − t)−(p+1)/2(pq−1)

)
and O

(
(T − t)−(q+1)/2(pq−1)

)
. Similarly, the blow-up rates for the

corresponding scalar case of (1.2) and (1.3) was shown to be O
(
(T − t)−1/2(p−1)

)
in [10].

The system (coupled via a variational boundary flux of exponential type)

ut = ∆u, vt = ∆v, (x, t) ∈ Ω × (0, t),
∂u

∂ν
= epv,

∂v

∂ν
= equ, (x, t) ∈ ∂Ω × (0, t),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.4)

was studied by Deng [7], and has blow-up rates

− 1

2q
log c(T − t) ≤ max

Ω
u(·, t) ≤ − 1

2q
log C(T − t),

− 1

2p
log c(T − t) ≤ max

Ω
v(·, t) ≤ − 1

2p
log C(T − t),

(1.5)

for t ∈ (0, T ). This is the special case with αi = βi = ai = 0, i = 1, 2, in our system (1.1).

Zhao and Zheng [17] studied the following nonlinear parabolic system:

ut = ∆u, vt = ∆v, (x, t) ∈ Ω × (0, t),
∂u

∂ν
= eα2u+pv,

∂v

∂ν
= equ+β2v, (x, t) ∈ ∂Ω × (0, t),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.6)

The blow-up rates for (1.6) were shown to be

max
Ω

u(·, t) = O
(
log(T − t)α/2

)
, max

Ω
v(·, t) = O

(
log(T − t)β/2

)
, (1.7)

as t → T , where (α, β)T is the only positive solution of
(

α2 p

q β2

)(
α

β

)
=

(
1

1

)
,

namely,

α =
p − β2

pq − α2β2
, β =

q − α2

pq − α2β2
.
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Clearly the blow-up rate estimate (1.5) is just the special case of (1.7) with α2 = β2 = 0.

The phenomenon of non-simultaneous blow-up is researched extensively [see 4, 13-15].

Recently Zheng and Qiao [20] consider the non-simultaneous blow-up phenomenon of fol-

lowing reaction-diffusion problem

ut = uxx − λ1u
α1 , vt = vxx − λ2v

β1, (x, t) ∈ (0, 1) × (0, T ),

ux(1, t) = uα2vp, vx(1, t) = uqvβ2, t ∈ (0, T ),

ux(0, t) = 0, vx(0, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, 1],

(1.8)

and they get the following conclusions:

(1) If q < α2 −1 with either α2 > µ or α2 = µ > 1, then there exists initial data (u0, v0)

such that u blows up at a finite time T while v remains bounded.

(2) If u blows up at time T and v remains bounded up to that time, then q < α2 − 1

with either α2 > µ or α2 = µ > 1.

(3) Under the condition of (1), if in addition either (i) β2 ≤ 1, or (ii) 1 < β2 < γ and

q < (α2−1)(γ−β2)
γ−1

hold, then any blow-up must be non-simultaneous, namely, u blows up at

a finite time T while v remains bounded.

The critical exponents for the system (1.1) were studied in [18] by Zheng and Li, where

the following characteristic algebraic system was introduced:

(
α2 − 1

2
α1 p

q β2 − 1
2
β1

)(
τ1

τ2

)
=

(
1

1

)
, (1.9)

namely,

τ1 =
p + 1

2
β1 − β2

pq − (1
2
α1 − α2)(

1
2
β1 − β2)

, τ2 =
q + 1

2
α1 − α2

pq − (1
2
α1 − α2)(

1
2
β1 − β2)

. (1.10)

To state their main result, first we give some information about eigenfunction for Laplace’s

equation.

Let ϕ0 be the first eigenfunction of

ϕ
′′

+ λϕ = 0 in (−1, 1); ϕ(−1) = ϕ(1) = 0, (1.11)

with the first eigenvalue λ0, normalized by ‖ϕ0‖∞ = 1. It is well know that [6] ϕ0 > 0 in

(−1, 1), and there are positive constants ci (i=1,2,3,4) and ε0 such that

c1 ≤ ϕ
′

0(−1),−ϕ
′

0(1) ≤ c2 ≤ max
[−1,1]

|ϕ′

0| = c4,

|ϕ′

0| ≥
c1

2
on {x ∈ (−1, 1) : dist(x,−1) ≤ ε0} ∪ {x ∈ (−1, 1) : dist(x, 1) ≤ ε0},

ϕ0 ≥ c3 on {x ∈ (−1, 1) : dist(x,−1) ≥ ε0} ∩ {x ∈ (−1, 1) : dist(x, 1) ≥ ε0}.

(1.12)
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Now we can state the main result of [18]

Proposition 1.1 (1) If 1/τ1 > 0 or 1/τ2 > 0, then the solutions of (1.1) blow up in finite

time with large initial data.

(2) If 1/τi < 0, i=1,2, then the solutions of (1.1) are globally bounded.

(3) Assume that 1/τ1 = 1/τ2 = 0.

(i) If α2 > 1
2
α1 and β2 > 1

2
β1, then the solutions of (1.1) blow up in finite time with

large initial data.

(ii) If a1 ≥ 2α1

(
λ0

c1
+

3c2
4

c2
1

)
, a2 ≥ 2β1

(
λ0

c1
+

3c2
4

c2
1

)
with α2 < 1

2
α1, β2 < 1

2
β1, then the

solutions of (1.1) are globally bounded.

(iii) If a1 ≤ min
{

c2
1
M2

4α1

,
λ0c2

3
M2

α1

}
, a2 ≤ min

{
c2
1
M2

4β1

,
λ0c2

3
M2

β1

}
with α2 < 1

2
α1, β2 < 1

2
β1,

M = min{α1/(2c2), β1/(2c2)}, then the solutions of (1.1) blow up in finite time for large

initial data.

Intrigued by [18-20], we consider the non-simultaneous blow-up of (1.1). The main

results of this paper are the following two Theorems for non-simultaneous blow-up. Without

loss of generality, we only deal with the case where u blows up while v remains bounded.

Theorem 1.1 If q < α2 with either 2α2 > α1 or 2α2 = α1, a1 ≤ α1

4
min{c2

1/(4c2
2), λ0c

2
3/c

2
2},

then there exists initial data (u0, v0) such that u blows up at a finite time T while v remains

bounded up to that time.

Theorem 1.2 If u blows up at a finite time T while v remains bounded up to that time,

then q < α2 with either 2α2 > α1 or 2α2 = α1, a1 ≤ α1

4
min{c2

1/(4c2
2), λ0c

2
3/c

2
2}.

We will prove Theorem 1.1 and 1.2 in the next two sections.

2 Proof of Theorem 1.1

At first, we consider the scalar problem of the form

ut = uxx − a1e
α1u, (x, t) ∈ (0, 1) × (0, T ),

ux(1, t) = eα2u(1,t)eph(t), ux(0, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, 1],

(2.1)

with a1, αi in (1.1), i=1,2 and h(t) continuous, non-decreasing, 0 ≤ h(t) ≤ K. Similarly to

Theorem 3.2 in [19], we can prove the following Lemma, where and in the sequel C is used

to represent positive constants independent of t, and may change from line to line.

Lemma 2.1 Let u be a solution of (2.1). Assume (i) 2α2 > α1 or (ii) 2α2 = α1 with

a1 ≤ α1

4
min{c2

1/(4c2
2), λ0c

2
3/c

2
2}. Then u blows up in a finite time T for sufficiently large
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initial value, and moreover

u(1, t) = max
[0,1]

u(·, t) ≤ log C(T − t)
−

1

2α2 , 0 < t < T. (2.2)

Proof. Let w slove

wt = wxx − a1e
α1w, (x, t) ∈ (0, 1) × (0, T ),

wx(1, t) = eα2w(1,t), wx(0, t) = 0, t ∈ (0, T ),

w(x, 0) = u0(x), x ∈ [0, 1].

(2.3)

Then, w ≤ u in (0, 1)× [0, T ) by the comparison principle. Notice that the two assumptions

2α2 > α1 or 2α2 = α1 with a1 ≤ α1

4
min{c2

1/(4c2
2), λ0c

2
3/c

2
2} are corresponding to the blow-up

conditions by Proposition 1.1 with α1 = β1, α2 = β2, p = q = 0 and u0 = v0, a1 = a2 in

(1.1). So there exists initial data such that w blows up in finite time T ′. Then u blows up

in finite time t = T .

To establish the desired blow-up rate, we exploit the method used in [19]. From the

assumptions on initial data, we know that wt > 0 and wx ≥ 0 for (x, t) ∈ [0, 1) × [0, T ).

Set J(x, t) =
√

wt − εwx for (x, t) ∈ (0, 1) × [0, T ). Let ε be sufficiently small such that

J(x, 0) =
√

wt(x, 0) − εwx(x, 0) ≥ 0, x ∈ [0, 1], (2.4)

a simple computation yields

Jx(1, t) −
[(

1

2
α2e

α2w − εw
1

2

t − ε2eα2w

)
J

]
(1, t)

= ε

(
1

2
α2e

2α2w − a1e
α1w − ε2e2α2w

)
(1, t) ≥ 0, t ∈ (0, T ),

(2.5)

when (i) 2α2 > α1 or (ii) 2α2 = α1 with a1 ≤ α1

4
min{c2

1/(4c2
2), λ0c

2
3/c

2
2}.

For (x, t) ∈ (0, 1) × [0, T ), a simple computation shows

Jt − Jxx +
1

2
a1α1e

α1wJ =
1

4
w

−
3

2

t w2
tx +

1

2
εa1α1e

α1wwx ≥ 0. (2.6)

By the comparison principle [12], we have J ≥ 0 and hence

wt(1, t) ≥ ε2w2
x(1, t) = ε2e2α2w(1,t), t ∈ [0, T ). (2.7)

Integrating (2.7) from t to T , we get (2.2) immediately. 2

Proof of Theorem 1.1. It suffices to choose initial data (u0, v0) such that u blows

up while v remains bounded. At first, fix v0 ≥ 0 and take K = max[0,1] v0 = v0(1),

N = 1
K

e2β2K + 3. Thus, w(x, t) which solves (2.3) is a subsolution of u. Since Proposition

1.1, there exists initial data u0 such that w blows up at a finite time T ′. Now, for the fixed

v0, retake u0(x) = w(x, T ′ − ε), the u blows up in a finite time T ≤ ε.
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If v remain bounded by v < 2K for t ∈ [0, T ], the proof is complete.

Otherwise, Let t0 be the first time such that max[0,1] v(·, t0) = v(1, t0) = 2K. Now, we

introduce the following cut-off function:

ṽ(x, t) =

{
v(x, t), (x, t) ∈ [0, 1] × [0, t0],

2K, (x, t) ∈ [0, 1] × [t0, T ].
(2.8)

Corresponding, let ũ(x, t) solve

ũt = ũxx − a1e
α1eu, (x, t) ∈ (0, 1) × (0, T̃ ),

ũx(1, t) = eα2eu(1,t)epev(1,t), ũx(0, t) = 0, t ∈ (0, T̃ ),

ũ(x, 0) = u0(x), x ∈ [0, 1],

(2.9)

where T̃ is the blow-up time of ũ satisfying T̃ ≥ T . By Lemma 2.1,

ũ(1, t) = max
[0,1]

ũ(·, t) ≤ log C(T̃ − t)
−

1

2α2 , 0 < t < T̃ . (2.10)

Therefore,

u(1, t) = ũ(1, t) ≤ log C(T̃ − t)
−

1

2α2 ≤ log C(T − t)
−

1

2α2 , 0 < t ≤ t0. (2.11)

Let Γ(x, t) be the fundamental solution of the heat equation in [0, 1], namely

Γ(x, t) =
1

2
√

πt
exp

{−x2

4t

}
. (2.12)

It is know that Γ satisfies (see [8])

∫ 1

0

Γ(x − y, t − z)dy ≤ 1,
∫ t

z

Γ(1, t − τ)
1

2(t − τ)
dτ ≤ C∗

√
t − z,

∫ t

z

Γ(0, t− τ)dτ =
1√
π

√
t − z,

∂Γ

∂νy

(x − y, t − τ) =
x − y

2(t − τ)
Γ(x − y, t − τ), x, y ∈ [0, 1], 0 ≤ z < t.

(2.13)

By the Greeen’s identity with (1.1) for v,

v(x, t) =

∫ 1

0

Γ(x−y, t−z)v(y, z)dy +

∫ t

z

∫ 1

0

Γ(x−y, t−τ)
(
−a2e

β1v(y,τ)
)
dydτ

+

∫ t

z

∂v

∂x
(1, τ)Γ(x − 1, t − τ)dτ −

∫ t

z

∂Γ

∂νy
(x − 1, t − τ)v(1, τ)dτ

+

∫ t

z

∂Γ

∂νy
(x, t − τ)v(0, τ)dτ,

(2.14)

where 0 ≤ z < t < T, 0 < x < 1. With z = 0 and x → 1, it follows that

v(x, t) =

∫ 1

0

Γ(1−y, t)v(y, 0)dy +

∫ t

0

∫ 1

0

Γ(x−y, t−τ)
(
−a2e

β1v(y,τ)
)
dydτ

+

∫ t

0

equ(1,τ)+β2v(1,τ)Γ(0, t − τ)dτ +

∫ t

0

v(0, τ)Γ(1, t− τ)
1

2(t − τ)
dτ.

(2.15)
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By (2.11), we have furthermore

v(1, t0) ≤ v0(1) + C0e
β2v(1,t0)

∫ t0

0

(t0 − τ)
−

q

2α2
−

1

2 dτ + C∗
√

t0v(1, t0). (2.16)

Since q < α2, the integral term in (2.16) is smaller than 1/(NC0) with
√

t0 ≤
√

T ≤
1/(NC∗) if we choose u0 large to make T sufficiently small. This yields

N − 1

N
v(1, t0) ≤ v0(1) +

1

N
eβ2v(1,t0). (2.17)

Consequently,
2(N − 1)

N
K ≤ K +

1

N
e2β2K , (2.18)

and hence

N ≤ 1

K
e2β2K + 2, (2.19)

a contradiction. 2

3 Proof of Theorem 1.2

We begin with a Lemma to prove Theorem 1.2.

Lemma 3.1 Let u be a solution of

ut = uxx − a1e
α1u, (x, t) ∈ (0, 1) × (0, T ),

ux(1, t) ≤ Leα2u(1,t), ux(0, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, 1],

(3.1)

where a1 > 0, αi ≥ 0, i=1,2 and L is a positive constant. If u blows up at a finite time,

then either 2α2 > α1 or 2α2 = α1, a1 ≤ α1

4
min{c2

1/(4c2
2), λ0c

2
3/c

2
2}. Furthermore,

u(1, t) = max
[0,1]

u(·, t) ≥ log C(T − t)
−

1

2α2 , as t → T. (3.2)

Proof. The blow-up of u implies either 2α2 > α1 or 2α2 = α1, a1 ≤ α1

4
min{c2

1/(4c2
2), λ0c

2
3/c

2
2}

by Proposition 1.1.

By the Green’s identity, similarly to (2.14)

u(x, t) ≤
∫ 1

0

Γ(x − y, t − z)u(y, z)dy + L

∫ t

z

eα2u(1,τ)Γ(x − 1, t − τ)dτ

−
∫ t

z

∂Γ

∂νy
(x − 1, t − τ)u(1, τ)dτ +

∫ t

z

∂Γ

∂νy
(x, t − τ)u(0, τ)dτ,

(3.3)
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where 0 < z < t < T , 0 < x < 1. Let x → 1 with the jumping relations to obtain

1

2
u(1, t) ≤

∫ 1

0

Γ(1 − y, t − z)u(y, z)dy + L

∫ t

z

eα2u(1,τ)Γ(0, t − τ)dτ

+

∫ t

z

∂Γ

∂νy
(1, t − τ)u(0, τ)dτ

≤ u(1, z) +
L√
π

√
T − zeα2u(1,t) + C∗

√
T − zu(1, t).

(3.4)

For any z ∈ (0, T ) with C∗
√

T − z ≤ 1/4, choose t ∈ (z, T ) such that 1
4
u(1, t) − u(1, z) ≥

C0 > 0. Then

C0 ≤
L√
π

√
T − teα2u(1,t), (3.5)

which implies (3.2). 2

Proof of Theorem 1.2. Since v ≤ K for (x, t) ∈ [0, 1] × [0, T ), we have

ut = uxx − a1e
α1u, (x, t) ∈ (0, 1) × (0, T ),

ux(1, t) ≤ epKeα2u(1,t), ux(0, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, 1].

(3.6)

Then, we obtain from Lemma 3.1 that 2α2 > α1 or 2α2 = α1 with a1 ≤ α1

4
min

{
c2
1

4c2
2

,
λ0c2

3

c2
2

}
,

and moreover,

u(1, t) = max
[0,1]

u(·, t) ≥ log C(T − t)
−

1

2α2 , as t → T. (3.7)

Next, let us show q < α2. Due to (2.14), we have by letting x → 1 that

v(1, t) ≥
∫ t

z

equ(1,τ)+β2v(1,τ)Γ(0, t − τ)dτ − a2

∫ t

z

∫ 1

0

Γ(1 − y, t − τ)eβ1v(y,τ)dydτ, (3.8)

and so,

v(1, t) ≥ C1

∫ t

z

(T − τ)
−

q

2α2
−

1

2 dτ − a2e
β1v(1,τ). (3.9)

The boundedness of v(1, t) as t → T requires that q < α2. 2
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