Non-Simultaneous Blow-Up for a Reaction-Diffusion System with Absorption and Coupled Boundary Flux^{*}

Jun Zhou^{$a,b\dagger$} Chunlai Mu^{$b\ddagger$}

a. School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

b. College of Mathematics and Statistics, Chongqing University, Chongqing, 400044, China

Abstract. This paper deals with non-simultaneous blow-up for a reactiondiffusion system with absorption and nonlinear boundary flux. We establish necessary and sufficient conditions for the occurrence of non-simultaneous blow-up with proper initial data.

Keywords. non-simultaneous blow-up; reaction-diffusion system; nonlinear absorption; nonlinear boundary flux; blow-up rate Mathematics Subject Classification (2000). 35K55; 35B33

1 Introduction

In this paper, we study non-simultaneous blow-up for the following reaction-diffusion system

$$u_{t} = u_{xx} - a_{1}e^{\alpha_{1}u}, \quad v_{t} = v_{xx} - a_{2}e^{\beta_{1}v}, \qquad (x,t) \in (0,1) \times (0,T), u_{x}(1,t) = e^{\alpha_{2}u(1,t) + pv(1,t)}, \quad v_{x}(1,t) = e^{qu(1,t) + \beta_{2}v(1,t)}, \quad t \in (0,T), u_{x}(0,t) = 0, \quad v_{x}(0,t) = 0, \qquad t \in (0,T), u(x,0) = u_{0}(x), \quad v(x,0) = v_{0}(x), \qquad x \in [0,1],$$

$$(1.1)$$

where $p, q, a_i > 0$, $\alpha_i, \beta_i \ge 0$, i = 1, 2. The initial data satisfy $u_0, v_0 \ge 0$, $u'_0, v'_0 \ge 0$, $u''_0 - a_1 e^{\alpha_1 u_0}, v''_0 - a_2 e^{\beta_1 v_0} \ge \delta > 0$, as well as the compatibility conditions on [0, 1]. By comparison principle, it follows that $u_t, v_t > 0$, $u_x, v_x \ge 0$ and $u, v \ge 0$ for $(x, t) \in [0, 1] \times [0, T)$.

The reaction-diffusion system (1.1) can be used to describe heat propagations in mixed solid media with nonlinear absorption and nonlinear boundary flux [1-3, 5, 9, 11, 16]. The

^{*}J. Zhou is supported by the Fundamental Research Funds for the Central Universities (No. XDJK2009C069) and C. L. Mu is supported by NNSF of China (No. 10771226).

[†]Corresponding author. E-mail: zhoujun_math@hotmail.com

 $^{^{\}ddagger}\text{E-mail: chunlaimu@yahoo.com.cn}$

nonlinear Neumann boundary values in (1.1), coupling the two heat equations, represent some cross-boundary flux.

The problem of heat equations

$$u_t = \Delta u, \ v_t = \Delta v, \quad (x, t) \in \Omega \times (0, t), \tag{1.2}$$

coupled via somewhat special nonlinear Neumann boundary conditions

$$\frac{\partial u}{\partial \nu} = v^p, \frac{\partial v}{\partial \nu} = u^q, \quad (x,t) \in \partial\Omega \times (0,T), \tag{1.3}$$

was studied by Deng [7] and Lin and Xie [11], who showed that the solutions globally exist if $pq \leq 1$ and may blow up in finite time if pq > 1 with the blow-up rates $O\left((T-t)^{-(p+1)/2(pq-1)}\right)$ and $O\left((T-t)^{-(q+1)/2(pq-1)}\right)$. Similarly, the blow-up rates for the corresponding scalar case of (1.2) and (1.3) was shown to be $O\left((T-t)^{-1/2(p-1)}\right)$ in [10].

The system (coupled via a variational boundary flux of exponential type)

$$u_{t} = \Delta u, \quad v_{t} = \Delta v, \qquad (x,t) \in \Omega \times (0,t),$$

$$\frac{\partial u}{\partial \nu} = e^{pv}, \quad \frac{\partial v}{\partial \nu} = e^{qu}, \qquad (x,t) \in \partial\Omega \times (0,t),$$

$$u(x,0) = u_{0}(x), \quad v(x,0) = v_{0}(x), \qquad x \in \Omega,$$

(1.4)

was studied by Deng [7], and has blow-up rates

$$-\frac{1}{2q}\log c(T-t) \le \max_{\overline{\Omega}} u(\cdot,t) \le -\frac{1}{2q}\log C(T-t), -\frac{1}{2p}\log c(T-t) \le \max_{\overline{\Omega}} v(\cdot,t) \le -\frac{1}{2p}\log C(T-t),$$
(1.5)

for $t \in (0, T)$. This is the special case with $\alpha_i = \beta_i = a_i = 0$, i = 1, 2, in our system (1.1).

Zhao and Zheng [17] studied the following nonlinear parabolic system:

$$u_{t} = \Delta u, \quad v_{t} = \Delta v, \qquad (x,t) \in \Omega \times (0,t),$$

$$\frac{\partial u}{\partial \nu} = e^{\alpha_{2}u + pv}, \quad \frac{\partial v}{\partial \nu} = e^{qu + \beta_{2}v}, \qquad (x,t) \in \partial\Omega \times (0,t),$$

$$u(x,0) = u_{0}(x), \quad v(x,0) = v_{0}(x), \qquad x \in \Omega.$$
(1.6)

The blow-up rates for (1.6) were shown to be

$$\max_{\overline{\Omega}} u(\cdot, t) = O\left(\log(T-t)^{\alpha/2}\right), \quad \max_{\overline{\Omega}} v(\cdot, t) = O\left(\log(T-t)^{\beta/2}\right), \quad (1.7)$$

as $t \to T$, where $(\alpha, \beta)^T$ is the only positive solution of

$$\left(\begin{array}{cc} \alpha_2 & p \\ q & \beta_2 \end{array}\right) \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right),$$

namely,

$$\alpha = \frac{p - \beta_2}{pq - \alpha_2 \beta_2}, \quad \beta = \frac{q - \alpha_2}{pq - \alpha_2 \beta_2}.$$

Clearly the blow-up rate estimate (1.5) is just the special case of (1.7) with $\alpha_2 = \beta_2 = 0$.

The phenomenon of non-simultaneous blow-up is researched extensively [see 4, 13-15]. Recently Zheng and Qiao [20] consider the non-simultaneous blow-up phenomenon of following reaction-diffusion problem

$$u_{t} = u_{xx} - \lambda_{1} u^{\alpha_{1}}, \quad v_{t} = v_{xx} - \lambda_{2} v^{\beta_{1}}, \qquad (x,t) \in (0,1) \times (0,T), u_{x}(1,t) = u^{\alpha_{2}} v^{p}, \quad v_{x}(1,t) = u^{q} v^{\beta_{2}}, \qquad t \in (0,T), u_{x}(0,t) = 0, \quad v_{x}(0,t) = 0, \qquad t \in (0,T), u(x,0) = u_{0}(x), \quad v(x,0) = v_{0}(x), \qquad x \in [0,1],$$

$$(1.8)$$

and they get the following conclusions:

(1) If $q < \alpha_2 - 1$ with either $\alpha_2 > \mu$ or $\alpha_2 = \mu > 1$, then there exists initial data (u_0, v_0) such that u blows up at a finite time T while v remains bounded.

(2) If u blows up at time T and v remains bounded up to that time, then $q < \alpha_2 - 1$ with either $\alpha_2 > \mu$ or $\alpha_2 = \mu > 1$.

(3) Under the condition of (1), if in addition either (i) $\beta_2 \leq 1$, or (ii) $1 < \beta_2 < \gamma$ and $q < \frac{(\alpha_2 - 1)(\gamma - \beta_2)}{\gamma - 1}$ hold, then any blow-up must be non-simultaneous, namely, u blows up at a finite time T while v remains bounded.

The critical exponents for the system (1.1) were studied in [18] by Zheng and Li, where the following characteristic algebraic system was introduced:

$$\begin{pmatrix} \alpha_2 - \frac{1}{2}\alpha_1 & p \\ q & \beta_2 - \frac{1}{2}\beta_1 \end{pmatrix} \begin{pmatrix} \tau_1 \\ \tau_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$
(1.9)

namely,

$$\tau_1 = \frac{p + \frac{1}{2}\beta_1 - \beta_2}{pq - (\frac{1}{2}\alpha_1 - \alpha_2)(\frac{1}{2}\beta_1 - \beta_2)}, \quad \tau_2 = \frac{q + \frac{1}{2}\alpha_1 - \alpha_2}{pq - (\frac{1}{2}\alpha_1 - \alpha_2)(\frac{1}{2}\beta_1 - \beta_2)}.$$
 (1.10)

To state their main result, first we give some information about eigenfunction for Laplace's equation.

Let φ_0 be the first eigenfunction of

$$\varphi'' + \lambda \varphi = 0 \quad in \quad (-1,1); \quad \varphi(-1) = \varphi(1) = 0,$$
 (1.11)

with the first eigenvalue λ_0 , normalized by $\|\varphi_0\|_{\infty} = 1$. It is well know that [6] $\varphi_0 > 0$ in (-1, 1), and there are positive constants c_i (i=1,2,3,4) and ε_0 such that

$$c_{1} \leq \varphi_{0}^{'}(-1), -\varphi_{0}^{'}(1) \leq c_{2} \leq \max_{[-1,1]} |\varphi_{0}^{'}| = c_{4}, |\varphi_{0}^{'}| \geq \frac{c_{1}}{2} \text{ on } \{x \in (-1,1): \ dist(x,-1) \leq \varepsilon_{0}\} \cup \{x \in (-1,1): \ dist(x,1) \leq \varepsilon_{0}\}, (1.12) \varphi_{0} \geq c_{3} \text{ on } \{x \in (-1,1): \ dist(x,-1) \geq \varepsilon_{0}\} \cap \{x \in (-1,1): \ dist(x,1) \geq \varepsilon_{0}\}.$$

Now we can state the main result of [18]

Proposition 1.1 (1) If $1/\tau_1 > 0$ or $1/\tau_2 > 0$, then the solutions of (1.1) blow up in finite time with large initial data.

(2) If $1/\tau_i < 0$, i=1,2, then the solutions of (1.1) are globally bounded. (3) Assume that $1/\tau_1 = 1/\tau_2 = 0$.

(i) If $\alpha_2 > \frac{1}{2}\alpha_1$ and $\beta_2 > \frac{1}{2}\beta_1$, then the solutions of (1.1) blow up in finite time with large initial data.

(ii) If $a_1 \ge 2^{\alpha_1} \left(\frac{\lambda_0}{c_1} + \frac{3c_4^2}{c_1^2}\right)$, $a_2 \ge 2^{\beta_1} \left(\frac{\lambda_0}{c_1} + \frac{3c_4^2}{c_1^2}\right)$ with $\alpha_2 < \frac{1}{2}\alpha_1$, $\beta_2 < \frac{1}{2}\beta_1$, then the solutions of (1.1) are globally bounded.

(iii) If $a_1 \leq \min\left\{\frac{c_1^2 M^2}{4\alpha_1}, \frac{\lambda_0 c_3^2 M^2}{\alpha_1}\right\}$, $a_2 \leq \min\left\{\frac{c_1^2 M^2}{4\beta_1}, \frac{\lambda_0 c_3^2 M^2}{\beta_1}\right\}$ with $\alpha_2 < \frac{1}{2}\alpha_1$, $\beta_2 < \frac{1}{2}\beta_1$, $M = \min\left\{\alpha_1/(2c_2), \beta_1/(2c_2)\right\}$, then the solutions of (1.1) blow up in finite time for large initial data.

Intrigued by [18-20], we consider the non-simultaneous blow-up of (1.1). The main results of this paper are the following two Theorems for non-simultaneous blow-up. Without loss of generality, we only deal with the case where u blows up while v remains bounded.

Theorem 1.1 If $q < \alpha_2$ with either $2\alpha_2 > \alpha_1$ or $2\alpha_2 = \alpha_1$, $a_1 \leq \frac{\alpha_1}{4} \min\{c_1^2/(4c_2^2), \lambda_0 c_3^2/c_2^2\}$, then there exists initial data (u_0, v_0) such that u blows up at a finite time T while v remains bounded up to that time.

Theorem 1.2 If u blows up at a finite time T while v remains bounded up to that time, then $q < \alpha_2$ with either $2\alpha_2 > \alpha_1$ or $2\alpha_2 = \alpha_1$, $a_1 \leq \frac{\alpha_1}{4} \min\{c_1^2/(4c_2^2), \lambda_0 c_3^2/c_2^2\}$.

We will prove Theorem 1.1 and 1.2 in the next two sections.

2 Proof of Theorem 1.1

At first, we consider the scalar problem of the form

$$u_{t} = u_{xx} - a_{1}e^{\alpha_{1}u}, \qquad (x,t) \in (0,1) \times (0,T), u_{x}(1,t) = e^{\alpha_{2}u(1,t)}e^{ph(t)}, \ u_{x}(0,t) = 0, \quad t \in (0,T), u(x,0) = u_{0}(x), \qquad x \in [0,1],$$
(2.1)

with a_1, α_i in (1.1), i=1,2 and h(t) continuous, non-decreasing, $0 \le h(t) \le K$. Similarly to Theorem 3.2 in [19], we can prove the following Lemma, where and in the sequel C is used to represent positive constants independent of t, and may change from line to line.

Lemma 2.1 Let u be a solution of (2.1). Assume (i) $2\alpha_2 > \alpha_1$ or (ii) $2\alpha_2 = \alpha_1$ with $a_1 \leq \frac{\alpha_1}{4} \min\{c_1^2/(4c_2^2), \lambda_0 c_3^2/c_2^2\}$. Then u blows up in a finite time T for sufficiently large

initial value, and moreover

$$u(1,t) = \max_{[0,1]} u(\cdot,t) \le \log C(T-t)^{-\frac{1}{2\alpha_2}}, \quad 0 < t < T.$$
(2.2)

Proof. Let w slove

$$w_t = w_{xx} - a_1 e^{\alpha_1 w}, \qquad (x,t) \in (0,1) \times (0,T), w_x(1,t) = e^{\alpha_2 w(1,t)}, w_x(0,t) = 0, \quad t \in (0,T), w(x,0) = u_0(x), \qquad x \in [0,1].$$
(2.3)

Then, $w \leq u$ in $(0, 1) \times [0, T)$ by the comparison principle. Notice that the two assumptions $2\alpha_2 > \alpha_1$ or $2\alpha_2 = \alpha_1$ with $a_1 \leq \frac{\alpha_1}{4} \min\{c_1^2/(4c_2^2), \lambda_0 c_3^2/c_2^2\}$ are corresponding to the blow-up conditions by Proposition 1.1 with $\alpha_1 = \beta_1$, $\alpha_2 = \beta_2$, p = q = 0 and $u_0 = v_0$, $a_1 = a_2$ in (1.1). So there exists initial data such that w blows up in finite time T'. Then u blows up in finite time t = T.

To establish the desired blow-up rate, we exploit the method used in [19]. From the assumptions on initial data, we know that $w_t > 0$ and $w_x \ge 0$ for $(x,t) \in [0,1) \times [0,T)$. Set $J(x,t) = \sqrt{w_t} - \varepsilon w_x$ for $(x,t) \in (0,1) \times [0,T)$. Let ε be sufficiently small such that

$$J(x,0) = \sqrt{w_t(x,0)} - \varepsilon w_x(x,0) \ge 0, \quad x \in [0,1],$$
(2.4)

a simple computation yields

$$J_{x}(1,t) - \left[\left(\frac{1}{2} \alpha_{2} e^{\alpha_{2} w} - \varepsilon w_{t}^{\frac{1}{2}} - \varepsilon^{2} e^{\alpha_{2} w} \right) J \right] (1,t)$$

= $\varepsilon \left(\frac{1}{2} \alpha_{2} e^{2\alpha_{2} w} - a_{1} e^{\alpha_{1} w} - \varepsilon^{2} e^{2\alpha_{2} w} \right) (1,t) \ge 0, \quad t \in (0,T),$ (2.5)

when (i) $2\alpha_2 > \alpha_1$ or (ii) $2\alpha_2 = \alpha_1$ with $a_1 \le \frac{\alpha_1}{4} \min\{c_1^2/(4c_2^2), \lambda_0 c_3^2/c_2^2\}.$

For $(x,t) \in (0,1) \times [0,T)$, a simple computation shows

$$J_t - J_{xx} + \frac{1}{2}a_1\alpha_1 e^{\alpha_1 w} J = \frac{1}{4}w_t^{-\frac{3}{2}}w_{tx}^2 + \frac{1}{2}\varepsilon a_1\alpha_1 e^{\alpha_1 w}w_x \ge 0.$$
(2.6)

By the comparison principle [12], we have $J \ge 0$ and hence

$$w_t(1,t) \ge \varepsilon^2 w_x^2(1,t) = \varepsilon^2 e^{2\alpha_2 w(1,t)}, \quad t \in [0,T).$$
 (2.7)

Integrating (2.7) from t to T, we get (2.2) immediately. \Box

Proof of Theorem 1.1. It suffices to choose initial data (u_0, v_0) such that u blows up while v remains bounded. At first, fix $v_0 \ge 0$ and take $K = \max_{[0,1]} v_0 = v_0(1)$, $N = \frac{1}{K}e^{2\beta_2 K} + 3$. Thus, w(x,t) which solves (2.3) is a subsolution of u. Since Proposition 1.1, there exists initial data u_0 such that w blows up at a finite time T'. Now, for the fixed v_0 , retake $u_0(x) = w(x, T' - \varepsilon)$, the u blows up in a finite time $T \le \varepsilon$. If v remain bounded by v < 2K for $t \in [0, T]$, the proof is complete.

Otherwise, Let t_0 be the first time such that $\max_{[0,1]} v(\cdot, t_0) = v(1, t_0) = 2K$. Now, we introduce the following cut-off function:

$$\widetilde{v}(x,t) = \begin{cases} v(x,t), & (x,t) \in [0,1] \times [0,t_0], \\ 2K, & (x,t) \in [0,1] \times [t_0,T]. \end{cases}$$
(2.8)

Corresponding, let $\widetilde{u}(x,t)$ solve

$$\widetilde{u}_{t} = \widetilde{u}_{xx} - a_{1}e^{\alpha_{1}\widetilde{u}}, \qquad (x,t) \in (0,1) \times (0,\widetilde{T}),
\widetilde{u}_{x}(1,t) = e^{\alpha_{2}\widetilde{u}(1,t)}e^{p\widetilde{v}(1,t)}, \quad \widetilde{u}_{x}(0,t) = 0, \quad t \in (0,\widetilde{T}),
\widetilde{u}(x,0) = u_{0}(x), \qquad x \in [0,1],$$
(2.9)

where \widetilde{T} is the blow-up time of \widetilde{u} satisfying $\widetilde{T} \geq T$. By Lemma 2.1,

$$\widetilde{u}(1,t) = \max_{[0,1]} \widetilde{u}(\cdot,t) \le \log C(\widetilde{T}-t)^{-\frac{1}{2\alpha_2}}, \quad 0 < t < \widetilde{T}.$$
(2.10)

Therefore,

$$u(1,t) = \tilde{u}(1,t) \le \log C(\tilde{T}-t)^{-\frac{1}{2\alpha_2}} \le \log C(T-t)^{-\frac{1}{2\alpha_2}}, \quad 0 < t \le t_0.$$
(2.11)

Let $\Gamma(x,t)$ be the fundamental solution of the heat equation in [0, 1], namely

$$\Gamma(x,t) = \frac{1}{2\sqrt{\pi t}} \exp\left\{\frac{-x^2}{4t}\right\}.$$
(2.12)

It is know that Γ satisfies (see [8])

$$\int_{0}^{1} \Gamma(x-y,t-z)dy \leq 1,
\int_{z}^{t} \Gamma(1,t-\tau) \frac{1}{2(t-\tau)} d\tau \leq C^{*} \sqrt{t-z}, \\
\int_{z}^{t} \Gamma(0,t-\tau)d\tau = \frac{1}{\sqrt{\pi}} \sqrt{t-z},
\frac{\partial \Gamma}{\partial \nu_{y}} (x-y,t-\tau) = \frac{x-y}{2(t-\tau)} \Gamma(x-y,t-\tau), \quad x,y \in [0,1], \quad 0 \leq z < t.$$
(2.13)

By the Greeen's identity with (1.1) for v,

$$\begin{aligned} v(x,t) &= \int_0^1 \Gamma(x-y,t-z)v(y,z)dy + \int_z^t \int_0^1 \Gamma(x-y,t-\tau) \left(-a_2 e^{\beta_1 v(y,\tau)}\right) dyd\tau \\ &+ \int_z^t \frac{\partial v}{\partial x}(1,\tau)\Gamma(x-1,t-\tau)d\tau - \int_z^t \frac{\partial \Gamma}{\partial \nu_y}(x-1,t-\tau)v(1,\tau)d\tau \\ &+ \int_z^t \frac{\partial \Gamma}{\partial \nu_y}(x,t-\tau)v(0,\tau)d\tau, \end{aligned}$$
(2.14)

where $0 \le z < t < T$, 0 < x < 1. With z = 0 and $x \to 1$, it follows that

$$v(x,t) = \int_{0}^{1} \Gamma(1-y,t)v(y,0)dy + \int_{0}^{t} \int_{0}^{1} \Gamma(x-y,t-\tau) \left(-a_{2}e^{\beta_{1}v(y,\tau)}\right) dyd\tau + \int_{0}^{t} e^{qu(1,\tau)+\beta_{2}v(1,\tau)}\Gamma(0,t-\tau)d\tau + \int_{0}^{t} v(0,\tau)\Gamma(1,t-\tau)\frac{1}{2(t-\tau)}d\tau.$$
(2.15)

By (2.11), we have furthermore

$$v(1,t_0) \le v_0(1) + C_0 e^{\beta_2 v(1,t_0)} \int_0^{t_0} (t_0 - \tau)^{-\frac{q}{2\alpha_2} - \frac{1}{2}} d\tau + C^* \sqrt{t_0} v(1,t_0).$$
(2.16)

Since $q < \alpha_2$, the integral term in (2.16) is smaller than $1/(NC_0)$ with $\sqrt{t_0} \leq \sqrt{T} \leq 1/(NC^*)$ if we choose u_0 large to make T sufficiently small. This yields

$$\frac{N-1}{N}v(1,t_0) \le v_0(1) + \frac{1}{N}e^{\beta_2 v(1,t_0)}.$$
(2.17)

Consequently,

$$\frac{2(N-1)}{N}K \le K + \frac{1}{N}e^{2\beta_2 K},\tag{2.18}$$

and hence

$$N \le \frac{1}{K} e^{2\beta_2 K} + 2, \tag{2.19}$$

a contradiction. \Box

3 Proof of Theorem 1.2

We begin with a Lemma to prove Theorem 1.2.

Lemma 3.1 Let u be a solution of

$$u_t = u_{xx} - a_1 e^{\alpha_1 u}, \qquad (x,t) \in (0,1) \times (0,T), u_x(1,t) \le L e^{\alpha_2 u(1,t)}, \ u_x(0,t) = 0, \quad t \in (0,T), u(x,0) = u_0(x), \qquad x \in [0,1],$$
(3.1)

where $a_1 > 0$, $\alpha_i \ge 0$, i=1,2 and L is a positive constant. If u blows up at a finite time, then either $2\alpha_2 > \alpha_1$ or $2\alpha_2 = \alpha_1$, $a_1 \le \frac{\alpha_1}{4} \min\{c_1^2/(4c_2^2), \lambda_0 c_3^2/c_2^2\}$. Furthermore,

$$u(1,t) = \max_{[0,1]} u(\cdot,t) \ge \log C(T-t)^{-\frac{1}{2\alpha_2}}, \quad as \ t \to T.$$
(3.2)

Proof. The blow-up of u implies either $2\alpha_2 > \alpha_1$ or $2\alpha_2 = \alpha_1$, $a_1 \leq \frac{\alpha_1}{4} \min\{c_1^2/(4c_2^2), \lambda_0 c_3^2/c_2^2\}$ by Proposition 1.1.

By the Green's identity, similarly to (2.14)

$$u(x,t) \leq \int_0^1 \Gamma(x-y,t-z)u(y,z)dy + L \int_z^t e^{\alpha_2 u(1,\tau)} \Gamma(x-1,t-\tau)d\tau -\int_z^t \frac{\partial \Gamma}{\partial \nu_y} (x-1,t-\tau)u(1,\tau)d\tau + \int_z^t \frac{\partial \Gamma}{\partial \nu_y} (x,t-\tau)u(0,\tau)d\tau,$$
(3.3)

where 0 < z < t < T, 0 < x < 1. Let $x \to 1$ with the jumping relations to obtain

$$\frac{1}{2}u(1,t) \leq \int_{0}^{1} \Gamma(1-y,t-z)u(y,z)dy + L \int_{z}^{t} e^{\alpha_{2}u(1,\tau)} \Gamma(0,t-\tau)d\tau \\
+ \int_{z}^{t} \frac{\partial\Gamma}{\partial\nu_{y}}(1,t-\tau)u(0,\tau)d\tau \\
\leq u(1,z) + \frac{L}{\sqrt{\pi}}\sqrt{T-z}e^{\alpha_{2}u(1,t)} + C^{*}\sqrt{T-z}u(1,t).$$
(3.4)

For any $z \in (0,T)$ with $C^*\sqrt{T-z} \leq 1/4$, choose $t \in (z,T)$ such that $\frac{1}{4}u(1,t) - u(1,z) \geq C_0 > 0$. Then

$$C_0 \le \frac{L}{\sqrt{\pi}} \sqrt{T - t} e^{\alpha_2 u(1,t)},\tag{3.5}$$

which implies (3.2). \Box

Proof of Theorem 1.2. Since $v \leq K$ for $(x, t) \in [0, 1] \times [0, T)$, we have

$$u_{t} = u_{xx} - a_{1}e^{\alpha_{1}u}, \qquad (x,t) \in (0,1) \times (0,T), u_{x}(1,t) \leq e^{pK}e^{\alpha_{2}u(1,t)}, \ u_{x}(0,t) = 0, \quad t \in (0,T), u(x,0) = u_{0}(x), \qquad x \in [0,1].$$
(3.6)

Then, we obtain from Lemma 3.1 that $2\alpha_2 > \alpha_1$ or $2\alpha_2 = \alpha_1$ with $a_1 \leq \frac{\alpha_1}{4} \min\left\{\frac{c_1^2}{4c_2^2}, \frac{\lambda_0 c_3^2}{c_2^2}\right\}$, and moreover,

$$u(1,t) = \max_{[0,1]} u(\cdot,t) \ge \log C(T-t)^{-\frac{1}{2\alpha_2}}, \quad as \ t \to T.$$
(3.7)

Next, let us show $q < \alpha_2$. Due to (2.14), we have by letting $x \to 1$ that

$$v(1,t) \ge \int_{z}^{t} e^{qu(1,\tau) + \beta_{2}v(1,\tau)} \Gamma(0,t-\tau) d\tau - a_{2} \int_{z}^{t} \int_{0}^{1} \Gamma(1-y,t-\tau) e^{\beta_{1}v(y,\tau)} dy d\tau, \quad (3.8)$$

and so,

$$v(1,t) \ge C_1 \int_z^t (T-\tau)^{-\frac{q}{2\alpha_2} - \frac{1}{2}} d\tau - a_2 e^{\beta_1 v(1,\tau)}.$$
(3.9)

The boundedness of v(1,t) as $t \to T$ requires that $q < \alpha_2$. \Box

Acknowledgements

The authors would like to thank the referee for the careful reading of this paper and for the valuable suggestions to improve the presentation and style of the paper.

References

- H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Diff. Equ. 72 (1988), 201-269.
- [2] J. Bebernes and D. Kassy, A mathematical analysis of blow-up for thermal reactions, SIAM J. Appl. Math. 40 (1981), 476-484.

- [3] J. Bebernes, A. Bressan and D. Eberly, A description of blowup for the solid fuel ignition model, *Indiana Univ. Math. J.* 36 (1987), 295-305.
- [4] C. Brändle, F. Quirós and J. D. Rossi, Non-simultaneous blow-up for a quasilinear parabolic system with reaction at boundary, *Commun. Pure Appl. Anal.* 4(3) (2005), 523-536.
- [5] G. Caristi and E. Mitidieri, Blow-up estimate of positive solutions of a parabolic system, J. Diff. Equ. 113 (1994), 265-271.
- [6] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience Publishers, Inc., New York, NY, 1953.
- [7] K. Deng, The blow-up rate for a parabolic system, Z. Angew. Math. Phys. 47 (1996), 132-143.
- [8] A. Firedman, Partial Differential Equations of Parabolic Type, *Prentice-Hall, Engle-wood Cliffs, NJ*, 1964.
- [9] Y. Giga and R. V. Kohn, Asymptotic self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math. 38 (1985), 297-319.
- [10] B. Hu and H. M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, *Trans. Amer. Math. Soci.* 346 (1994), 117-135.
- [11] Z. G. Lin and C. H. Xie, The blow-up rate for a system of heat equations with nonlinear boundary conditions, *Nonlin. Anal.* 34 (1998), 767-778.
- [12] C. V. Pao, Nonlinear parabolic and elliptic equations, *Plenum Press, New York*, 1992.
- [13] J. P. Pinasco, J. D. Rossi, Simultaneous vs. non-simultaneous blow-up, New Zeal. J. Math. 29 (2000), 55-59.
- [14] F. Quirós and J. D. Rossi, Non-simultaneous blow-up in a semilinear parabolic system, Z. Angew. Math. Phys. 52 (2001), 342-346.
- [15] F. Quirós and J. D. Rossi, Non-simultaneous blow-up in a nonlinear parabolic system, Adv. Nonlinear Stud. 3 (2003), 397-418.
- [16] F. B. Weissler, Single point blow-up of semi-linear initial value problems, J. Diff. Equ. 55 (1984), 204-224.
- [17] L. Z. Zhao and S. N. Zheng, Blow-up estimates for system of heat equations coupled via nonlinear boundary flux, *Nonlin. Analysis* 54 (2003), 251-259.

- [18] S. N. Zheng and F. J. Li, Critical exponent for a reaction-diffusion model with absorption and coupled boundary flux, *Proceed. Edin. Math. Soci.* 48 (2005), 241-252.
- [19] S. N. Zheng, F. J. Li and B. C. Liu, Asymptotic behavior for a reaction-diffusion equation with inner absorption and boundary flux, *Appl. Math. letters* 19 (2006), 942-948.
- [20] S. N. Zheng and L. Qiao, Non-simultaneous blow-up in a reaction-diffusion system, *Appl. Math. Comp.* 180 (2006), 309-317.

(Received June 10, 2010)