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1 Introduction

In this paper, we are concerned with the existence of sign-changing solutions for the following

nonlinear second-order integral boundary-value problem (BVP for short)







x′′(t) + f(x(t)) = 0, 0 ≤ t ≤ 1,

x(0) = 0, x(1) =

∫ 1

0
a(s)x(s)ds,

(1)

where f ∈ C(R, R), a ∈ L[0, 1] is nonnegative with
∫ 1
0 a2(s)ds < 1.

Nonlocal boundary value problems have been well studied especially on a compact interval. For

example, Gupta et al. have made an extensive study of multi-point boundary value problems in [4,

5, 6]. Many researchers have studied positive solutions for multi-point boundary value problems,

and obtained sufficient conditions for existence, see [4, 5, 6, 15, 28] and the references therein.

Nodal solutions for multi-point boundary value problems have also been paid much attention by

some authors, see [13, 14, 17, 19] for reference.

Boundary-value problems with integral boundary conditions for ordinary differential equations

arise in different fields of applied mathematics and physics such as heat conduction, chemical engi-

neering, underground water flow, thermo-elasticity, and plasma physics. Moreover, boundary-value

problems with Riemann-Stieltjes integral conditions constitute a very interesting and important

class of problems. They include two, three, multi-point and integral boundary-value problems as
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special cases, see [7, 8, 21, 22]. For boundary value problems with other integral boundary con-

ditions and comments on their importance, we refer the reader to the papers by Karakostas and

Tsamatos [7, 8], Yuhua Li and Fuyi Li [11], Lomtatidze and Malaguti [12], Webb and Infante [21,

22] and Yang [26, 27] and the references therein.

In [21, 22], Webb and Infante used fixed point index theory and formulated a general method for

solving problems with integral boundary conditions of Riemann-Stieltjes type. In [22] they studied

the existence of multiple positive solutions of nonlinear differential equations of the form

−u′′(t) = g(t)f(t, u(t)), t ∈ (0, 1)

with boundary conditions including the following

u(0) = α[u], u(1) = β[u],

u(0) = α[u], u′(1) = β[u],

u(0) = α[u], u′(1) + β[u] = 0,

u′(0) = α[u], u(1) = β[u],

u′(0) + α[u] = 0, u(1) = β[u],

where α, β are linear functionals on C[0, 1] given by

α[u] =

∫ 1

0
u(s)dA(s), β[u] =

∫ 1

0
u(s)dB(s),

with A,B functions of bounded variation. By giving a general approach to cover all of these

boundary conditions (and others) in a unified way, their work included much previous work as

special cases and improved the corresponding results. We should note that the work of Webb and

Infante does not require the functionals α[u], β[u] to be positive for all positive u.

Recently, Xu [24] considered the following second-order multi-point boundary value problem










y′′(t) + f(y) = 0, 0 ≤ t ≤ 1,

y(0) = 0, y(1) =

m−2
∑

i=1

αiy(ηi),
(2)

where f ∈ C(R, R), 0 < αi, i = 1, 2, · · · ,m−2, 0 < η1 < η2 < · · · < ηm−2 < 1 with
∑m−2

i−1 αi < 1. By

using fixed point index theory, under some suitable conditions, they obtained some existence results

for multiple solutions including sign-changing solutions. In [17], Rynne carefully investigated the

spectral properties of the linearisation of BVP (2) which are used to prove a Rabinowitz-type global

bifurcation theorem for BVP (2). Then nodal solutions of the above problem are obtained by using

this global bifurcation theorem. Thereafter, employing similar method to [24], Pang, Dong and Wei

[16], Wei and Pang [23], Li and Liu [10] proved the existence of multiple solutions to some fourth

two-point and multi-point boundary value problems, respectively.

Recently, utilizing the fixed point index theory and computing eigenvalues and the algebraic

multiplicity of the corresponding linear operator, Li and Li [11] obtained some existence results for

sign-changing solutions for the following integral boundary-value problem






x′′(t) + f(x(t)) = 0, 0 ≤ t ≤ 1,

x(0) = 0, x(1) = g
(

∫ 1

0
x(s)ds

)

,
(3)
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where f, g ∈ C(R, R).

To the authors’ knowledge, there are few papers that have considered the existence of multiple

sign-changing solutions for integral boundary value problems. Motivated by [11], [17], [19], [21],

[22], the purpose of this paper is to investigate sign-changing solutions for BVP (1) following the

method formulated by Xu in [24]. Obviously, BVP (1) can not be included in BVP (3). We will

show that BVP (1) has at least six different nontrivial solutions when f satisfies certain conditions:

two positive solutions, two negative solutions and two sign-changing solutions. Moreover, if f is

also odd, then the BVP (1) has at least eight different nontrivial solutions, which are two positive,

two negative and four sign-changing solutions.

We shall organize this paper as follows. In Section 2, some preliminaries and lemmas are given

including the study of the eigenvalues of the linear operator A′(θ) and A′(∞). The main results are

proved by using the fixed point index and Leray-Schauder degree method in section 3. A concrete

example is given to illustrate the application of the main results in Section 4.

2 Preliminaries and several lemmas

Denote σ1 =
∫ 1
0 sa(s)ds, σ∗

1 =
∫ 1
0 s(1 − s)a(s)ds, γ =

1+
R

1

0
(1−s)a(s)ds

1−σ1
. Let

E =
{

x ∈ C1[0, 1] : x(0) = 0, x(1) =

∫ 1

0
a(s)x(s)ds

}

,

P = {x ∈ E : x(t) ≥ 0 for t ∈ [0, 1]}.

For x ∈ E, let ‖x‖ = ‖x‖0 + ‖x′‖0, where ‖x‖0 = maxt∈[0,1] ‖x(t)‖ and ‖x′‖0 = maxt∈[0,1] ‖x′(t)‖.
Then, (E, ‖ · ‖) is a Banach space and P is a cone of E. Let

α0 = lim
x→0

f(x)

x
, β0 = lim

|x|→∞

f(x)

x
. (4)

Define operators K,F and A as follows

(Kx)(t) =

∫ 1

0
κ(t, s)x(s)ds, (Fx)(t) = f(x(t)), t ∈ [0, 1], ∀ x ∈ E, A = KF, (5)

where

κ(t, s) = G(t, s) +
t

1 − σ1

∫ 1

0
G(τ, s)a(τ)dτ, (6)

G(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(7)

Denote the set of eigenvalues of the operator K by σ(K), since K is a completely continuous

operator, σ(K) is countable. Throughout this paper, we adopt the following hypotheses.

(H1) f ∈ C(R, R) and f(x)x > 0 for all x ∈ R\{0};

(H2) For each of the sets α0σ(K) and β0σ(K), the number of elements greater than 1 is even,

where α0σ(K) = {y : y = α0x, x ∈ σ(K)};
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(H3) There exists r > 0 such that

|f(x)| <
6(1 − σ1)

(1 − σ1)(3 + γ) + 6σ∗
1

r,

for all x with |x| < r.

The main results of this paper are the following.

Theorem 1 Suppose that (H1)− (H3) hold. Then integral boundary-value problem (1) has at least

two sign-changing solutions. Moreover, the integral boundary-value problem (1) also has at least

two positive solutions and two negative solutions.

Theorem 2 Suppose that (H1)− (H3) hold, and, f is odd, i.e., f(−x) = −f(x) for all x ∈ R. Then

integral boundary-value problem (1) has at least eight different nontrivial solutions, which are four

sign-changing solutions, two positive solutions and two negative solutions.

Before giving the proofs of Theorems 1 and 2, we list some preliminary lemmas.

Lemma 1 For any u ∈ C[0, 1], x ∈ C2[0, 1] is a solution of the following problem







−x′′(t) = u(t), 0 < t < 1,

x(0) = 0, x(1) =

∫ 1

0
a(s)x(s)ds,

(8)

if and only if x ∈ C[0, 1] is a solution of the integral equation

x(t) =

∫ 1

0
κ(t, s)u(s)ds. (9)

Remark 1. Lemma 1 was shown in [1] by a direct calculation, a more general results for a

Riemann-Stieltjes integral boundary value condition was shown in [21, 22] by a simple method.

Obviously, A,K : E → E are all completely continuous operators. By Lemma 1, we know that

x is a solution of BVP (1) if and only if x is a fixed point of operator A.

Lemma 2 ([1]) For t, s ∈ [0, 1], we have κ(t, s) ≤ γe(s), where e(s) = s(1 − s).

Lemma 3 Suppose that (H1) and (H2) hold. Then the operator A = KF is Fréchet differentiable

at θ and ∞. Moreover, A′(θ) = α0K and A′(∞) = β0K.

Proof. For any ε > 0, by (4), there exists δ > 0 such that for any 0 < |x| < δ,

∣

∣

∣

f(x)

x
− α0

∣

∣

∣
< ε,

that is |f(x)− α0x| ≤ ε|x|, for all 0 ≤ |x| < δ. It is easy to see from (H1) that f(0) = 0. Then, for

any x ∈ E with ‖x‖ < δ, by Lemma 2, we have

|(Ax − Aθ − α0Kx)(t)| = |(K(F (x) − α0x))(t)|

≤ γ

∫ 1

0
max
s∈[0,1]

|f(x(s)) − α0x(s)|e(s)ds

≤ 1

6
γ‖x‖0ε ≤ 1

6
γ‖x‖ε, t ∈ [0, 1].
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This implies

‖Ax − Aθ − α0Kx‖0 ≤ 1

6
γ‖x‖ε, x ∈ E, ‖x‖ < δ. (10)

On the other hand, for any x ∈ E, ‖x‖ < δ,

|(Ax − Aθ − α0Kx)′(t)| =
∣

∣

∣

∫ 1

0
∂tκ(t, s)(f(x(s)) − α0x(s))ds

∣

∣

∣

≤
∫ 1

0
|∂tκ(t, s)||f(x(s)) − α0x(s)|ds

≤
(
∣

∣

∣
−

∫ t

0
sds +

∫ 1

t
(1 − s)ds

∣

∣

∣
+

σ∗
1

1 − σ1

)

max
s∈[0,1]

|f(x(s)) − α0x(s)|ds

≤
(1

2
+

σ∗
1

1 − σ1

)

max
s∈[0,1]

|f(x(s)) − α0x(s)|

≤
(1

2
+

σ∗
1

1 − σ1

)

‖x‖0ε ≤
(1

2
+

σ∗
1

1 − σ1

)

‖x‖ε, t ∈ [0, 1].

Thus,

‖(Ax − Aθ − α0Kx)′‖0 ≤
(1

2
+

σ∗
1

1 − σ1

)

‖x‖ε, x ∈ E, ‖x‖ < δ. (11)

By (10) and (11),we have

‖Ax − Aθ − α0Kx‖ = ‖Ax − Aθ − α0Kx‖0 + ‖(Ax − Aθ − α0Kx)′‖0

≤
(1

2
+

σ∗
1

1 − σ1
+

γ

6

)

‖x‖ε.

Therefore,

lim
‖x‖→0

‖Ax − Aθ − α0Kx‖
‖x‖ = 0,

which means that A is Fréchet differentiable at θ and A′(θ) = α0K.

For any ε > 0, by (4), there exists R > 0 such that

|f(x) − β0(x)| < ε|x|

for any |x| > R. Let b = max‖x‖≤R |f(x) − β0(x)|. Then, we have for any x ∈ R

|f(x) − β0(x)| ≤ ε|x| + b.

As a consequence,

|(Ax − β0Kx)(t)| = |(K(F (x) − β0x))(t)|

≤ γ

∫ 1

0
max
s∈[0,1]

|f(x(s)) − β0x(s)|e(s)ds

≤ γ

6
(‖x‖0ε + b) ≤ γ

6
(‖x‖ε + b), t ∈ [0, 1].

This implies that

‖Ax − β0Kx‖0 ≤ γ

6
(‖x‖ε + b), x ∈ E. (12)
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Similarly, we can show that

‖(Ax − β0Kx)′‖0 ≤
(1

2
+

σ∗
1

1 − σ1

)

(‖x‖ε + b), x ∈ E. (13)

By (12) and (13), we have

‖Ax − β0Kx‖ = ‖Ax − β0Kx‖0 + ‖(Ax − β0Kx)′‖0

≤
(1

2
+

σ∗
1

1 − σ1
+

γ

6

)

(‖x‖ε + b).

Consequently,

lim
‖x‖→∞

‖Ax − β0Kx‖
‖x‖ = 0,

which means that A is Fréchet differentiable at ∞ and A′(∞) = β0K. �

Lemma 4 Let β be a positive number. Then the sequence of positive eigenvalues of the linear

operator βK is countable. Moreover, the algebraic multiplicity of each positive eigenvalue of the

operator βK is equal to 1.

Proof. The set of positive eigenvalues of the linear operator βK is countable because K : C[0, 1] →
C[0, 1] is a completely continuous operator.

To prove all eigenvalues are simple we can, without loss of generality, take β = 1.

An eigenvector x of K corresponding to λ > 0 is a nonzero solution of the problem

−λx′′(t) + x(t) = 0, t ∈ (0, 1),

x(0) = 0, x(1) =

∫ 1

0
a(s)x(s)ds.

Therefore the eigenfunctions are scalar multiples of sin(kt) and λ = 1/k2 where k is one of the

positive solutions of the equation

sin(k) =

∫ 1

0
a(s) sin(ks)ds. (14)

Next, we show that the algebraic multiplicity of each positive eigenvalue of the operator K is equal

to 1. To do this we will show that for each eigenvalue λ = 1/k2, where k is a solution of (14), the

following inclusion is valid,

ker(λI − K)2 ⊂ ker(λI − K).

Let y ∈ ker(λI − K)2, then (λI − K)y ∈ ker(λI − K) so

(λI − K)y = C sin(kt), for some constant C.

If C = 0 the result is shown. Suppose that C 6= 0. Then, by Lemma 1, y is a solution of the

problem

λy′′ + y = −Ck2 sin(kt), y(0) = 0, y(1) =

∫ 1

0
a(s)y(s)ds,
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that is,

y′′ + k2y = −Ck4 sin(kt), y(0) = 0, y(1) =

∫ 1

0
a(s)y(s)ds.

The solution of this problem is of the form c1 sin(kt) + c2 t cos(kt), where C 6= 0 implies c2 6= 0.

Since the term sin(kt) satisfies the boundary condition at t = 1 so must the term t cos(kt), that is,

cos(k) =

∫ 1

0
a(s)s cos(ks) ds. (15)

Noting that
∫ 1
0 w(s)ds ≤

(

∫ 1
0 w2(s)ds

)1/2
, from (14) and (15) we have

sin(k) ≤
(

∫ 1

0
a2(s) sin2(ks)ds

)1/2
, cos(k) ≤

(

∫ 1

0
a2(s) cos2(ks)ds

)1/2
,

hence

1 = sin2(k) + cos2(k) ≤
∫ 1

0
a2(s)(sin2(ks) + cos2(ks))ds =

∫ 1

0
a2(s)ds < 1.

This contradiction proves that we must have C = 0 so the eigenvalue is simple. �

Lemma 5 Suppose that condition (H1) holds. If x ∈ P\{θ} is a solution of BVP (1), then x ∈
◦
P .

Similarly, if x ∈ −P\{θ} is a solution of BVP (1), then x ∈ −
◦
P .

Proof. Let x ∈ P\{θ} is a solution of BVP (1). Then

x(t) =

∫ 1

0
κ(t, s)f(s, x(s))ds =

∫ 1

0
G(t, s)f(x(s))ds +

t

1 − σ1

∫ 1

0

∫ 1

0
G(s, τ)f(x(s))dτds.

For all t ∈ [0, 1], we have

x(t) > 0, t ∈ (0, 1],

and

x′(0) =

∫ 1

0
(1 − s)f(x(s))ds +

1

1 − σ1

∫ 1

0

∫ 1

0
G(s, τ)f(x(s))dτds > 0.

As the proof of Lemma 2.7 in [24], we can show that x ∈
◦
P . �

We recall three well known lemmas, they can be found, for example, in [2].

Lemma 6 Let θ ∈ Ω and A : P ∩ Ω → P be completely continuous. Suppose that

Ax 6= µx, ∀ x ∈ ∂Ω, µ ≥ 1.

Then i(A,P ∩ Ω, P ) = 1.

Lemma 7 Let Ω be an open set in E and θ ∈ Ω, A : Ω → E be completely continuous. Suppose

that

‖Ax‖ ≤ ‖x‖, Ax 6= x, ∀ x ∈ ∂Ω.

Then deg(I − A,Ω, θ) = 1.
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Lemma 8 Let A : P → P be completely continuous. Suppose that A is differentiable at θ and ∞
along P and 1 is not an eigenvalue of A′

+(θ) and A′
+(∞) corresponding to a positive eigenfunction.

(i) If A′
+(θ) has a positive eigenfunction corresponding to an eigenvalue greater than 1, and

Aθ = θ. Then there exists τ > 0 such that i(A,P ∩ B(θ, r), P ) = 0 for any 0 < r < τ .

(ii) If A′
+(∞) has a positive eigenfunction which corresponds to an eigenvalue greater than 1.

Then there exists ζ > 0 such that i(A,P ∩ B(θ,R), P ) = 0 for any R > ζ.

We now prove an important result for our work.

Lemma 9 Suppose that (H1) − (H3) hold. Then

(i) There exists r0 ∈ (0, r) such that for all τ ∈ (0, r0],

i(A,P ∩ B(θ, τ), P ) = 0, i(A,−P ∩ B(θ, τ),−P ) = 0.

(ii) There exists R0 > r such that for all R ≥ R0,

i(A,P ∩ B(θ,R), P ) = 0, i(A,−P ∩ B(θ,R),−P ) = 0.

Proof. We prove only conclusion (i), conclusion (ii) can be proved in a similar way. By Lemma

3, A′
+(0) = α0K. An eigenvalue of α0K is α0λ where λ is an eigenvalue of K, that is, λ = 1/k2

where k is a solution of

sin(k) =

∫ 1

0
a(s) sin(ks)ds, (16)

and the corresponding eigenfunction is sin(kt). By assumption, there are an even number of

eigenvalues of α0K greater than 1, in particular, α0/k
2
1 > 1 where k1 is the smallest positive

root of (16). We show that k1 ∈ (0, π) so that the corresponding eigenfunction is positive on (0, 1).

Define a real function F by

F (k) := sin(k) −
∫ 1

0
a(s) sin(ks)ds.

Then F is continuous and F (π) = −
∫ 1
0 a(s) sin(πs) ds < 0. Also F (0) = 0 and

F ′(k) = cos(k) −
∫ 1

0
a(s)s cos(ks)ds,

so F ′(0) = 1 −
∫ 1
0 a(s)s ds > 0. Thus F (δ) > 0 for δ > 0 sufficiently small and so, by the

Intermediate Value Theorem, there exists a root in (δ, π), in particular k1 ∈ (0, π).

It follows from Lemma 8 that there exists τ0 > 0 such that i(A,P ∩ B(θ, τ), P ) = 0 for any

0 < τ ≤ τ0.

Similarly, we can show that there exists τ1 > 0 such that i(A,−P ∩ B(θ, τ),−P ) = 0 for any

0 < τ ≤ τ1. Let r0 = min{τ0, τ1}. Then, the conclusion (i) holds. �

From [9, Theorem 21.6, 21.2], we have the following two lemmas.

Lemma 10 Let A be a completely continuous operator, let x0 ∈ E be a fixed point of A and

assume that A is defined in a neighborhood of x0 and Fréchet differentiable at x0. If 1 is not an
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eigenvalue of the linear operator A′(x0), then x0 is an isolated singular point of the completely

continuous vector field I − A and for small enough r > 0

deg(I − A,B(x0, r), θ) = (−1)k,

where k is the sum of the algebraic multiplicities of the real eigenvalues of A′(x0) in (1,+∞).

Lemma 11 Let A be a completely continuous operator which is defined on a Banach space E.

Assume that 1 is not an eigenvalue of the asymptotic derivative. The completely continuous vector

field I − A is then nonsingular on spheres Sρ = {x : ‖x‖ = ρ} of sufficiently large radius ρ and

deg(I − A,B(θ, ρ), θ) = (−1)k,

where k is the sum of the algebraic multiplicities of the real eigenvalues of A′(∞) in (1,+∞).

To simplify the proof of the main results, we will use the following lemma.

Lemma 12 ([16]) Let P be a solid cone of a real Banach space E, Ω be a relatively bounded open

subset of P , A : P → P be a completely continuous operator. If all fixed point of A in Ω is the

interior point of P , there exists an open subset O of E such that O ⊂ Ω and

deg(I − A,O, 0) = i(A,Ω, P ).

3 Proof of main results

Proof of Theorem 1 By the condition (H3) and Lemma 2, for any x ∈ E with ‖x‖ = r, we have

|(Ax)(t)| =
∣

∣

∣

∫ 1

0
κ(t, s)f(x(s))ds

∣

∣

∣
≤ γ

∫ 1

0
e(s) max

s∈[0,1]
|f(x(s))|ds

<
γ

6
× 6(1 − σ1)

(1 − σ1)(3 + γ) + 6σ∗
1

r =
γ(1 − σ1)

(1 − σ1)(3 + γ) + 6σ∗
1

r, t ∈ [0, 1].

Therefore,

‖Ax‖0 <
γ(1 − σ1)

(1 − σ1)(3 + γ) + 6σ∗
1

r. (17)

Similarly, we can show that for any x ∈ E with ‖x‖ = r

‖(Ax)′‖0 <
(1

2
+

σ∗
1

1 − σ1

)

× 6(1 − σ1)

(1 − σ1)(3 + γ) + 6σ∗
1

r =
3(1 − σ1) + 6σ∗

1

(1 − σ1)(3 + γ) + 6σ∗
1

r. (18)

It follows from (17) and (18) that ‖Ax‖ < r for all ‖x‖ = r. Then by Lemma 6 and 7, we have

i(A,P ∩ B(θ, r), P ) = 1, (19)

i(A,−P ∩ B(θ, r),−P ) = 1, (20)

deg(I − A,B(θ, r), θ) = 1. (21)
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By (H2) and Lemma 4, the sum of the algebraic multiplicities of the real eigenvalues of the operator

A′(θ) = α0K in (1,+∞) is even. Therefore, there exists 0 < r1 < r0 such that

deg(I − A,B(θ, r1), θ) = 1, (22)

where r0 has the same meaning as that in Lemma 9. Similarly, by Lemmas 4, 11 and (H2), we have

for some R1 ≥ R0

deg(I − A,B(θ,R1), θ) = 1, (23)

where R0 has the same meaning as that in Lemma 9. By Lemma 9, we have

i(A,P ∩ B(θ, r1), P ) = 0, (24)

i(A,−P ∩ B(θ, r1),−P ) = 0, (25)

i(A,P ∩ B(θ,R1), P ) = 0, (26)

i(A,−P ∩ B(θ,R1),−P ) = 0. (27)

Then, by (19), (24) and (26), we have

i(A,P ∩ (B(θ,R1)\B(θ, r)), P ) = 0 − 1 = −1, (28)

i(A,P ∩ (B(θ, r)\B(θ, r1)), P ) = 1 − 0 = 1. (29)

Thus, the operator A has at least two fixed points x1 ∈ P ∩ (B(θ,R1)\B(θ, r)) and x2 ∈ P ∩
(B(θ, r)\B(θ, r1)), respectively. Obviously, x1 and x2 are two distinct positive solutions to the

BVP (1).

Similarly, by (20), (25) and (27), we have

i(A,−P ∩ (B(θ,R1)\B(θ, r)),−P ) = −1, (30)

i(A,−P ∩ (B(θ, r)\B(θ, r1)),−P ) = 1 − 0 = 1. (31)

Therefore, the operator A has at least two fixed points x3 ∈ (−P ) ∩ (B(θ,R1)\B(θ, r)) and x4 ∈
(−P )∩ (B(θ, r)\B(θ, r1)), respectively. It is clear that x3 and x4 are two distinct negative solutions

to the BVP (1).

By Lemmas 5 and 12, (28)-(31), there exist four open subsets O1, O2, O3 and O4 of E such that

O1 ⊂ P ∩ (B(θ,R1)\B(θ, r)), O2 ⊂ P ∩ (B(θ, r)\B(θ, r1)),

O3 ⊂ −P ∩ (B(θ, r)\B(θ, r1)), O4 ⊂ −P ∩ (B(θ,R1)\B(θ, r)),

and

deg(I − A,O1, 0) = −1, (32)
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deg(I − A,O2, 0) = 1, (33)

deg(I − A,O3, 0) = 1, (34)

deg(I − A,O4, 0) = −1. (35)

It follows from (21), (22), (33) and (34) that

deg(I − A,B(θ, r)\(O2 ∪ O3) ∪ B(θ, r1)), 0) = 1 − 1 − 1 − 1 = −2, (36)

which means that A has at least one fixed point x5 ∈ B(θ, r)\(O2 ∪ O3) ∪ B(θ, r1)). Similarly, by

(21), (23), (32) and (35) we get

deg(I − A,B(θ,R1)\(O1 ∪ O4 ∪ B(θ, r)), 0) = 1 + 1 + 1 − 1 = 2.

This implies that A has at least one fixed point x6 ∈ B(θ,R1)\(O1 ∪ O4 ∪ B(θ, r)). Obviously, x5

and x6 are two distinct sign-changing solutions to BVP (1). �

Proof of Theorem 2 According to Theorem 1, the BVP (1) has at least six different nontrivial

solutions xi ∈ E, i = 1, 2, · · · , 6, satisfying

x1, x2 ∈
◦
P, x3, x4 ∈ −

◦
P , x5, x6 6∈ P ∪ (−P ),

r1 < ‖x5‖ < r < ‖x6‖ < R1.

It follows from f(−x) = −f(x) for all x ∈ R that −x5 and −x6 are also solution for the BVP (1).

Denote x7 = −x5, x8 = −x6. It is clear x7 and x8 are two sign-changing solutions, too. So, BVP

(1) has eight different nontrivial solutions xi, i = 1, 2, · · · , 8. �

4 An example

Consider the following nonlinear second-order integral boundary-value problem (BVP)







x′′(t) + f(x(t)) = 0, 0 ≤ t ≤ 1,

x(0) = 0, x(1) =

∫ 1

0
sx(s)ds,

(37)

where

f(x) =







































40(x − x
23

21 ), |x| ≤ 1

2
,

(n − m)x +
3

2
m − 1

2
n,

1

2
< x <

3

2
,

(n − m)x +
n

2
− 3

2
m, −3

2
< x < −1

2
,

38(x − x
57

59 ), |x| >
3

2
,

in which m = 20(1 − 2−
2

21 ), n = 57(1 − (
3

2
)−

2

59 ).

Conclusion: The conclusion of Theorem 2 holds for integral boundary value problem (37).
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Let

(K1x)(t) =

∫ 1

0
κ1(t, s)x(s)ds, (38)

where

κ1(t, s) = G(t, s) +
1

4
ts(1 − s2). (39)

Let λ1 < λ2 < · · · < λn < λn+1 < · · · be the sequence of positive solutions of the equation

(1 − x) sin
√

x =
√

x cos
√

x. (40)

Proof of the conclusion. Let β be a positive number. First we show that the sequence of positive

eigenvalues of the operator βK1 is of the form

β

λ1
>

β

λ2
> · · · >

β

λn
> · · · .

Let λ be a positive eigenvalue of the linear operator βK1, and x ∈ E\{θ} be an eigenfunction

corresponding to the eigenvalue λ. Then we have

λx = βK1x, i.e., K1x =
λ

β
x.

By Lemma 1, we obtain
(λ

β
x
)′′

+ x = 0.

That is

x′′ +
β

λ
x = 0. (41)

The differential equation (41) has roots ±
√

β

λ
i. Thus, the general solution of (41) can be expressed

by

x(t) = C1 cos t

√

β

λ
+ C2 sin t

√

β

λ
, t ∈ [0, 1].

Applying the boundary value condition x(0) = 0, we obtain that C1 = 0, and so the general solution

can be reduced to

x(t) = C2 sin t

√

β

λ
, t ∈ [0, 1],

which together with boundary condition x(1) =
∫ 1
0 sx(s)ds and integrate by parts shows that

sin
√

β

λ
=

∫ 1

0
s sin

(

s

√

β

λ

)

ds

= −
cos

√

β

λ
√

β

λ

+
1
β

λ

sin

√

β

λ
.

(42)

That is
(

1 − β

λ

)

sin

√

β

λ
=

√

β

λ
cos

√

β

λ
.
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Since the positive solutions of the equation (1−x) sin
√

x =
√

x cos
√

x are 0 < λ1 < λ2 < · · · , then

λ is one of the values
β

λ1
>

β

λ2
> · · · β

λn
> · · · ,

and the eigenfunction corresponding to the eigenvalue β
λn

is

xn(t) = C sin t
√

λn, t ∈ [0, 1],

where C is a nonzero constant.

Next, we check that all the conditions of Theorem 2 hold. Take a(s) = s. It is clear that
∫ 1
0 a2(s)ds = 1

3 < 1. Obviously, f is odd, and condition (H1) holds. By direct computation, we

have σ1 = 1
3 , σ∗

1 = 1
12 , γ = 7

4 , 6(1−σ1)
(1−σ1)(3+γ)+6σ∗

1

= 12
11 , λ1 ≈ 7.5279, λ2 ≈ 37.4148, λ3 ≈ 86.7993, α0 =

40, β0 = 38. By above statement we know that the sequence of positive eigenvalues of the operators

α0K1, β0K1 are of the forms α0

λi
, β0

λi
(i = 1, 2, · · ·), respectively. Thus, the numbers of the eigenvalues

belong to (1,+∞) of the operators α0K and β0K are both two. Hence, (H2) holds. Choose r = 2.

By direct computation, we know

|f(x)| ≤







f((21
23 )

21

2 ) = 40((21
23 )

21

2 − (21
23 )

23

2 ) ≈ 1.3382 < 2 ≤ 12
11r, |x| ≤ 1,

f(2) = 38(2 − 2
57

59 ) ≈ 1.7649 < 2 ≤ 12
11r, 1 < |x| < 2.

Thus, we have proved that (H3) holds for r = 2. As a consequence, our conclusion follows from

Theorem 2. �

Remark 3. It is clear that κ1(t, s) ≤ 3
2s(1 − s). Thus, the constant γ = 7

4 in this example is not

optimal and the optimal constant is 3
2 .
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