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1 Introduction

In this paper, we study a metaparabolic equation

∂u

∂t
− k

∂∆u

∂t
+ γ∆2u = div(ϕ(∇u)), (1.1)

in a bounded domain Ω ⊂ R
n(n ≤ 3) with smooth boundary, where γ > 0 is

the interfacial energy parameter, k > 0 is the viscosity coefficient, ϕ(∇u) is an
intrinsic chemical potential with typical example as

ϕ(∇u) = γ1|∇u|2∇u −∇u,

where γ1 is a constant. The term ∆2u denotes the capillarity-driven surface
diffusion, and div(ϕ(∇u)) denotes the upward hopping of atoms.

The equation (1.1) is a typical higher order equation, which has an exten-
sive physical background and a rich theoretical connotation. A. Novick-Cohen
[10] derived the following equation to study the dynamics of viscous first order
phase transitions in cooling binary solutions such as alloys, glasses and polymer
mixtures

∂u

∂t
= ∆

[

µ + k
∂∆u

∂t

]

,

where u(x, t) is a concentration, µ is the intrinsic chemical potential. If we take
µ = ϕ(u) − γ∆u, we obtain the viscous Cahn-Hilliard equation

∂u

∂t
− k

∂∆u

∂t
+ γ∆2u = ∆ϕ(u).

Many authors have paid much attention to the viscous Cahn-Hilliard equation,
among which some numerical approaches and basic existence results have been
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developed [1, 3, 9, 12]. The well-known Cahn-Hilliard equation is obtained by
setting k = 0, which has been well studied; see for example [2, 4, 15]. In fact,
when the influence of many factors, such as the molecular and ion effects, are
considered, one has the nonlinear relation div(ϕ(∇u)) in stead of ∆ϕ(u) in
right-hand side of above equation, so we obtain the equation (1.1).

On the basis of physical consideration, the equation (1.1) is supplemented
by the zero mass flux boundary condition

∂u

∂n

∣

∣

∣

∂Ω
=

∂∆u

∂n

∣

∣

∣

∂Ω
= 0, (1.2)

and initial value condition

u(x, 0) = u0(x), x ∈ Ω. (1.3)

During the past years, many authors have paid much attention to the equation
(1.1) for a special case with k = 0 [11, 14]. B. B. King, O. Stein and M. Winkler
[5] studied the equation (1.1) for a special case with k = 0, namely,

∂u

∂t
+ ∆2u − div(f(∇u)) = g(x, t),

where reasonable choice of f(z) is f(z) = |z|p−2z − z. They proved the exis-
tence, uniqueness and regularity of solutions in an appropriate function space
for initial-boundary value problem. Liu considered the equation with nonlinear
principal part

∂u

∂t
+ div

[

m(u)k∇∆u − |∇u|p−2∇u
]

= 0.

He proved the existence of solutions for one dimension [6] and two dimensions
[7, 8].

The purpose of the present paper is devoted to the investigation of properties
of solutions with γ1 not restricted to be positive. We first discuss the regularity.
We show that the solutions might not be classical globally. In other words, in
some cases, the solutions exist globally, while in some other cases, such solutions
blow up at a finite time. The main difficulties for treating the problem (1.1)–
(1.3) are caused by the nonlinearity of div(ϕ(∇u)) and the lack of maximum
principle. To prove the existence of solutions, the method we use is based on the
energy estimates and the Schauder type a priori estimates. In order to prove
the blow-up result, we construct a new Lyapunov functional.

Throughout the paper we use QT to denote Ω×(0, T ). The norms of L∞(Ω),
L2(Ω) and Hs(Ω) are denoted by ‖ · ‖∞, ‖ · ‖ and ‖ · ‖s.

2 Global existence

Let Ω = (0, 1) and consider the following initial-boundary value problem

∂u

∂t
+ γD4u − k

∂D2u

∂t
= Dϕ(Du), 0 < x < 1, 0 < t < T, (2.1)
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Du(0, t) = Du(1, t) = D3u(0, t) = D3u(1, t) = 0, t > 0, (2.2)

u(x, 0) = u0(x), 0 < x < 1, (2.3)

where D = ∂
∂x , ϕ(z) = −z+γ1z

3 with γ, γ1 and k being constants with γ, k > 0.
From the classical approach, it is not difficult to conclude that the problem
admits a unique classical solution local in time. So, it is sufficient to make a
priori estimates.

Theorem 2.1 If γ1 > 0, then for any initial data u0 ∈ H2(Ω) with Du0(0) =
Du0(1) = 0 and T > 0, the problem (2.1)–(2.3) admits one and only one
solution u with ut, D4u, D2ut ∈ L2(QT ), where QT = Ω × (0, T ).

Proof. Multiplying both sides of the equation by u and then integrating resulting
relation with respect to x over (0, 1), we have

1

2

d

dt

∫ 1

0

u2dx + γ

∫ 1

0

(D2u)2dx + k

∫ 1

0

DutDudx = −

∫ 1

0

ϕ(Du)Dudx.

That is

1

2

d

dt

(
∫ 1

0

u2dx + k

∫ 1

0

(Du)2dx

)

+ γ

∫ 1

0

(D2u)2dx

+γ1

∫ 1

0

(Du)4dx =

∫ 1

0

(Du)2dx. (2.4)

The Gronwall inequality implies that

sup
0<t<T

∫ 1

0

u2dx ≤ C, (2.5)

sup
0<t<T

∫ 1

0

|Du|2dx ≤ C, (2.6)

∫∫

QT

(D2u)2dxdt ≤ C. (2.7)

By the Sobolev imbedding theorem, it follows from (2.5), (2.6) that

sup
QT

|u(x, t)| ≤ C. (2.8)

Let

F (t) =

∫ 1

0

(γ

2
(D2u)2 + H(Du)

)

dx,

where H(Du) = γ1

4 (Du)4 − 1
2 (Du)2. Then, we have

dF (t)

dt
=

∫ 1

0

(γD2uD2ut + ϕ(Du)Dut)dx.
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Integrations by parts and (2.1)-(2.2) yield

dF (t)

dt
=

∫ 1

0

[γD4u − D(ϕ(Du))]utdx

= −

∫ 1

0

(ut − kD2ut)utdx

= −

∫ 1

0

[(ut)
2 + k(Dut)

2]dx ≤ 0

and

F (t) ≤ F (0) =

∫ 1

0

(γ

2
(D2u0)

2 + H(Du0)
)

dx.

By Young’s inequality
(Du)2 ≤ ε(Du)4 + C,

we have

sup
0<t<T

∫ 1

0

(D2u)2dx ≤ C. (2.9)

By the Sobolev imbedding theorem, it follows from (2.5), (2.6), (2.9) that

sup
QT

|Du(x, t)| ≤ C. (2.10)

Again multiplying both sides of the equation (2.1) by D4u and integrating the
resulting relation with respect to x over (0, 1), we have

1

2

d

dt

∫ 1

0

(D2u)2dx+γ

∫ 1

0

(D4u)2dx+k

∫ 1

0

D3utD
3udx =

∫ 1

0

ϕ′(Du)D2uD4udx.

Hence

1

2

d

dt

∫ 1

0

(D2u)2dx + γ

∫ 1

0

(D4u)2dx + k

∫ 1

0

D3utD
3udx

≤ C

(

sup
QT

|Du|2 + 1

) (

ε

∫ 1

0

(D4u)2dx + Cε

∫ 1

0

(D2u)2dx

)

≤
γ

2

∫ 1

0

(D4u)2dx + C

∫ 1

0

(D2u)2dx. (2.11)

By Gronwall’s inequality

∫∫

QT

(D4u)2dxdt ≤ C. (2.12)

The a priori estimates (2.8), (2.9) and (2.12) complete the proof of global exis-
tence.
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Remark 2.1 The corresponding problem for n = 2, 3 is (1.1)-(1.3). For u0 ∈

H2(Ω) with
∂u0

∂n

∣

∣

∣

∂Ω
= 0, there exists a unique global solution u. The proof is the

same as that of Theorem 2.1 with minor changes. Without loss of generality,
assume that

∫

Ω

u0(x)dx = 0 =

∫

Ω

u(x, t)dx. (2.13)

By the boundary conditions, (2.13) and the Poicaré-Friedrichs inequalities ‖∆u‖,
‖∆2u‖ are equivalent to ‖u‖2 and ‖u‖4. Now as before in (2.5)-(2.7) and (2.9),
we have

‖u(t)‖2 ≤ C. (2.14)

By Sobolev’s imbedding theorem and (2.14), we have

‖∇u‖Lq ≤ C, for any q < ∞, (n = 2), (2.15)

‖∇u‖L6 ≤ C, (n = 3). (2.16)

By the Nirenberg inequality, we have

‖∇u‖∞ ≤ C‖∆2u‖a‖∇u‖1−a
Lq , where a =

1

1 + q
, (n = 2), (2.17)

‖∇u‖∞ ≤ C‖∆2u‖1/4‖∇u‖
3/4
Lq , (n = 3). (2.18)

Applying Young’s inequality to the right-hand side of

1

2

d

dt

∫

Ω

[(∆u)2 + k|∇∆u|2]dx + γ

∫

Ω

(∆2u)2dx =

∫

Ω

(3γ1|∇u|2 − 1)∆u∆2udx.

We have
∫

Ω

(3γ1|∇u|2 − 1)∆u∆2udx ≤ C(‖∇u|2∞ + 1)‖∆u‖‖∆2u‖

≤ C‖∆2u‖2a+1 (n = 2),

and
∫

Ω

(3γ1|∇u|2 − 1)∆u∆2udx ≤ C(‖∇u|2∞ + 1)‖∆u‖‖∆2u‖

≤ C‖∆2u‖3/2 (n = 3).

Here, we have used (2.14), (2.17) and (2.18). Hence, we obtain

‖∆u‖2 + k‖∇∆u‖2 +

∫

Ω

‖∆2u‖2dt ≤ C.

This completes the proof of global existence.
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3 Regularity

Now, we turn our discussion to the regularity of solutions.

Theorem 3.1 Assume that γ1 > 0, u0 ∈ C4+α(Ω) and Du0(0) = Du0(1) = 0.
Then the problem (2.1)–(2.3) admits a classical solution u ∈ C4+α,1+α/4(QT ).

Proof. Set L = (I − kD2)−1, and Lg = w, namely, w satisfies

{

(I − kD2)w = g, x ∈ Ω,

Dw = 0, x ∈ ∂Ω.

It is easily seen that

∫

Ω

|w|2dx ≤

∫

Ω

|g|2dx, i. e.

∫

Ω

|Lg|2dx ≤

∫

Ω

|g|2dx.

Now, we rewrite the equation (2.1) into the form

(I − kD2)
∂u

∂t
+ γD4u = Dϕ(Du).

Using the operator L for the above equation, we have

∂u

∂t
+ LD[γD3u − ϕ(Du)] = 0. (3.1)

Integrating the equation (3.1) with respect to x over (y, y + (∆t)1/4) × (t1, t2),
where 0 < t1 < t2 < T , ∆t = t2 − t1, we see that

∫ y+(∆t)1/4

y

[u(z, t2) − u(z, t1)]dz

= −

∫ t2

t1

L[(γD3u(y′, s) − ϕ(Du(y′, s)))

−(γD3u(y, s) − ϕ(Du(y, s)))]ds. (3.2)

Set

N(s, y) = L[(γD3u(y′, s) − ϕ(Du(y′, s))) − (γD3u(y, s) − ϕ(Du(y, s)))]ds.

Then (3.2) is converted into

(∆t)1/4

∫ 1

0

u(y + θ(∆t)1/4, t2) − u(y + θ(∆t)1/4, t1))dθ

= −

∫ t2

t1

N(s, y)ds.
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Integrating the above equality with respect to y over (x, x + (∆t)1/4), we get

(∆t)1/2(u(x∗, t2) − u(x∗, t1)) = −

∫ t2

t1

∫ x+(∆t)1/4

x

N(s, y)dyds.

Here, we have used the mean value theorem, where x∗ = y∗ + θ∗(∆t)1/4, y∗ ∈
(x, x + (∆t)1/4), θ ∈ (0, 1). Hence by Hölder inequality and (2.10), (2.12), we
get

|u(x∗, t2) − u(x∗, t1)|
2∆t ≤ C(∆t)5/4,

that is
|u(x∗, t2) − u(x∗, t1)| ≤ C(∆t)1/8. (3.3)

Again integrating the equation (2.1) over (0, x) × (t1, t2) yields

Du(x, t2) − Du(x, t1) =

∫ x

0

[u(z, t2) − u(z, t1)]dz

+

∫ t2

t1

γD3u(x, s)ds −

∫ t2

t1

ϕ(Du(x, s))ds.

Integrating the above equation with respect to x over (y, y +(∆t)3/4), using the
mean value theorem, and (3.3) we have

(∆t)3/4|Du(x∗, t2) − Du(x∗, t1)| ≤ C(∆t)7/8,

that is
|Du(x∗, t2) − Du(x∗, t1)| ≤ C(∆t)1/8. (3.4)

By (2.6) and (2.9), we get

|u(x1, t) − u(x2, t)| ≤ C|x1 − x2|
1/2 (3.5)

and
|Du(x1, t) − Du(x2, t)| ≤ C|x1 − x2|

1/2. (3.6)

Again using (3.5), (3.6) we have

|u(x1, t1) − u(x2, t2)| ≤ (|t1 − t2|
1/8 + |x1 − x2|

1/2) (3.7)

and
|Du(x1, t1) − Du(x2, t2)| ≤ (|t1 − t2|

1/8 + |x1 − x2|
1/2). (3.8)

Define the linear spaces

X =

{

u ∈ C1+α,1+α/4(QT ); Du
∣

∣

∣

x=0,1
= 0, u(x, 0) = u0(x)

}

and the associated operator T : X → X, u → w, where w is determined by the
following linear problem

∂w

∂t
− k

∂D2w

∂t
+ γD4w − 3γ1(Du)2D2w + D2w = 0,
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Dw(0, t) = Dw(1, t) = D3w(0, t) = D3w(1, t) = 0,

w(x, 0) = u0(x).

By (3.7) and (3.8) we see that

a(x, t) = (Du(x, t))2

is Hölder continuous, hence from the classical linear theory, the above problem

admits a unique solution w ∈ C4+β,1+β/4(QT ),
∂D2w

∂t
∈ Cβ(QT ). So, the

operator T is well-defined and compact. Moreover, if u = σTu, for some σ ∈
(0, 1], then u satisfies (2.1), (2.2) and u(x, 0) = σu0(x). Thus from the discussion

above, we see that the norm of u in C4+β,1+β/4(QT ) and norm of
∂D2u

∂t
∈

Cβ(QT ) can be estimated by some constant C depending only on the known
quantities. By Leray–Schauder principle of fixed point, the operator T has a
fixed point u, which is the desired classical solution of the problem (2.1)–(2.2).
The proof is complete.

4 The case of small initial data

In §2, we have proved the global existence of solution of the problem (1.1)-(1.3)
for γ1 > 0. We turn now to the proof of global existence for γ1 < 0. Without
loss of generality, we assume that (2.13) holds.

Theorem 4.1 If γ > 3
2π2 , and ‖u0‖2 is sufficiently small, then there exists a

unique global solution u with ut, D
4u, D2ut ∈ L2(QT ) to (2.1)-(2.3).

Proof. As mentioned before, it needs only to obtain a priori estimates for smooth
solution u. In what follows Cj(j = 1, 2 · · ·) denote the constants independent of
u and t. Set

f = D(γ1(Du)3).

The equation (2.1) may be rewritten as

∂u

∂t
+ γD4u − k

∂D2u

∂t
+ D2u = f. (4.1)

For any fixed t > 0 we define

N(t) = sup
0<τ<t

‖u(τ)‖2
2 +

∫ t

0

‖u(τ)‖2
2dτ. (4.2)

Our goal is to show that N(t) is bounded above.
Firstly, multiplying (4.1) by u and integrating with respect to x, we have

1

2

d

dt
‖u‖2 − γ

∫ 1

0

D3uDudx + k

∫ 1

0

DuDutdx −

∫ 1

0

(Du)2dx =

∫ 1

0

fudx.
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Thus
1

2

d

dt
(‖u‖2 + k‖Du‖2) + γ‖D2u‖2 − ‖Du‖2 =

∫ 1

0

fudx.

Since

∫ 1

0

u(x, t)dx = 0, by Poincaré inequality and Friedrichs inequality, we

have

‖u‖2 ≤ ‖Du‖2 ≤
1

π2
‖D2u‖2.

It follows that

d

dt
(‖u‖2 + k‖Du‖2) + (2γ −

3

π2
)‖D2u‖2 ≤ C3‖f‖

2. (4.3)

Integrating the (4.3) over (0, t), we have

‖u‖2 + k‖Du‖2 + C2

∫ t

0

‖D2u‖2 ≤ ‖u0‖
2 + k‖Du0‖

2 + C3

∫ t

0

‖f‖2ds. (4.4)

Next, multiplying (4.1) by ut and integrating with respect to x over (0, 1), and
integrating by parts, we have

‖ut‖
2 +

d

dt
(γ‖D2u‖2 + ‖Du‖2) + k‖Dut‖

2 ≤ ‖f‖2.

Hence

∫ t

0

(‖ut‖
2 + k‖Dut‖

2)ds + C1‖D
2u‖2 ≤ ‖D2u0‖ + ‖Du0‖ +

∫ t

0

‖f‖2ds. (4.5)

By (4.4), (4.5) we obtain

N(t) ≤ C4

{

‖u0‖
2
2 +

∫ t

0

‖f‖2ds
}

. (4.6)

Noticing
‖f‖2 ≤ C5‖Du‖4

∞‖D2u‖2, (4.7)

and using the Sobolev inequality and the Poincaré inequality, we obtain

∫ t

0

‖f‖2ds ≤ C8 sup
0<s<t

‖u‖4
2

∫ t

0

‖u‖2
2ds. (4.8)

Taking (4.6) and (4.8) together yields

N(t) ≤ C9{‖u0‖
2
2 + N(t)3}, t > 0. (4.9)

We conclude that there is a constant C10 such that

N(t) ≤ C10‖u0‖
2
2, ∀t > 0, (4.10)
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provided that ‖u0‖2 is sufficiently small. To show this, we set

M(t) = C9N(t)2.

Assume that ‖u0‖2 is small enough, such that

M(0) = C9‖u0‖
4
2 <

1

2
, 8C9

3‖u0‖
4
2 < 1. (4.11)

Then we have the assertion

M(t) <
1

2
, ∀t > 0. (4.12)

In fact, if (4.12) were not sure, then there would exist a t0 > 0, such that
M(t0) = 1

2 and M(t) < 1
2 for t ∈ (0, t0). By (4.9) we obtain

N(t0) ≤
C9‖u0‖

2
2

1 − C9N(t0)
2 ≤

C9‖u0‖
2
2

1 − M(t0)
≤ 2C9‖u0‖

2
2. (4.13)

Using the second inequality in (4.11), we have

M(t0) = C9N(t0)
2
≤ 4(C9)

3‖u0‖
4
2 <

1

2
. (4.14)

The contradiction shows that (4.12) and hence (4.10) holds. Finally multiplying
(4.1) by −D2u and D4u yield the following inequalities

‖Du‖2 + k‖D2u‖2 +

∫ t

0

‖D3u‖2ds ≤ C11{‖u0‖
2
2 +

∫ t

0

‖f‖2ds},

and

‖D2u‖2 + k‖D3u‖2 +

∫ t

0

‖D4u‖2ds ≤ C12{‖u0‖
2
2 +

∫ t

0

‖f‖2dx}.

As did in section 2, we may easily show that the global solution u satisfies
ut, D

4u, D2ut ∈ L2(QT ). The proof is complete.

5 Blow-up

In the previous sections, we have seen that the solution of the problem (1.1)–
(1.3) is globally classical, provided that γ1 > 0 or γ1 < 0 and ‖u0‖2 sufficiently
small. The following theorem shows that the solution of the problem (1.1)–(1.3)
blows up at a finite time for γ1 < 0 and F (0) ≤ 0.

Theorem 5.1 Assume that u0 6≡ 0, γ1 < 0 and −
∫

Ω
{H(∇u0)+ γ

2 |∆u0|
2}dx ≥

0. Then the solution of the problem (1.1)–(1.3) must blow up at a finite time,
namely, for some T > 0

lim
t→T

‖u(t)‖1 = +∞,

where H(∇u) = γ1

4 |∇u|4 − 1
2 |∇u|2.
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Proof. As in the proof of Theorem 2.1,

2

∫

Ω

H(∇u)dx − 2F (0) ≤ −γ

∫

Ω

|∆u|2dx, (5.1)

where

F (0) =

∫

Ω

(γ

2
(∆u0)

2 + H(∇u0)
)

dx.

Now multiplying (1.1) by u and integrating with respect to x, we obtain

d

dt
‖u‖2

1 = −2γ

∫

Ω

(∆u)2dx − 2

∫

Ω

ϕ(∇u) · ∇udx

≥ 4

∫

Ω

H(∇u)dx − 4F (0) − 2

∫

Ω

ϕ(∇u)∇udx

= 4

∫

Ω

(

γ1

4
|∇u|4 −

1

2
|∇u|2

)

dx − 2

∫

Ω

(

γ1|∇u|4 − |∇u|2
)

dx − 4F (0)

= −γ1

∫

Ω

|∇u|4dx − 4F (0)

≥ −
γ1

2|Ω|

(
∫

Ω

|∇u|2dx

)2

− 4F (0),

by (2.13) and Poincaré inequality

‖u‖2 ≤ C(Ω)

∫

Ω

|∇u|2dx.

Therefore

‖u‖2
1 ≤ C

∫

Ω

|∇u|2dx.

Again −F (0) ≥ 0, hence

d

dt
‖u‖2

1 ≥ −
γ1

2|Ω|C2
‖u‖4

1,

that is

‖u‖2
1 ≥

‖u0‖
2
1

1 + γ1

2|Ω|C2 t‖u0‖2
1

.

By u0 6≡ 0, it follows that u must blow up in a finite time T .

6 Global attractor

In this section, we are going to prove the existence of attractor as γ1 > 0. By
Theorem 6.1, we can define the operator semigroup {S(t)}t≥0 in H2 space as

S(t)u0 = u(t), t ≥ 0,

EJQTDE, 2010 No. 40, p. 11



where u(t) is the solution of (1.1)-(1.3) corresponding to initial value u0.
To study the existence of a global attractor, we have to find a closed metric

space and prove that there exists a global attractor in the closed metric space.
Since the total mass is conserved for all time, it is not possible for us to have
a global attractor for the whole space without any constraints. Instead, we
consider a series of subspaces with constraints as follow

∣

∣

∣

∣

∫

Ω

udx

∣

∣

∣

∣

≤ κ,

for any given positive constant κ.
We let

Xκ =

{

u|u ∈ H2(Ω),
∣

∣

∣

∫

Ω

udx
∣

∣

∣
≤ κ

}

,

where κ > 0 is a constant. It is easy to see that the restriction of {S(t)} on the
affined space Xκ is a well defined semigroup.

Theorem 6.1 For every κ chosen as above, the semiflow associated with the
solution u of the problem (1.1)- (1.3) possesses in Xκ a global attractor Aκ

which attracts all the bounded set in Xκ.

In order to prove Theorem 6.1, here we establish some a priori estimates
for the solution u of problem (1.1)-(1.3). In what follows, we always assume
that {S(t)}t≥0 is the semigroup generated by the weak solutions of problem
(1.1)-(1.3) with initial data u0 ∈ H2(Ω).

Lemma 6.1 There exists a bounded set Bκ whose size depends only on κ and
Ω, in Xκ such that for all the orbits starting from any bounded set B in Xκ,
∃ t1 = t1(B) ≥ 0 such that ∀ t ≥ t1 all the orbits will stay in Bκ.

Proof. By Young inequality, it follows from (2.4) that

1

2

d

dt

(
∫ 1

0

u2dx + k

∫ 1

0

(Du)2dx

)

+ γ

∫ 1

0

(D2u)2dx ≤ C0.

By Poincaré inequality, we have

‖u‖2 ≤ ‖Du‖2 +

(
∫ 1

0

udx

)2

≤ ‖Du‖2 + κ2.

Using Friedrichs inequality, we get ‖Du‖2 ≤ ‖D2u‖2. So, if γ sufficiently large,
we have

1

2

d

dt

(
∫ 1

0

u2dx + k

∫ 1

0

(Du)2dx

)

+ C2

(
∫ 1

0

u2dx + k

∫ 1

0

(Du)2dx

)

≤ C1,

which immediately yields

∫ 1

0

u2dx + k

∫ 1

0

(Du)2dx ≤ e−C2t

(
∫ 1

0

u2dx + k

∫ 1

0

(Du)2dx

)

+
C1

C2
.

EJQTDE, 2010 No. 40, p. 12



Thus for initial in any bounded set B ⊂ Xκ, there is a uniform time t0(B)
depending on B such that for t ≥ t0(B),

∫ 1

0

u2dx + k

∫ 1

0

(Du)2dx ≤
2C1

C2
. (6.1)

Similar to the above, multiplying both sides of the equation by D2u, we have

1

2

d

dt

∫ 1

0

(Du)2dx +
γ

2

∫ 1

0

(D3u)2dx + k

∫ 1

0

D2utD
2udx ≤ C. (6.2)

Hence there is a uniform time t1(B) depending on B such that for t ≥ t1(B),

∫ 1

0

(Du)2dx + k

∫ 1

0

(D2u)2dx ≤
2C3

C4
. (6.3)

The lemma is proved.

Lemma 6.2 For any initial data u0 in any bounded set B ⊂ Xκ, there is a
t2(B) > 0 such that

‖u(t)‖H3 ≤ C, ∀ t ≥ t2 > 0,

which turns out that
⋃

t≥t2
u(t) is relatively compact in Xκ.

Proof. Firstly, integrating (6.2) over (t, t + 1), we have

∫ t+1

t

∫ 1

0

|D3u|2dxdτ ≤ C. (6.4)

Combining (2.11) with (6.4) and using the uniform Gronwall inequality, we
have that there is a uniform time t2(B) depending on B such that for t ≥ t2(B),

∫ 1

0

(D3u)2dx ≤
2C5

C6
. (6.5)

The lemma is proved.
Then by Theorem I.1.1 in [13], we immediately conclude that Aκ = ω(Bκ),

the ω-limit set of absorbing set Bκ is a global attractor in Xκ. By Lemma 6.2,
this global attractor is a bounded set in H3. Thus the proof of Theorem 6.1 is
complete.
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