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1 Introduction

Consider the second-order Hamiltonian systems with (q, p)-Laplacian

− d
dt
(
|u̇1(t)|q−2u̇1(t)

)
= ∇u1 F(t, u1(t), u2(t)), a.e. t ∈ [0, T],

− d
dt
(
|u̇2(t)|p−2u̇2(t)

)
= ∇u2 F(t, u1(t), u2(t)), a.e. t ∈ [0, T],

u1(0)− u1(T) = u̇1(0)− u̇1(T) = 0,

u2(0)− u2(T) = u̇2(0)− u̇2(T) = 0,

(1.1)

where 1 < p, q < +∞, T > 0, and F : [0, T]×RN ×RN → R satisfy the following assumption
(A):

• F is measurable in t for each (x1, x2) ∈ RN ×RN ;

• F is continuously differentiable in (x1, x2) for a.e. t ∈ [0, T];
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• there exist a1, a2 ∈ C(R+, R+) and b ∈ L1(0, T; R+) such that

|F(t, x1, x2)|, |∇x1 F(t, x1, x2)|, |∇x2 F(t, x1, x2)| ≤
[
a1(|x1|) + a2(|x2|)

]
b(t)

for all (x1, x2) ∈ RN ×RN and a.e. t ∈ [0, T].

When p = q and F(t, x1, x2) = F1(t, x1), problem (1.1) reduces to the following second
order Hamiltonian system:−

d
dt
(
|u̇(t)|p−2u̇(t)

)
= ∇F1(t, u(t)) a.e. t ∈ [0, T],

u(0)− u(T) = u̇(0)− u̇(T) = 0.
(1.2)

In the past decades, there are many papers concerning the existence of periodic solutions
for problem (1.2) with p = 2 or more general with p > 1 via critical point theory, we refer
the reader to [2, 4, 12–17] and the references therein. Specially, in [14], Tang and Wu estab-
lished the existence of periodic solutions for problem (1.2) with p = 2 when potential F was
subquadratic. Concretely speaking, they obtained the following theorems.

Theorem 1.1 (Tang and Wu [14]). Suppose that F1 satisfies assumption (A) and the following
conditions:

(S1) There exists 0 < µ < 2, R > 0 such that

(∇F1(t, x), x) ≤ µF1(t, x)

for all |x| ≥ R and a.e. t ∈ [0, T];

(S2) F1(t, x)→ +∞ as |x| → +∞ uniformly for a.e. t ∈ [0, T].

Then problem (1.2) with p = 2 has at least one solution.

Theorem 1.2 (Tang and Wu [14]). Suppose that F1 satisfies assumption (A), (S1) and the following
conditions:

(S3)
∫ T

0 F1(t, x)dt→ +∞ as |x| → +∞.

(S4) F1(t, ·) is (β, γ)-subconvex with γ > 0 for a.e. t ∈ [0, T], that is,

F1(t, β(x + y)) ≤ γ(F1(t, x) + F1(t, y))

for all x, y ∈ RN.

Then problem (1.1) with p = 2 has at least one solution.

Inspired by some of our early papers in [6–10], the aim of this paper is to obtain new exis-
tence result for system (1.1) by imposing a more general growth conditions on the potential F.

For the sake of convenience, in the sequel, H will denote the space of continuous function
space such that, for any θ ∈ H, there exists constant M > 0 such that

(i) θ(t) > 0 ∀t ∈ R+,

(ii)
∫ t

M
1

sθ(s)ds→ +∞ as t→ +∞.

The main result is the following theorem.
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Theorem 1.3. Suppose that F satisfies assumption (A) and the following conditions:

(H1) there exist θ(|(x1, x2)|) ∈ H with 0 < 1
θ(|(x1,x2)|) < r, r := min(q, p), M1 > 0 such that

(∇(x1,x2)F(t, x1, x2), (x1, x2)) ≤
(

r− 1
θ(|(x1, x2)|)

)
F(t, x1, x2)

for all |(x1, x2)| ≥ M1 and a.e. t ∈ [0, T];

(H2) F(t, x1, x2) ≥ 0 as |(x1, x2)| → +∞ uniformly for a.e. t ∈ [0, T];

(H3)
∫ T

0
F(t,x1,x2)

θ(|(x1,x2)|)dt→ +∞ as |(x1, x2)| → +∞.

Then problem (1.1) has at least one solution.

Remark 1.4. Let inf|(x1,x2)|≥M
1

θ(|(x1,x2)|) := k, where k is a constant. We point out that

(a) It is clear that the set of hypotheses assumed in Theorem 1.3 is weaker than Theorem 1.1
even if p = q = 2, F(t, x1, x2) = F1(t, x1). Therefore, Theorem 1.3 generalizes Theorem
1.1 completely.

(b) Theorem 1.3 also can be viewed as a partial extension of Theorem 1.2. In fact, on one
hand, condition (S4) in Theorem 1.2 is completely removed, on the other hand, under
assumption (H2), we can easily see that (H1), (H3) with p = q = 2, F(t, x1, x2) = F1(t, x1)

are equivalent to (S1), (S3) respectively when k > 0, however, (H1) is much weaker than
(S1) when k = 0.

(c) There are functions F satisfying our Theorem 1.3 and not satisfying the results in [14].
For example, let

F(t, x1, x2) = d(t)
2 + |x1|q + |x|p

ln(2 + |x1|2 + |x2|2)
, ∀(t, x) ∈ R×RN,

where

d(t) :=

{
sin 2πt

T , t ∈ [0, T/2],

0, t ∈ [T/2, T].

Setting θ(|(x1, x2)|) = ln(2 + |x1|2 + |x2|2), a straightforward computation shows that F
satisfies the conditions (H1)–(H3) of Theorem 1.3, but it does not satisfy the correspond-
ing conditions of Theorem 1.1, Theorem 1.2.

The rest of this paper is organized as follows. In Section 2, we recall some important nota-
tions and present some preliminary results which will be used for the proofs of Theorem 1.3.
In Section 3, we prove our main result.

2 Preliminaries

For the sake of convenience, in the following we will denote various positive constants as
ci, i = 1, 2, 3, . . . Firstly, we introduce some functional spaces. Let T > 0, 1 < q, p < +∞
and use | · | to denote the Euclidean norm in RN . We denote by W1,p

T the Sobolev space of
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functions u ∈ Lp(0, T; RN) having a weak derivative u̇ ∈ Lp(0, T; RN). The norm in W1,p
T is

defined by

‖u‖W1,p
T

:=
(∫ T

0
(|u(t)|p + |u̇(t)|p)dt

) 1
p

.

Furthermore, we use the space W defined by

W := W1,q
T ×W1,p

T

with the norm ‖(u1, u2)‖W := ‖u1‖W1,q
T
+ ‖u2‖W1,p

T
. It is clear that W is a reflexive Banach space.

For (u1, u2) ∈W, let

(ū1, ū2) :=
1
T

(∫ T

0
u1(t)dt,

∫ T

0
u2(t)dt

)
and (ũ1(t), ũ2(t)) := (u1(t), u2(t))− (ū1, ū2),

then one has

‖ũ1‖∞ ≤ c1‖u̇1‖q, ‖ũ2‖∞ ≤ c1‖u̇2‖p, (Sobolev’s inequality)

‖ũ1‖q ≤ c2‖u̇1‖q, ‖ũ2‖p ≤ c2‖u̇2‖p (Wirtinger’s inequality)

for each (u1, u2) ∈ W, where ‖u1‖q :=
(∫ T

0 |u1(t)|qdt
) 1

q , ‖u2‖p :=
(∫ T

0 |u2(t)|pdt
) 1

p and
‖ũi‖∞ := max0≤t≤T |ũi(t)| for i = 1, 2. Since the embedding of W into C(0, T; RN)×C(0, T; RN)

is compact, there exists a constant d > 0 such that

‖(u1, u2)‖∞ ≤ d‖(u1, u2)‖W (2.1)

for all (u1, u2) ∈W.
It follows from assumption (A) that functional ϕ on W given by

ϕ(u1, u2) =
1
q

∫ T

0
|u̇1(t)|qdt +

1
p

∫ T

0
|u̇2(t)|pdt−

∫ T

0
F(t, u1(t), u2(t))dt

is continuously differentiable and weakly lower semicontinuous on W (see [7]). Moreover, one
has

(ϕ′(u1, u2), (v1, v2)) =
∫ T

0
(|u̇1|q−2u̇1, v̇1)dt +

∫ T

0
(|u̇2|p−2u̇2, v̇2)dt

−
∫ T

0
(∇(u1,u2)F(t, u1, u2), (v1, v2))dt

for all ui ∈ W1,q
T , vi ∈ W1,p

T , i = 1, 2. It is well known that the solutions of problem (1.1)
correspond to the critical points of the functional ϕ.

To prove our main theorem, we need the following auxiliary result.

Proposition 2.1. Suppose that F(t, x1, x2) satisfies assumption (A), (H1) and (H2), then we have

F(t, x1, x2) ≤
h(t)
Mr |(x1, x2)|rG(|(x1, x2)|) + h(t)

for all x ∈ RN and a.e. t ∈ [0, T], where

h(t) := max
|(x1,x2)|≤M

[
a1(|x1|) + a2(|x2|)

]
b(t),

G(|(x1, x2)|) := exp
(
−
∫ |(x1,x2)|

M

1
tθ(t)

dt
)

.



Periodic solutions of Hamiltonian systems with (q, p)-Laplacian 5

Proof. Take f (s) := F(t, sx1, sx2). By (H2), we know that there exists M2 > 0 such that

f (s) ≥ 0 for all s ≥ M2

|(x1, x2)|
. (2.2)

In light of (H1), one may prove that

f ′(s) =
1
s

(
∇(x1,x2)F(t, s(x1, x2)), s(x1, x2)

)
≤ 1

s

(
r− 1

θ(s|(x1, x2)|)

)
F(t, s(x1, x2))

=
1
s

(
r− 1

θ(s|(x1, x2)|)

)
f (s) (2.3)

for all s ≥ M1
|(x1,x2)| . Then, by (2.2), integrating the inequality (2.3), we derive

f (s) ≤
f
(

M
|(x1,x2)|

)
|(x1, x2)|r

Mr srG(s|(x1, x2)|)

for all s ≥ M
|(x1,x2)| , where M := max{M1, M2}. Therefore, for |(x1, x2)| ≥ M, we obtain

F(t, x1, x2) = f (1) ≤
F
(

t, M
|(x1,x2)| (x1, x2)

)
|(x1, x2)|r

Mr G(|(x1, x2)|). (2.4)

Furthermore, by assumption (A), we also have

F
(

t,
M

|(x1, x2)|
(x1, x2)

)
≤ h(t) (2.5)

for all (x1, x2) ∈ RN ×RN and a.e. t ∈ [0, T]. From (2.4), (2.5) and assumption (A), we obtain

F(t, x1, x2) ≤
h(t)
Mr |(x1, x2)|rG(|(x1, x2)|) + h(t)

for all x ∈ RN and a.e. t ∈ [0, T].

Remark 2.2. Making use of property (ii) of θ, we know that G(|(x1, x2)|) → 0 as |(x1, x2)| →
+∞. It should be noted that function trG(t) is increasing on t. This fact follows easily from
the range of 1

θ , and (trG(t))′ = tr−1G(t)
(
r− 1

θ(t)

)
> 0.

3 Proof of the main result

We start with a compactness condition, which plays a crucial role in establishing our result.
Recall that a sequence {(u1n, u2n)} ⊂ W is said to be a (C) sequence of ϕ if ϕ(u1n, u2n) is
bounded and (1 + ‖(u1n, u2n)‖)‖ϕ′(u1n, u2n)‖ → 0 as n → ∞. The functional ϕ satisfies
condition (C) if every (C) sequence of ϕ has a convergent subsequence. This condition is due
to G. Cerami [3].
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Lemma 3.1. Assume that (A), (H1) and (H3) hold, then the functional ϕ satisfies condition (C).

Proof. Suppose that {(u1n, u2n)} ⊂ W is a (C) sequence of ϕ, that is, ϕ(u1n, u2n) is bounded
and (1 + ‖(u1n, u2n)‖)‖ϕ′(u1n, u2n)‖ → 0 as n→ +∞. Then there exists a constant L > 0 such
that

|ϕ(u1n, u2n)| ≤ L, (1 + ‖(u1n, u2n)‖)‖ϕ′(u1n, u2n)‖ ≤ L (3.1)

for all n ∈ N. In a similar way to the proof of Lemma 8 in [8], we only need to prove
{(u1n, u2n)} is bounded.

Combining assumption (A) with (H1), we have

− h̃(t) +
(
∇(x1,x2)F(t, x1, x2), (x1, x2)

)
≤
(

r− 1
θ(|(x1, x2)|)

)
F(t, x1, x2) (3.2)

for all (x1, x2) ∈ RN ×RN and a.e. t ∈ [0, T], where h̃(t) = (r + M)h(t) ≥ 0. Taking into
account of (3.2) and assumption (A), we conclude from (3.1) that

(r + 1)L ≥ (1 + ‖(u1n, u2n)‖)‖ϕ′(u1n, u2n)‖ − rϕ(u1n, u2n)

≥ (ϕ′(u1n, u2n), (u1n, u2n))− rϕ(u1n, u2n)

=

(
1− r

q

) ∫ T

0
|u̇1n(t)|qdt +

(
1− r

p

) ∫ T

0
|u̇2n(t)|pdt

−
∫ T

0
(∇(u1n,u2n)F(t, u1n(t), u2n(t)), (u1n(t), u2n(t)))dt

+ r
∫ T

0
F(t, u1n(t), u2n(t))dt

≥
(

1− r
q

) ∫ T

0
|u̇1n(t)|qdt +

(
1− r

p

) ∫ T

0
|u̇2n(t)|pdt

+
∫ T

0

F(t, u1n(t), u2n(t))
θ(|(u1n(t), u2n(t))|)

dt−
∫ T

0
h̃(t)dt

≥
∫ T

0

F(t, u1n(t), u2n(t))
θ(|(u1n(t), u2n(t))|)

dt−
∫ T

0
h̃(t)dt, (3.3)

for all n ∈N, taking into account the fact that r = min(q, p). Hence, we get∫ T

0

F(t, u1n(t), u2n(t))
θ(|(u1n(t), u2n(t))|)

dt ≤ c3 (3.4)

for all n ∈ N. In addition, by using the relation (3.1), (2.1), Proposition 2.1, Remark 2.2 and
Wirtinger’s inequality, one has

L ≥ ϕ(u1n, u2n) =
1
q

∫ T

0
|u̇1n(t)|qdt +

1
p

∫ T

0
|u̇2n(t)|pdt−

∫ T

0
F(t, u1n(t), u2n(t))dt

≥ c4 (‖u̇1n‖r
Lq + ‖u̇2n‖r

Lp)−
∫ T

0

(
h(t)
Mr |(u1n(t), u2n(t))|rG(|(u1n(t), u2n(t))|) + h(t)

)
≥ c5

(
‖ũ1n‖r

W1,q
T
+ ‖ũ2n‖r

W1,p
T

)
− c6‖(u1n, u2n)‖r

∞G(‖(u1n, u2n)‖∞)− c7

≥ c8

(
‖ũ1n‖W1,q

T
+ ‖ũ2n‖W1,p

T

)r
− c9‖(u1n, u2n)‖r

W G(d‖(u1n, u2n)‖W)− c7

= c8‖(ũ1n, ũ2n)‖r
W − c9‖(u1n, u2n)‖r

W G(d‖(u1n, u2n)‖W)− c7 (3.5)



Periodic solutions of Hamiltonian systems with (q, p)-Laplacian 7

for all n ∈N.
Finally, we claim (u1n, u2n) is bounded, otherwise, going if necessary to a subsequence, we

can assume that ‖(u1n, u2n)‖ → +∞ as n→ +∞. Put

(v1n, v2n) =
(u1n, u2n)

‖(u1n, u2n)‖W
=

(ū1n, ū2n)

‖(u1n, u2n)‖W
+

(ũ1n, ũ2n)

‖(u1n, u2n)‖W

= (v̄1n, v̄2n) + (ṽ1n, ṽ2n). (3.6)

Then, {(v1n, v2n)} is bounded in W and by the compactness of the embedding W = W1,q
T ×

W1,p
T ⊂ C(0, T; RN)× C(0, T; RN), there is a subsequence, again denoted by {(v1n, v2n)}, such

that

(v1n, v2n) ⇀ (v1, v2) weakly in W, (3.7)

(v1n, v2n)→ (v1, v2) strongly in C(0, T; RN)× C(0, T; RN). (3.8)

Dividing both sides of (3.5) by ‖(u1n, u2n)‖r
W , by Remark 2.2 and (3.6), we find that

‖(ṽ1n, ṽ2n)‖W → 0 as n→ +∞. (3.9)

Moreover, it follows from (3.8) and (3.9) that

(v1n, v2n)→ (v̄1, v̄2) as n→ +∞,

which implies that

(v1, v2) = (v̄1, v̄2) and |(v̄1, v̄2)|r ≥ |v̄1|r + |v̄2|r ≥ c10‖(v̄1, v̄2)‖r
W = c10.

Consequently, |(u1n(t), u2n(t))| → +∞ uniformly for a.e. t ∈ [0, T]. From (H3), we get

lim
|(u1n(t),u2n(t))|→+∞

∫ T

0

F(t, u1n(t), u2n(t))
θ(|(u1n(t), u2n(t))|)

dt→ +∞,

which contradicts (3.4). Therefore, {(u1n, u2n)} is bounded in W, then ϕ satisfies condition (C).

Now, we are ready to prove our main result.

Proof of Theorem 1.3. Let W̃ = W̃1,q
T × W̃1,p

T be the subspace of W given by W̃ := {(u1, u2) ∈W |
(ū1, ū2) = (0, 0)}. Then W = W̃

⊕
(RN×RN). From Lemma 3.1, we obtain that ϕ ∈ C1(W, R)

satisfies condition (C). As shown in [1], a deformation lemma can be proved with the weaker
condition (C) replacing the usual Palais–Smale condition, and it turns out that the saddle
point theorem holds true under condition (C). By saddle point theorem (see Theorem 4.6
in [11]), we have only to verify the assertion:

(ϕ1) ϕ(u1, u2)→ +∞ as ‖(u1, u2)‖ → +∞ in W̃ and

(ϕ2) ϕ(u1, u2)→ −∞ as |(u1, u2)‖ → +∞ in RN ×RN.
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We first prove (ϕ1). For (u1, u2) ∈ W̃, by Proposition 2.1, Remark 2.2, (2.1) and Wirtinger’s
inequality, we obtain

ϕ(u1, u2) =
1
q

∫ T

0
|u̇1(t)|qdt +

1
p

∫ T

0
|u̇2(t)|pdt−

∫ T

0
F(t, u1(t), u2(t))dt

≥ c11

(
‖u1‖

q

W1,q
T
+ ‖u1‖

p

W1,p
T

)
−
∫ T

0

(
h(t)
Mr |(u1, u2)|rG(|(u1, u2)|) + h(t)

)
dt

≥ c12‖(u1, u2)‖r
W − c13‖(u1, u2)‖r

∞G(‖(u1, u2)‖∞)− c14

≥ [c12 − c13G(d‖(u1, u2)‖W)]‖(u1, u2)‖r
W − c14. (3.10)

Hence, (ϕ1) holds.
On the other hand, since 0 < 1

θ(|(x1,x2)|) < r, by (H2) and (H3), one then arrives at

ϕ(u1, u2) = −
∫ T

0
F(t, u1(t), u2(t))dt

≤ −1
r

∫ T

0

F(t, u1(t), u2(t))
θ(|(u1(t), u2(t))|)

dt

→ −∞ as |(u1(t), u2(t))| → +∞ in RN ×RN, (3.11)

which implies (ϕ2). It follows from the saddle point theorem that Theorem 1.3 holds.
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