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Abstract In this paper, we consider the existence of multiple positive solutions for the 2n-th order

m-point boundary value problems:















x(2n)(t) = f(t, x(t), x
′′

(t), · · · , x(2(n−1))(t)), 0 ≤ t ≤ 1,

x(2i+1)(0) =
m−2
∑

j=1

αijx
(2i+1)(ξj), x(2i)(1) =

m−2
∑

j=1

βijx
(2i)(ξj), 0 ≤ i ≤ n − 1,

where αij , βij (0 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 2) ∈ [0,∞),
m−2
∑

j=1

αij ,
m−2
∑

j=1

βij ∈ (0, 1), 0 < ξ1 < ξ2 <

. . . < ξm−2 < 1. Using Leggett-Williams fixed point theorem, we provide sufficient conditions for

the existence of at least three positive solutions to the above boundary value problem.

Keywords Higher order m-point boundary value problem, Leggett-Williams fixed point theorem,

Green’s function, Positive solution.

1. Introduction

The multi-point boundary value problems for ordinary differential equations arises in a variety

of different areas of applied mathematics and physics. Linear and nonlinear second order multi-

point boundary value problems have also been studied by several authors. We refer the reader to
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[2-8] and references therein. Davis et al. [9,10] studied the following 2n-th Lidstone BVP















x(2n) = f(x(t), x
′′

(t), · · · , x(2(n−1))(t)), t ∈ [0, 1],

x(2i)(0) = x(2i)(1) = 0, 0 ≤ i ≤ n − 1,

(1)

where (−1)nf : Rn → [0,∞) is continuous. They obtained the existence of three symmetric

positive solutions of the BVP (1).

Y. Guo et al. [11] studied the following 2n-th BVP















x(2n)(t) = f(t, x(t), x
′′

(t), · · · , x(2(n−1))(t)), 0 ≤ t ≤ 1,

x(2i)(0) − βix
(2i+1)(0) = 0, x(2i)(1) =

m−2
∑

j=1

kijy
(2i)(ξj), 0 ≤ i ≤ n − 1.

(2)

They obtained the existence of at least two positive solution for the above BVP.

Recently, Y. Guo et al. [13] studied the following 2n-th BVP















x(2n)(t) = f(t, x(t), x
′′

(t), · · · , x(2(n−1))(t)), 0 ≤ t ≤ 1,

x(2i)(0) = 0, x(2i)(1) =
m−2
∑

j=1

kijy
(2i)(ξj), 0 ≤ i ≤ n − 1.

(3)

By using Leggett-Williams fixed point theorem, they got at least three positive solutions for the

BVP(3).

The authors [14,15] investigated the following two BVPs















x(2n)(t) = f(t, x(t), x
′′

(t), · · · , x(2(n−1))(t)), 0 ≤ t ≤ 1,

x(2i)(0) =
m−2
∑

j=1

αijx
(2i)(ξj), x(2i)(1) =

m−2
∑

j=1

βijx
(2i)(ξj), 0 ≤ i ≤ n − 1,

(4)

and


































x(2n)(t) = f(t, x(t), x
′′

(t), · · · , x(2(n−1))(t)), 0 ≤ t ≤ 1,

x(2i)(0) − aix
(2i+1)(0) =

m−2
∑

j=1

αijx
(2i)(ξj),

x(2i)(1) + bix
(2i+1)(1) =

m−2
∑

j=1

βijx
(2i)(ξj), 0 ≤ i ≤ n − 1,

(5)

Motivated by the above results, in this paper, we study the existence of multiple positive

solutions for the following 2n-th order m-point boundary value problem















x(2n)(t) = f(t, x(t), x
′′

(t), · · · , x(2(n−1))(t)), 0 ≤ t ≤ 1,

x(2i+1)(0) =
m−2
∑

j=1

αijx
(2i+1)(ξj), x(2i)(1) =

m−2
∑

j=1

βijx
(2i)(ξj), 0 ≤ i ≤ n − 1,

(6)

To the best of our knowledge, existence results for positive solutions of above boundary value

problems have not been studied previously.
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Throughout the paper, we assume the following conditions satisfied:

(H1) αij , βij (0 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 2) ∈ [0,∞),
m−2
∑

j=1

αij ,
m−2
∑

j=1

βij ∈ (0, 1), and

0 < ξ1 < ξ2 < · · · < ξm−2 < 1;

(H2) (−1)nf : [0, 1]× Rn → [0,∞) is continuous;

2. Preliminaries

Our main results will depend on the Leggett-Williams fixed point theorem. For convenience,

we present here the necessary definitions from the theory of cones in Banach spaces.

Definition 2.1 Let E be a real Banach space . A nonempty convex closed set P ⊂ E is said

to be a cone provided that

(i) au ∈ P for all u ∈ P and all a ≥ 0 and

(ii) u,−u ∈ P implies u = 0.

Note that every cone P ⊂ E induces an ordering in E given by x ≤ y if y − x ∈ P .

Definition 2.2 The map α is said to be a nonnegative continuous concave functional on a

cone P of a real Banach space E provided that α : P → [0,∞) is continuous and

α(tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Similarly, we say the map β is a nonnegative continuous convex functional on a cone P of a

real Banach space E provided that β : P → [0,∞) is continuous and

β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Definition 2.3 An operator is called completely continuous if it is continuous and maps

bounded sets into pre-compact sets.

For positive real numbers a, b, we define the following convex sets:

Pr = {x ∈ P | ‖x‖ < r},

P (α, a, b) = {x ∈ P | a ≤ α(x), ‖x‖ ≤ b},
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Theorem 2.1 [1] (Leggett-Williams Fixed Point Theorem) Let A : P c → P c be a completely

continuous operators and let α be a nonnegative continuous concave function on P such that

α(x) ≤ ‖x‖ for all x ∈ P c. Suppose there exists 0 < a < b < d ≤ c such that

(C1) {x ∈ P (α, b, d)| α(x) > b} 6= ∅ and α(Ax) > b for x ∈ P (α, b, d),

(C2) ‖Ax‖ < a for ‖x‖ ≤ a, and

(C3) α(Ax) > b for x ∈ P (α, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2 and x3 such that ‖x1‖ < a, b < α(x2), and ‖x3‖ > a

with α(x3) < b.

3. Multiple positive solutions of (6)

In order to apply Theorem 2.1, we must define an appropriate operator on a Banach space. We

first consider the the unique solution of the following second order boundary value problem:

Lemma 3.1[12] Let (1 −
m−2
∑

i=1

αi)(1 −
m−2
∑

i=1

βi) 6= 0. Then for f(t) ∈ C[0, 1], the problem















x′′(t) + f(t) = 0, 0 ≤ t ≤ 1

x′(0) =
m−2
∑

i=1

αix
′(ξi), x(1) =

m−2
∑

i=1

βix(ξi),

(7)

has a unique solution

x(t) = −

∫ t

0

(t − s)f(s)ds + At + B,

where

A = −
1

1 −
∑m−2

i=1 αi

(

m−2
∑

i=1

αi

∫ ξi

0

f(s)ds

)

,

B =
1

1 −
∑m−2

i=1 βi

[

∫ 1

0

(1 − s)f(s)ds −
m−2
∑

i=1

βi

∫ ξi

0

(ξi − s)f(s)ds

+
1 −

∑m−2
i=1 βiξi

1 −
∑m−2

i=1 αi

(

m−2
∑

i=1

αi

∫ ξi

0

f(s)ds

)]

.

Lemma 3.2[12] Suppose αi, βi > 0 (i = 1, 2, · · · , m − 2), 0 <
m−2
∑

i=1

αi < 1, 0 <
m−2
∑

i=1

βi < 1.

If f(t) ∈ C[0, 1] and f ≥ 0, then the unique solution of (7) satisfies

inf
t∈[0,1]

x(t) ≥ γ‖x‖,

where

γ =

∑m−2
i=1 βi(1 − ξi)

1 −
∑m−2

i=1 βiξi

.
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Lemma 3.3 Suppose αi, βi > 0 (i = 1, 2, · · · , m − 2), 0 <
m−2
∑

i=1

αi < 1, 0 <
m−2
∑

i=1

βi < 1, and

let M = (1 −
m−2
∑

i=1

αi)(1 −
m−2
∑

i=1

βi). Then the Green’s function for the boundary value problem















−x′′(t) = 0, 0 ≤ t ≤ 1,

x′(0) =
m−2
∑

i=1

αix
′(ξi), x(1) =

m−2
∑

i=1

βix(ξi),

is given by

G
∗(t, s) =

1

M























































































































































































































(1 −
∑m−2

j=1
βjξj) − t(1 −

∑m−2

j=1
βj),

0 ≤ t ≤ 1, 0 ≤ s ≤ ξ1, s ≤ t;

∑m−2

j=1
αj

[

(1 −
∑m−2

j=1
βjξj) − t(1 −

m−2
∑

j=1

βj)

]

+(1 −

m−2
∑

j=1

αj)
[

(1 −
∑m−2

j=1
βjξj) − s(1 −

∑m−2

j=1
βj)
]

,

0 ≤ t ≤ 1, 0 ≤ s ≤ ξ1, t ≤ s;

∑m−2

j=i
αj

[

(1 −
∑m−2

j=1
βjξj) − t(1 −

m−2
∑

j=1

βj)

]

+(1 −

m−2
∑

j=1

αj)
[

(1 −
∑m−2

j=i
βjξj) − s(1 −

∑m−2

j=i
βj)
]

,

ξi−1 ≤ s ≤ ξi, 2 ≤ i ≤ m − 2, t ≤ s;

−M(t − s) +
∑m−2

j=i
αj

[

(1 −
∑m−2

j=1
βjξj) − t(1 −

∑m−2

j=1
βj)
]

+(1 −
∑m−2

j=1
αj)
[

(1 −
∑m−2

j=i
βjξj) − s(1 −

∑m−2

j=i
βj)
]

,

ξi−1 ≤ s ≤ ξi, 2 ≤ i ≤ m − 2, s ≤ t;

(1 −
∑m−2

j=1
αj)
[

(1 − t) +
∑m−2

j=1
βj(t − s)

]

,

ξm−2 ≤ s ≤ 1, s ≤ t;

(1 −
∑m−2

j=1
αj)(1 − s),

0 ≤ t ≤ 1, ξm−2 ≤ s ≤ 1, t ≤ s.

Lemma 3.4 Suppose αi, βi > 0 (i = 1, 2, · · · , m − 2), 0 <
m−2
∑

i=1

αi < 1, 0 <
m−2
∑

i=1

βi < 1. Then

G∗(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1].

Proof. We only check that if s ≤ t, then

Q = −M(t − s) +

m−2
∑

j=i

αj

[

(1 −

m−2
∑

j=1

βjξj) − t(1 −

m−2
∑

j=1

βj)

]

+(1 −

m−2
∑

j=1

αj)

[

(1 −

m−2
∑

j=i

βjξj) − s(1 −

m−2
∑

j=i

βj)

]

≥ 0.

In fact

Q =

m−2
∑

j=i

αj

(

1 −

m−2
∑

j=1

βj

)

(1 − t) +

m−2
∑

j=i

αj

(

m−2
∑

j=1

βj −

m−2
∑

j=1

βjξj

)
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+

(

1 −

m−2
∑

j=1

αj

)(

1 −

m−2
∑

j=i

βj

)

(1 − s) +

(

1 −

m−2
∑

j=1

αj

)(

m−2
∑

j=i

βj −

m−2
∑

j=i

βjξj

)

−

(

1 −

m−2
∑

j=1

αj

)(

1 −

m−2
∑

j=1

βj

)

(t − s)

≥

(

1 −

m−2
∑

j=1

αj

)(

1 −

m−2
∑

j=i

βj

)

(1 − s) −

(

1 −

m−2
∑

j=1

αj

)(

1 −

m−2
∑

j=1

βj

)

(t − s)

≥

(

1 −

m−2
∑

j=1

αj

)(

1 −

m−2
∑

j=i

βj

)

(t − s) −

(

1 −

m−2
∑

j=1

αj

)(

1 −

m−2
∑

j=1

βj

)

(t − s)

=

(

1 −

m−2
∑

j=1

αj

)

i−1
∑

j=1

βj(t − s)

≥ 0.

Lemma 3.5 Suppose (H1) holds. Then gi(t, s) ≤ 0 (0 ≤ i ≤ n−1), where gi(t, s) is the Green’s

function for the BVP















x′′(t) = 0, 0 ≤ t ≤ 1,

x′(0) =
m−2
∑

j=1

αijx
′(ξj), x(1) =

m−2
∑

j=1

βijx(ξj).

Proof. It is easy to see that gi(t, s) ≤ 0 by using Lemma 3.4.

Let G1(t, s) = gn−2(t, s), then for 2 ≤ j ≤ n − 1 we recursively define

Gj(t, s) =

∫ 1

0

gn−j−1(t, r)Gj−1(r, s)dr.

Lemma 3.6 Suppose (H1) holds. If f(t) ∈ C[0, 1], then the boundary value problem



































u(2l)(t) = f(t), 0 ≤ t ≤ 1,

u(2i+1)(0) =
m−2
∑

j=1

αn−l+i−1,ju
(2i+1)(ξj),

u(2i)(1) =
m−2
∑

j=1

βn−l+i−1,ju
(2i)(ξj), 0 ≤ i ≤ l − 1,

(8)

has a unique solution for each 1 ≤ l ≤ n − 1, Gl(t, s) is the associated Green’s function for the

boundary value problem (8).

Proof. We prove the result by using induction. Obviously, the result holds by using Lemma

3.3 for l = 1.

We assume that the result holds for l − 1. Now we consider the case for l. Let u′′(t) = v(t),
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then (8) is equivalent to


































u
′′

(t) = v(t), 0 ≤ t ≤ 1,

u′(0) =
m−2
∑

j=1

αn−l−1,ju
′(ξj),

u(1) =
m−2
∑

j=1

βn−l−1,ju(ξj),

(9)

and


































v(2(l−1))(t) = f(t), 0 ≤ t ≤ 1,

v(2i+1)(0) =
m−2
∑

j=1

αn−l+i,jv
(2i+1)(ξj),

v(2i)(1) =
m−2
∑

j=1

βn−l+i,jv
(2i)(ξj), 0 ≤ i ≤ l − 2.

(10)

Lemma 3.3 implies that (9) has a unique solution u(t) =
∫ 1

0
gn−l−1(t, r)v(r)dr, and (10) has also

a unique solution v(t) =
∫ 1

0
Gl−1(t, s)f(s)ds by the inductive hypothesis. Thus, (8) has a unique

solution

u(t) =

∫ 1

0

gn−l−1(t, r)

∫ 1

0

Gl−1(r, s)f(s)dsdr

=

∫ 1

0

(
∫ 1

0

gn−l−1(t, r)Gl−1(r, s)dr

)

f(s)ds

=

∫ 1

0

Gl(t, s)f(s)ds

Therefore, the result hold for l. Lemma 3.6 is now completed.

For each 1 ≤ l ≤ n − 1, we define Al : C[0, 1] → C[0, 1] by

Alv(t) =

∫ 1

0

Gl(t, τ)v(τ)dτ.

With the use of Lemma 3.6, for each 1 ≤ l ≤ n − 1, we have



































(Alv)(2l)(t) = v(t), 0 ≤ t ≤ 1,

(Alv)(2i+1)(0) =
m−2
∑

j=1

αn−l+i−1,j(Alv)(2i+1)(ξj),

(Alv)(2i)(1) =
m−2
∑

j=1

βn−l+i−1,j(Alv)(2i)(ξj), 0 ≤ i ≤ l − 1.

Therefore (6) has a solution if and only if the boundary value problem















v
′′

(t) = f(t, An−1v(t), An−2v(t), · · · , A1v(t), v(t)), 0 ≤ t ≤ 1,

v′(0) =
m−2
∑

j=1

αn−1,jv
′(ξj), v(1) =

m−2
∑

j=1

βn−1,jv(ξj),
(11)

has a solution. If x is a solution of (6), then v = x(2(n−1)) is a solution of (11). Conversely, if v is

a solution of (11), then x = An−1v is a solution of (6).
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Define A : C[0, 1] → C[0, 1] by

Av(t) =

∫ 1

0

gn−1(t, s)f(s, An−1v(s), An−2v(s), · · · , A1v(s), v(s))ds.

It now follows that there exists a solution of BVP (6) if, and only if , there exists a continuous

fixed point of A. Moreover, the relationship between a solution of BVP (6) and a fixed point of A

is given by x = An−1v(t), or equivalently, x(2(n−1)) = v.

Note that x is a positive solution of (6) if, and only if, (−1)n−1x(2(n−1)) = (−1)n−1v is positive,

where v is the corresponding continuous fixed point of A.

For each 0 ≤ t ≤ 1, 0 ≤ i ≤ n − 1, there are only finitely many points s such that gi(t, s) = 0.

Let

Mi = max
0≤t≤1

∫ 1

0

|gi(t, s)|ds, mi = min
0≤t≤1

∫ 1

0

|gi(t, s)|ds,

obviously, Mi > mi > 0.

Let X = C[0, 1] with the maximum norm ‖x‖ = max
0≤t≤1

|x(t)| and define the cone P ⊂ X by

P =

{

x ∈ X : (−1)n−1x(t) ≥ 0, (−1)n−1x is concave on [0, 1], and min
t∈[0,1]

(−1)n−1x(t) ≥ γ‖x‖

}

.

Let α : P → [0,∞) be the nonnegative continuous concave functional

α(x) = min
t∈[0,1]

(−1)n−1x(t) for x ∈ P.

We now present our main result.

Theorem 3.1. Suppose (H1) − (H2) hold. In addition there exist nonnegative numbers a, b,

and c such that 0 < a < b ≤ min{γ, mn−1/Mn−1}c and f(t, un−1, un−2, · · · , u1, u0) satisfies the

following growth conditions:

(H3) (−1)nf(t, un−1, · · · , u0) < a/Mn−1 for (t, |un−1|, |un−2|, · · · , |u0|) ∈ [0, 1]×

∏1
j=n−1[0,

∏j+1
i=2 Mn−ia] × [0, a];

(H4) (−1)nf(t, un−1, · · · , u0) < c/Mn−1 for (t, |un−1|, |un−2|, · · · , |u0|) ∈ [0, 1]×

∏1
j=n−1[0,

∏j+1
i=2 Mn−ic] × [0, c];

(H5) (−1)nf(t, un−1, · · · , u0) ≥ b/mn−1 for (t, |un−1|, |un−2|, · · · , |u0|) ∈ [0, 1]×

∏1
j=n−1 [

∏j+1
i=2 mn−ib,

∏j+1
i=2 Mn−ib/γ]× [b, b/γ].
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Then the boundary value problem (6) has at least three positive solutions x1, x2 and x3 such

that

‖x
(2(n−1))
1 ‖ < a, b < min

0≤t≤1
(−1)n−1x

(2(n−1))
2 (t),

and

‖x
(2(n−1))
3 ‖ > a with min

0≤t≤1
(−1)n−1x

(2(n−1))
3 (t) < b.

Proof. At first we show that A : P → P . Let x ∈ P then (−1)n−1Ax(t) ≥ 0. Moreover,

(−1)n−1(Ax)′′(t) = (−1)n−1f(t, An−1x(t), An−2x(t), · · · , A1x(t), x(t)) < 0.

By lemma 3.2, mint∈[0,1](−1)n−1Ax(t) ≥ γ‖Ax‖, this implies that A : P → P . Also, it is easy to

see that the operator A is completely continuous.

Choose x ∈ P c, then ‖x‖ ≤ c. Note that

‖Ajx‖ = max
t∈[0,1]

∣

∣

∣

∣

∫ 1

0

Gj(t, s)x(s)ds

∣

∣

∣

∣

≤

j+1
∏

i=2

Mn−i‖x‖ ≤

j+1
∏

i=2

Mn−ic.

Thus, according to assumption (H4) we have

‖Ax‖ = max
0≤t≤1

|Ax(t)|

= max
0≤t≤1

{
∫ 1

0

|gn−1(t, s)f(s, An−1x(s), An−2x(s), · · · , A1x(s), x(s))|ds

}

≤
c

Mn−1
max
0≤t≤1

{
∫ 1

0

|gn−1(t, s)|ds

}

= c.

Therefore, A : P c → P c.

In a completely analogous argument, assumption (H3) implies that Condition (C2) of the

Leggett-Williams Fixed Point Theorem is satisfied.

We now show that condition (C1) is satisfied. Note that for 0 ≤ t ≤ 1.

x(t) = (−1)n−1 b

γ
∈ P

(

α, b,
b

γ

)

and α(x) =
b

γ
> b.

Thus,

{x ∈ P (α, b,
b

γ
)| α(x) > b} 6= ∅.
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Also, if x ∈ P (α, b, b
γ
), then α(x) = min

t∈[0,1]
(−1)n−1x(t) ≥ b for each 0 ≤ t ≤ 1, so (−1)n−1x(t) ≥ b,

0 ≤ t ≤ 1, this implies

(−1)n−2A1x(t) =

∫ 1

0

−G1(t, s)(−1)n−1x(s)ds

≥ b

∫ 1

0

|G1(t, s)|ds ≥ bmn−2.

Inductively, we have

(−1)n−1−jAjx(t) ≥

j+1
∏

i=2

mn−jb, 0 ≤ t ≤ 1, 1 ≤ j ≤ n − 1.

and it is easy to see that

|Ajx(t)| ≤

j+1
∏

i=2

Mn−j

b

γ
.

Applying condition (H5) we get

(−1)nf(t, An−1x(t), An−2x(t), · · · , A1x(t), x(t)) ≥
b

mn−1
, 0 ≤ t ≤ 1.

So,

α(Ax) = min
0≤t≤1

(−1)n−1Ax(t)

= min
0≤t≤1

{
∫ 1

0

−gn−1(t, s)(−1)nf(s, An−1x(s), An−2x(s), · · · , A1x(s), x(s))ds

}

≥
b

mn−1
min

0≤t≤1

∫ 1

0

|gn−1(t, s)|ds

= b.

Therefore, condition (C1) is satisfied.

Finally, we show that condition (C3) is also satisfied. That is, we show that if x ∈ P (α, b, c)

and ‖Ax‖ > d = b/γ, then α(Ax) > b. This follows since A : P → P , then

α(Ax) = min
0≤t≤1

(−1)n−1Ax(t) ≥ γ‖Ax‖ > b.

Therefore, condition (C3) is also satisfied. So we complete the proof.

4. Example

In this section, we present an example to demonstrate the application of Theorem 3.1. Consider
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the boundary value problem






























x(4)(t) = f(t, x(t), x′′(t)), 0 ≤ t ≤ 1,

x′(0) =
1

2
x′

(

1

2

)

, x(1) =
1

2
x

(

1

2

)

,

x(3)(0) =
1

4
x(3)

(

1

2

)

, x′′(1) =
3

4
x′′

(

1

2

)

.

(12)

where

f(t, x, y) =















































1

1000
sin t + 4x +

1

1000
y3, x ∈ (−∞, 1/32],

1

1000
sin t −

15584

25

(

x −
3

32

)2

+
64

25
+

1

1000
y3, x ∈ [1/32, 3/32],

1

1000
sin t +

32768

16875

(

x −
13

32

)2

+
64

27
+

1

1000
y3, x ∈ [3/32, 13/32],

1

1000
sin t +

64

27
+

1

1000
y3, x ∈ [13/32, +∞).

By Lemma 3.3, we have

|g0(t, s)| =















































3

4
−

1

2
t, 0 ≤ t ≤ 1, 0 ≤ s ≤

1

2
, s ≤ t;

3

4
−

1

4
t −

1

4
s, 0 ≤ t ≤ 1, 0 ≤ s ≤

1

2
, t ≤ s;

1

2
−

1

4
t −

1

4
s, 0 ≤ t ≤ 1,

1

2
≤ s ≤ 1, s ≤ t;

1

2
−

1

2
s, 0 ≤ t ≤ 1,

1

2
≤ s ≤ 1, t ≤ s.

|g1(t, s)| =















































5

8
−

1

4
t, 0 ≤ t ≤ 1, 0 ≤ s ≤

1

2
, s ≤ t;

5

8
−

1

16
t −

3

16
s, 0 ≤ t ≤ 1, 0 ≤ s ≤

1

2
, t ≤ s;

3

4
−

3

16
t −

9

16
s, 0 ≤ t ≤ 1,

1

2
≤ s ≤ 1, s ≤ t;

3

4
−

3

4
s, 0 ≤ t ≤ 1,

1

2
≤ s ≤ 1, t ≤ s.

We first consider the condition i = 0.

1) For 0 ≤ t ≤ 1
2 , we have

∫ 1

0

|g0(t, s)|ds =

∫ t

0

|g0(t, s)|ds +

∫ 1

2

t

|g0(t, s)|ds +

∫ 1

1

2

|g0(t, s)|ds

=

∫ t

0

(

3

4
−

1

2
t

)

ds +

∫ 1

2

t

(

3

4
−

1

4
t −

1

4
s

)

ds +

∫ 1

1

2

(

1

2
−

1

2
s

)

ds

=
13

32
−

1

8
t −

1

8
t2.

2) For 1
2 ≤ t ≤ 1, we have

∫ 1

0

|g0(t, s)|ds =

∫ 1

2

0

|g0(t, s)|ds +

∫ t

1

2

|g0(t, s)|ds +

∫ 1

t

|g0(t, s)|ds

=

∫ 1

2

0

(

3

4
−

1

2
t

)

ds +

∫ t

1

2

(

1

2
−

1

4
t −

1

4
s

)

ds +

∫ 1

t

(

1

2
−

1

2
s

)

ds

=
13

32
−

1

8
t −

1

8
t2.
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So,

M0 = max
0≤t≤1

∫ 1

0

|g0(t, s)|ds =
13

32
, m0 = min

0≤t≤1

∫ 1

0

|g0(t, s)|ds =
5

32
.

Next, we consider the condition i = 1.

3) For 0 ≤ t ≤ 1
2 , we have

∫ 1

0

|g1(t, s)|ds =

∫ t

0

|g1(t, s)|ds +

∫ 1

2

t

|g1(t, s)|ds +

∫ 1

1

2

|g1(t, s)|ds

=

∫ t

0

(

5

8
−

1

4
t

)

ds +

∫ 1

2

t

(

5

8
−

1

16
t −

3

16
s

)

ds +

∫ 1

1

2

(

3

4
−

3

4
s

)

ds

=
49

128
−

1

32
t −

3

32
t2.

4) For 1
2 ≤ t ≤ 1, we have

∫ 1

0

|g1(t, s)|ds =

∫ 1

2

0

|g1(t, s)|ds +

∫ t

1

2

|g1(t, s)|ds +

∫ 1

t

|g1(t, s)|ds

=

∫ 1

2

0

(

5

8
−

1

4
t

)

ds +

∫ t

1

2

(

3

4
−

3

16
t −

9

16
s

)

ds +

∫ 1

t

(

3

4
−

3

4
s

)

ds

=
49

128
−

1

32
t −

3

32
t2.

So,

M1 = max
0≤t≤1

∫ 1

0

|g1(t, s)|ds =
49

128
, m1 = min

0≤t≤1

∫ 1

0

|g1(t, s)|ds =
33

128
.

As γ =
3

5
, m1/M1 =

33

49
, so we can let a =

1

13
, b =

3

5
, c = 1, then

f(t, x, y) < a/M1 =
128

637
for (t, |x|, |y|) ∈ [0, 1]× [0, 1/32]× [0, 1/13],

f(t, x, y) < c/M1 =
128

49
for (t, |x|, |y|) ∈ [0, 1]× [0, 13/32]× [0, 1],

f(t, x, y) ≥ b/m1 =
128

55
for (t, |x|, |y|) ∈ [0, 1] × [3/32, 13/32]× [3/5, 1].

By Theorem 3.1, problem (12) has at least three positive solutions.
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